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Abstract: In clinical practice, the Ishak Score system would be adopted to perform the evaluation
of the grading and staging of hepatitis according to whether portal areas have fibrous expansion,
bridging with other portal areas, or bridging with central veins. Based on these staging criteria, it is
necessary to identify portal areas and central veins when performing the Ishak Score staging. The
bile ducts have variant types and are very difficult to be detected under a single magnification, hence
pathologists must observe bile ducts at different magnifications to obtain sufficient information. This
pathologic examinations in routine clinical practice, however, would result in the labor intensive
and expensive examination process. Therefore, the automatic quantitative analysis for pathologic
examinations has had an increased demand and attracted significant attention recently. A multi-scale
inputs of attention convolutional network is proposed in this study to simulate pathologists” examina-
tion procedure for observing bile ducts under different magnifications in liver biopsy. The proposed
multi-scale attention network integrates cell-level information and adjacent structural feature infor-
mation for bile duct segmentation. In addition, the attention mechanism of proposed model enables
the network to focus the segmentation task on the input of high magnification, reducing the influence
from low magnification input, but still helps to provide wider field of surrounding information.
In comparison with existing models, including FCN, U-Net, SegNet, DeepLabv3 and DeepLabv3-
plus, the experimental results demonstrated that the proposed model improved the segmentation
performance on Masson bile duct segmentation task with 72.5% IOU and 84.1% F1-score.

Keywords: semantic segmentation; attention; multi-magnification inputs; liver pathology; bile duct

1. Introduction

According to the Global Hepatitis Report, viral hepatitis led to 1.34 million deaths in
2015 [1]. The WHO have also estimated that 788,000 people die from liver cancer per year,
and viral hepatitis (such as hepatitis B and C) is the primary cause leading to hepatocellular
carcinoma and cirrhosis. Statistics showed that the prevalence rate of liver disease in Asian
had a higher proportion than all the other region [2,3].

In clinical diagnosis, liver disease is generally performed by liver biopsy, since hep-
atology images can provide information at the cellular level. Generally, the grading and
staging of liver disease are evaluated by the Ishak Score system [4]. When scoring a liver
biopsy, the pathologists have to observe the characteristics of the entire liver biopsy under
a microscope or a digital image. The staging criteria of the Ishak Score include periportal
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or periseptal interface hepatitis, confluent necrosis, portal inflammation, focal lytic necro-
sis, apoptosis, focal inflammation, and architectural changes such as fibrosis or cirrhosis.
Different standards require pathologists to diagnose in different magnifications to obtain
an overall view information or a detailed cellular information. For instance, the fibrosis
staging is assigned from 0 to 6, corresponding from normal to cirrhosis, and is observed
using Masson stained liver biopsy (see Table 1). The staging is based on the findings that
whether portal areas have fibrous expansion, bridging with other portal areas, or bridging
with central veins, or even cirrhosis.

Table 1. Ishak fibrosis staging.

Status Score

No fibrosis 0
Fibrous expansion of some portal areas, with or without short fibrous septa

Fibrous expansion of most portal areas, with or without short fibrous septa

Fibrous expansion of most portal areas with occasional portal to portal (P-P) bridging
Fibrous expansion of portal areas with marked bridging; portal to portal (P-P) as well
as portal to central (P-C)

Marked bridging (P-P and/or P-C) with occasional nodules (incomplete cirrhosis)
Cirrhosis probable or definite

NG = W=

According to the above application situation, in order to identify the fibrosis staging,
it is necessary to first distinguish the central veins between portal areas. Generally, portal
areas and central veins have different characteristics, and the most important is that bile
ducts and arteries only appear in portal areas, as shown in Figure 1. Therefore, the
findings of bile ducts and arteries in portal areas could solve the above distinction problem.
Clinically, the bile ducts are considered as one of the criteria to identify portal areas. In
addition, the detection of bile duct can also help diagnose bile duct cancer or vanishing
bile duct syndrome. Therefore, in this study, a bile duct segmentation method is proposed
to assist doctors and pathologists not only in staging the fibrosis score, but also in finding
other bile duct diseases.

Figure 1. Structure of portal area in Masson stain.

Automatic bile duct segmentation in liver pathology images, however, is challenging.
First of all, since the color of the stained tissue gradually fades over time, and the staining
protocols from different hospitals do not follow the same criteria, it is difficult to control the
quality of the whole slide image (WSI) from liver biopsy. Secondly, even from the same liver
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biopsy image, different scanners can reveal color differences. The blurred area caused by
the scanners and the fold region caused by the sectioning procedure also affect the display
of the WSI. Most important of all, the bile ducts in different liver biopsies show variant
types. The bile ducts from fibrous expansion, for instance, are thinner than normal bile
ducts. The area and the number of bile ducts also differ in different portal areas. A larger
portal area normally exists bile ducts clustering, or a huge bile duct with small ductules
neighboring. Therefore, these factors increase the difficulty of automatic segmentation.

Accordingly, a multi-scale convolutional network architecture for the automatic seg-
mentation of bile ducts in Masson stained from liver pathology images was proposed in
this study. Three main concepts have been developed in the proposed model. First, the
proposed method obtains features from both high-magnification and low-magnification
patches in an attention method. The high-magnification view provides the microscopic
feature but cannot provide enough macroscopic information, while low-magnification
provides a larger view to solve the ambiguous features but loses the microscopic informa-
tion. Hence, the multi-scale attention network solves the above problem by integrating
low-magnification features and high-magnification features. Secondly, the integration is
processed in an attention-grabbing way in order to avoid information received from low-
magnification overly affecting the final segmentation result. Since the high-magnification
patch is the main target to be segmented, the low-magnification features should be an
assistant for the segmentation task. The patches extract from different magnifications are all
generated in the same size, and the higher magnification patches are located in the central
region of the lower magnification patches. Finally, the decoder structure in proposed model
is to recover the lost information from low-level feature maps in encoder layer.

In order to verify the segmentation performance of the above design concepts in
proposed model, two types of experiments were conducted in this study, including segmen-
tation task compared with some existing models and the comparison of internal structural
differences in proposed model. The experimental results demonstrated that the proposed
model could improve the segmentation performance based on the above design concepts.
From the measurement values and visual segmentation results, the contributions of the
proposed model on bile duct segmentation from liver WSI would be addressed as follows:

e Both cell-level and adjacent structural feature information are integrated to simu-
late pathologists” examination procedure for observing bile ducts under different
magnifications in liver WSI;

e  The attention method in proposed model would bring low-magnification input as an
assistant help, enhancing the feature maps from high-magnification;

e  The decoder structure of proposed model could recover the lost information from low-level
feature maps in encoder layer, resulting in the obviously smooth segmentation boundaries;

e In clinical practice, the automatic analysis for pathologic examinations would con-
tribute to the evaluation of the grading and staging of hepatitis based on Ishak
Score system.

2. Related Works

Although there is still no research on the issue of automatic bile duct segmentation
from liver pathology images, the segmentation and classification tasks focus on the medical
filed have been increasing year by year, showing the appearance of novel methods in
recent years significantly help in medical applications. Convolutional neural network
is the main reason conduces to the development of image processing field. AlexNet [5],
a classical convolutional neural network proposed by Krizhevsky et al., reached a new
achievement in the ImageNet Large Scale Visual Recognition Challenge (LSVRC) in 2012,
and is therefore leading to a great interest in convolutional networks among researchers.
Compared to earlier image processing methods, convolutional neural networks have been
improved more effectively, and therefore be applied in a large number of different fields
including image classification [5,6], semantic segmentation [7], object detection [8], object
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generation [9], human pose estimation [10], diagnosis of diseases using EEG signals [11,12],
and also an amount of applications in medical field.

2.1. Semantic Segmentation

The fully convolutional network (FCN) [7] is the first convolutional neural network
structure applied to the semantic segmentation task and reached outstanding achievement.
FCN provides an end-to-end training and pixel-wise predictions. Since the fully connected
layer disrupt spatial information, the FCN architecture replaces all the fully connected
layer by convolutional layer. The integration between different layers also helps segment
the boundaries sharply. The FCN establish the foundation of semantic segmentation in
deep learning. Accordingly, the U-net [13] architecture was proposed with a symmetric
U-shaped encoder-decoder structure. In decoder, U-Net concatenates the layers from
encoder at the same spatial resolution to recover lost information caused by pooling
or convolution with stride 2, and gradually upsampled layer by layer to obtain finer
boundaries. SegNet [14] also adopted a symmetric encoder-decoder structure similar to
U-Net. In the encoder structure, SegNet stores the indices of the largest values in the
max pooling layer. Then in the decoder, gradually upsample the layer and fills the value
from the indices stored from corresponding positions in encoder. In recent years, DeepLab
series [15-18] have been the standard for semantic segmentation network. The atrous
spatial pyramid pooling (ASPP) is proposed to obtain the features at different receptive
field to handle the problem of segmenting objects at multiple scales, and thus be widely
applied in other segmentation networks. The comparison of above related works and
proposed model is highlighted in Table 2.

Table 2. Comparison of related works and proposed model.

Comparison

Model Strengths Weaknesses
FCN fast learning and inference segmentation performance
U-net fm'er 'segm'entatlon bou'ndary; high computational resources
training with very few images
SegNet low computational memory high computational time
DeepLabv3 augmenting ASPP for better poor segmentation boundary
performance
DeepLabv3-plus finer segmentation boundary high computational resources
proposed finer segmentation boundary; high computational resources

high segmentation performance

2.2. Medical Image Task

In recent years, automatic analysis and diagnosis has attracted great interest in the
medical field [19-27]. Due to the significant success in convolutional networks, deep
learning has also been applied to medical images. Wang et al. [28] proposed an approach
to combining both CNN and handcrafted features for mitosis detection, the dimensionality
of handcrafted features was reduced with principal component analysis (PCA), and the
features from two methods were classified by random forest classifiers. In lung cancer
analysis, Cui et al. [29] applied the U-Net architecture for cancer cell detection, and an
architecture based on VGG-Net with global average pooling to classify cells into different
risk groups. In glioma research, Kurc et al. [30] applied a series of deep learning networks
from digital pathology, the Mask-RCNN network with non-maximum suppression was
adopted to nuclei segmentation in brain tissue images. Furthermore, the classification of
brain cancer cases is applied in combining the predictions of both radiology image and
pathology image, where a 3D CNN network is adopted as the radiology classification
model and a DenseNet network pretrained on ImageNet is adopted as the histopathology
classification model.
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The multi-scale networks have also been applied in medical challenging tasks, since
medical images is hard to predict in a single magnification. The information of different
magnifications helps networks to obtain both local microscopic information and larger
macroscopic information, and further help improve the prediction. In Liu et al. [31], a
multi-scale approach applied with 40 x magnification patches and lower magnification
patches is proposed to classify breast cancer patches. Both inputs adopted Inception-v3 as
the feature extraction model, and a fully connected layer is applied after two feature maps
to combine features from different magnification information. Song et al. [32] also adopted
a multi-scale approach to accurately segment cervical cytoplasm and nuclei. The multi-scale
convolutional network is composed of multistage trainable architecture and each stage
includes convolution layer, nonlinearity layer, and feature pooling layer. The proposed
network is explored to extract scale invariant features, and segment regions centered at
each pixel. Huang et al., and Sayici et al., both applied multi-scale magnification network
to solve hepatocellular carcinoma classification task in H&E stained [33,34]. Huang et al.,
proposed a central region crop method to solve the alignment problem of local information
in two different inputs to improve the performance, whereas Sayici et al., proposed an
attention method to reweight the influences from different magnifications with softmax.

In this paper, a multi-scale input concept is adopted to obtain different fields of view
information. The proposed multi-scale attention network integrates cell-level information
and adjacent structural feature information for bile duct segmentation. In addition, the
attention mechanism enables the network to focus the segmentation task on the input of
high magnification, reducing the influence from low magnification input, but still helps to
provide wider field of surrounding information. Our experimental result demonstrated
that the multi-scale patches could improve the segmentation performance on Masson bile
duct segmentation task, and our approach would achieve better performance of IOU and
F1-score compared to other networks.

3. Materials and Methods
3.1. Multi-Magnification Patches

Clinically, pathologists and doctors examine the whole slide image on different magni-
fications to provide more spatial information, such as obtaining local information around
the target object from high-magnification, or obtaining a global view of the entire tissue
from low-magnification. Therefore, our study follows the same approach to feed images
in multi-magnification, helping the model accurately segment bile ducts from additional
local information.

In multi-magnification patches generation, an image pyramid building by applying
bilinear interpolation is adopted to down sample the whole slide images (WSI) layer
by layer from the highest magnification. After that, a sliding window fixed with size
256 x 256 moves from the whole slide image in different pyramid level to generate multi-
magnification patches. Moreover, each patch generated in different pyramid level should
center at the same location, higher magnification patches will locate in the central region
of lower magnification patches. The process of multi-magnification patches generation is
shown in Figures 2 and 3.

While high-magnification patches provide detailed information from the object, low-
magnification patches can obtain local information around the target to assist in the bile
duct segmentation. However, the choosing of the two magnifications is important. Since
bile ducts often be visible in a high-magnification level, a too much low-magnification
input with useless background information will mislead the model to a wrong prediction.
Therefore, the selection of input magnification has a significant influence on the model’s
ability. In order to avoid the loss from resized patches in low-magnifications, in our
experiment, we select the highest 40 x magnification patches as the main input, meanwhile
select 20 x magnification patches as the secondary input to increase additional information.
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40x 20x 10x 5x

Figure 3. Patches from different magnifications. The higher magnification patch is located in the
central region of the lower magnification patch.

3.2. Multi-Scale Attention Convolutional Network

Multi-scale Attention Convolutional Network (MACN) is an image segmentation
architecture. The structure of the network is composed of three main concepts: (a) feature
extraction from high-magnification and low-magnification images respectively by separate
convolutional networks, (b) integration of the two magnification feature maps in an atten-
tion method, and (c) the decoder structure to recover the lost information from low-level
feature maps in encoder layer.

According to the first concept of the present structure, the extraction applies two
parallel convolutional neural networks, respectively. In this paper, the ResNet-101 [35]
pretrained from ILSVRC-2012-CLS image classification dataset is utilized as the feature
extraction network to reduce training time in our segmentation task. In order to further
increase receptive field and obtain features from different scale of bile ducts, dense atrous
spatial pyramid pooling block (DenseASPP) [36] is considered to be suitable framework,
and hence concatenates after ResNet-101 block.

In feature map integration, the alignment between two different magnification is
important. Since the spatial information from different magnification feature map does not
align on the same location, straightly doing convolution operation on multi-magnification
feature maps can leads to the spatial information disruption. The central crop method
is adopted to improve this problem, spatially-constrained integration phase to align the
location of each feature map element between low magnification feature maps and high
magnification feature maps, as shown in Figure 4.
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5x

20x

Figure 4. The central crop method to align different magnification feature maps.

Since the high-magnification input is the target prediction, an attention method is
proposed to prompt low-magnification input as an assistant help, enhancing the feature
maps from high-magnification. After central crop and bilinear resize, the low-magnification
input pass through a sigmoid function to converge weights between [0, 1]. The useful
information in the nodes of low-magnification feature maps will activate and approach 1,
indicating the corresponding positions in low-magnification have significant local informa-
tion. Afterwards, an element-wised multiplication in the two feature maps is generated
to produce an attention feature map. In the attention map, the value of the nodes in
low-magnification feature map approaching 1 preserve the value corresponding to the
same location from high-magnification feature map. Concretely, the multiplication re-
tains the value of the nodes when values in both two magnification patches are activated,
indicating that the location in both two patches exists useful information. Furthermore,
since the activated nodes from low-magnification feature map multiply with the nodes
from high-magnification feature map that are not activated will still remain low value, the
attention method can sufficiently control the influence from low-magnification input, and
therefore can be considered as an enhancement. Lastly, an element-wised addition between
attention feature map and high-magnification feature map is adopted to enforce the values
of high-magnification feature map. The attention method can be defined as:

Y(x) = (1+0(L(x))) * H(x) 1)

where Y(x) is the output, ¢ is a sigmoid function, L(x) and H(x) are low-magnification and
high-magnification feature maps, respectively. Figures 5 and 6 shows the whole process of
the attention method.

Feature
extraction

Feature | - \ (+)
h U

40x @ element-wise multiply @ sigmoid function
@ element-wise addition

Figure 5. An attention method to enhance the high-magnification feature map.
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Jeq Jojo)

groundtruth

Figure 6. The attention method visualization.

In order to refine the segmentation results especially along object boundaries. The
decoder structure similar to [13] and [18] is also applied. The decoder module that gradually
recovers the spatial information obtains sharper boundaries. In detail, the features after
attention method are bilinearly upsampled by a factor of 2 and then concatenated with the
corresponding low-level features from the ResNet-101 network, then apply convolution
layers to merge the features.

3.3. Focal Loss

In this study, we change the traditional loss method from cross-entropy to focal
loss [37], which get a great success in object detection. The cross-entropy loss can be
defined as:

CE(pt) = —ylog(pt) 2)

where p; is the probability predicted from model, and y is the ground truth.
Focal loss is extended from cross entropy to focus the loss calculation in challenging
data, the equation can be defined as:

FL(pt) = —y(1 — p1)"log(p:) ®3)

where r is a hyperparameter default as 2.

The equation of focal loss will reduce the influence of easy prediction object. For
instance, if a prediction of probability from model is 0.9 and the label is 1, it indicates the
pixel is easy to predict, and thus decrease its influence on the model weights update, lower-
ing 100x loss compared with cross-entropy (r = 2). The challenging task will significantly
affect the loss. Focal loss adopted in medical images also have a big influence since medical
images are various, so we changed the traditional cross-entropy method to focal loss to
help correct prediction.

3.4. Basic Model Operations

In this section, the basic model operations such as activation function or batch normal-
ization employed in our proposed models are described more specifically in the following
section parts.

3.4.1. Activation Function

The activation function is usually an abstraction concept inspired by biological neural
network, representing the activation of cells. In artificial neural networks, we generally
add activation functions to simulate the operation of biological neurons and generate non-
linear transformations to increase model complexity. The Rectified Linear Unit (ReLU) [38]
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has been widely used as an activation function in neural network structure, providing
the sparsity and preventing model from vanishing gradient problems compared to other
activation functions, like sigmoid or hyperbolic tangent. The Rectified Linear Unit (ReLU)
function can be defined as:

ReLU(x) = max (0, x) 4)

where x is the summation of weights from previous layers. In our model, we apply ReLU
as the default activation function after the convolution layer and the fully connected layer.

The SoftMax function is a generalization of the logistic function that “squashes” the
value of a vector into range [0, 1], and all the values add up to 1. The output of SoftMax
function is used to represent a probability distribution in probability theory. That is to say,
the output can be considered as the individual probability of different input values in the
vector, making SoftMax function widely used in the final output layer of neural networks.
The predicted probability of the j_th class from SoftMax function can be defined as:

exTw]-

K T
Y1 ¥ wy

P(y = jlx) = ©)

where K is the total number of the class, and x is a vector of output layer in neural network.

3.4.2. Batch Normalization

Batch normalization [39] is a hidden layer feature normalization approach. The
approach id applied to avoid covariate shift problem at the hidden layers. Covariate shift
problem means that the distribution of the different data features has a large variance in the
training phase. If the network goes deeper, the problem will be spread in the deep layers.
The batch normalization forces the mean of the batch data features be 0 and the standard
deviation of the batch data features be 1, and it makes the training more stable. The batch
normalization equation BN, g(x;) can be defined as:

Mp= ) i i 6)
X —
£ = ‘f}lﬁ (8)
opte
BN,, p(xi) = 7% +p )

where m is batch size, x; is i;;, data in batch, Hp is the mean of the batch, 02 is the standard
deviation of the batch, %; is the i;;, normalized value in the batch, € is a small constant for
numerical stability and the  and f are trainable parameters for distribution scale and shift.

4. Results
4.1. Masson Stained Dataset

The dataset used in this study was obtained from the Department of Pathology,
National Cheng Kung University Hospital approved by the Institutional Review Board and
diagnosed by experienced pathologist. The scanners currently serving in the hospital is
captured as a WSI at 40 x magnification using an Aperio AT2-Digital Whole Slide Scanner
(Leica Biosystems Imaging, Inc., Wetzlar, Hesse, Germany). In the semantic segmentation of
the WSIs, the dataset contains 60 whole slide images from cases with diagnosis confirmed
by specialist. The training set includes 32 cases and the testing set contains 28 cases. In the
experiments, after pyramid patch generation, a total of 215,607 patches were generated with
each patch resolution fixed at 256 x 256. However, most of these patches are segmented
from hepatocyte areas, which might result in an imbalance for our training and thus
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influence the prediction capability. To reduce the proportion of hepatocyte patches in total
dataset, patches that include fibrosis area, artery, vein and bile duct was retained. With
this strategy, the total patches were reduced to 40,120 in the dataset and 23,822 and 17,298
patches were included as training and testing set, respectively. The bile duct pixels were
labeled as foreground, and others as the background.

4.2. Evaluation

In the experiment, the proposed segmentation network was compared to recently
segmentation networks. The experiment was designed to evaluate the performance of each
segmentation network in the histopathological image dataset.

In this study, Precision (P), Recall (R), and F1-score were used to quantify the segmen-
tation performance. The aim of the proposed method is to segment the bile duct from each
patch. To this end, a pixel segmentation point is considered as true-positive (TP) if the
point is located within bile duct. In contract, a pixel segmentation point is considered as
false-positive (FP) if the point is in other areas such as fibrosis, artery, vein and hepatocyte.
The TP, FP, TN and FN were formulated in Table 3.

Table 3. TP, FP, TN and FN performance metrics.

Ground Truth .. .
Prediction Positive Negative
Positive True positive (TP) False positive (FP)
Negative False negative (FN) True negative (TN)

According to the above definition, equations that include true-negative (TN) were
excluded because most of the pixels are predicted as negative. Hence, the main criteria for
evaluation are defined as follows:

TP
.. __Tmw 1
Precision (P) TP £ FP (10)
TP
Recall(R) = TP+ EN (11)
2%xR x P
F1 score = RED (12)
OU — GroundTruth N DetectionResult TP (13)

~ GroundTruth U DetectionResult TP + FP + FN

Table 4 shows the performance between the proposed network and other segmentation
networks. The performance of precision and F1-score and IOU in our proposed network
are higher than others in testing cases, while recall value is similar to DeepLabv3 and
DeepLabv3-plus. The results suggest that capability of these networks to identify bile
duct is similar. However, our proposed network has an advantage of diminishing false
positive predictions.

Table 4. Performance between semantic segmentation networks.

Model Evaluation Precision Recall F1-Score 10U
FCN [7] 0.818 0.770 0.793 0.657

SegNet [14] 0.637 0.678 0.657 0.489

U-net [13] 0.590 0.723 0.651 0.482
DeepLabv3 [17] 0.769 0.857 0.810 0.681
DeepLabv3-plus [18] 0.775 0.855 0.813 0.685
Proposed 0.824 0.858 0.841 0.725

In addition to the above experiment of proposed and other segmentation networks,
comparison of internal structural differences in proposed model was also conducted,
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including the performance between attention mechanism and concatenation, crop/without
crop the central region in the feature map integration, integration the feature map after
DenseASPP block or after ASPP block, model with/without decoder, and the performance
of loss methods between cross-entropy and focal loss.

5. Discussion
5.1. Visual Experiment Results

The visual segmentation results of existing and proposed models are shown in Fig-
ures 7-12. As shown in Figure 7, our proposed network correctly segmented the clearly
visible bile ducts and significantly reduced incorrect predictions in hepatocyte area in
comparison with other networks. As for the case with small bile ductules, the visual seg-
mentation results in Figure 8 illustrated that the proposed model could accurately segment
the small bile ductules with reduced incorrect predictions in hepatocyte area. The impor-
tance of decoder structure can be illustrated in Figure 9 in which the object boundaries are
smoother in our network. In addition, the proposed network also demonstrated the ability
to find small ductules stained similar to hepatocyte area in Figure 9. Figure 10 demonstrated
a difficult case of segmentation task in which cells in arteries are much similar to real bile
ducts. From the visual segmentation results in Figure 10, all other compared models gave
erroneous predictions on these arteries, but our network had fewer incorrect predictions
than others. In Figure 11, compared to other networks, our network segmented the big bile
duct and bile ductules near hepatocyte area more completely. Figure 12 shows a special
case of bile duct. The type of the bile duct in Figure 12 is between the hepatocyte area and
the classic bile ducts, and thus is difficult to be segmented correctly. From the visual seg-
mentation results in Figure 12, our model achieved a smoother segmentation result. Since
the types of bile ducts and ductules vary between different cases, the segmentation results
of FCN, U-Net, SegNet are fragmented and incomplete, while the DeepLab series and the
proposed network perform more completely. Furthermore, the proposed network had a
better ability to reduce segmentation errors in hepatocyte areas, arteries and fibrosis areas.

Figure 7. Segmentation results for clearly visible bile ducts: original (a), GT (b), FCN (c), SegNet (d),
U-Net (e), Deeplabv3 (f), Deeplabv3-plus (g), and the proposed network (h).

(b)
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(g)
«* -
(b) (d) (f) (h)

Figure 8. Segmentation results for small bile ducts: original (a), GT (b), FCN (c), SegNet (d), U-Net (e),

Deeplabv3 (f), Deeplabv3-plus (g), and the proposed network (h).
(g)
(b) (d) (h)

Figure 9. Segmentation results for small ductules stained similar to hepatocyte area: original (a), GT (b),
FCN (c), SegNet (d), U-Net (e), Deeplabv3 (f), Deeplabv3-plus (g), and the proposed network (h).

Figure 10. Segmentation results for the case in which cells in arteries are much similar to real bile
ducts: original (a), GT (b), FCN (c), SegNet (d), U-Net (e), Deeplabv3 (f), Deeplabv3-plus (g), and the
proposed network (h).
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Figure 11. Segmentation results for big bile ducts and bile ductules near hepatocyte area: original
(a), GT (b), FCN (c), SegNet (d), U-Net (e), Deeplabv3 (f), Deeplabv3-plus (g), and the proposed
network (h).

(b)

Figure 12. Segmentation results for the case in which the bile duct is between the hepatocyte area and
the classic bile ducts: original (a), GT (b), FCN (c), SegNet (d), U-Net (e), Deeplabv3 (f), Deeplabv3-
plus (g), and the proposed network (h).

As for the comparison of internal structural differences in proposed model, Table 5
shows that in the model without crop, the local information of low magnification input
will disrupt spatial information, resulting in increasing false positive predictions in wrong
area and declining the precision value. Similarly, simply concatenating two different
magnification would increase more unnecessary information from high magnification input.
Hence, the model with attention method to focus the information on high magnification
could significantly improve the performance, as shown in Table 6.

Table 5. Performance between model with crop and without crop.

Evaluati
Method vatuation Precision Recall F1-Score 10U

With crop (Proposed) 0.824 0.858 0.841 0.725
Without crop 0.760 0.866 0.810 0.680
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Table 6. Performance between model with attention and with concatenation.

Evaluati
Method valuation Precision Recall F1-Score 10U
Attention (Proposed) 0.824 0.858 0.841 0.725
Concatenation 0.772 0.850 0.809 0.680

Table 7 shows the comparison between the performance of model with Dense ASPP
block and with ASPP block. The performance in both methods is similar, but the model
with DenseASPP block would perform better owing to the increase of complexity and
receptive field. Table 8 shows the performance between model with and without decoder.
Although the advantage of decoder structure does not show a significant influence on the
values of evaluation criterion compared to the structure without decoder, it does obviously
smooth the segmentation boundaries that could be observed in the visible results.

Table 7. Performance between model with DenseASPP and with ASPP.

Evaluati
Method valuation Precision Recall F1-Score IOU
DenseASPP (Proposed) 0.824 0.858 0.841 0.725
ASPP 0.838 0.838 0.838 0.722

Table 8. Performance between model with decoder and without decoder.

Evaluati
Method vatuation Precision Recall F1-Score 10U
With decoder (Proposed) 0.824 0.858 0.841 0.725
Without decoder 0.822 0.852 0.837 0.720

Lastly, the performance comparison of focal loss with different gamma values is shown
in Table 9. Since gamma value definitely decreases the total loss value, the higher gamma
value will get lower performance in which total loss is too low to modify model weights.

Table 9. Performance of focal loss between different gamma values.

Method Evaluation Precision Recall F1-Score 10U
gamma=0 (Cross Entropy) 0.806 0.852 0.829 0.707
gamma = 1 (Proposed) 0.824 0.858 0.841 0.725
gamma = 2 0.823 0.840 0.832 0.712

gamma =3 0.807 0.837 0.822 0.698

gamma = 4 0.775 0.839 0.806 0.675

5.2. Limitations of the Study in Digital Pathologyl Image Analysis

The clinical diagnosis of liver diseases is generally performed with liver biopsy since
pathologists could examine the liver biopsy at different magnifications under microscope
or digital image for more detailed and precise information at both structural and cellular
levels. This labor intensive and expensive examination process, however, would waste lots
of pathologists” working time. In order to reduce the intensive labor costs and potential
human diagnose error, automatic diagnosis and assistance for pathologists are extremely
important. Thus, the proposed model could provide efficient and precise segmentation
results for pathologists to distinguish bile ducts in WSL

Owing to that the labeling job for digital pathological image is time consuming and
the digital pathological image has features of huge file size (over 10 GB in average), it is



Sensors 2022, 22,2679

15 of 17

References

quite difficult to obtain open dataset of digital pathological images labeled by pathologists.
Thus, to obtain more precise segmentation results it would be necessary to increase the
labeled cases and/or to perform post-processing mechanism to reduce the false-positive
rate and keep the IoU score. In spite of these limitations of image segmentation task on
digital pathological images, it would be great helpful assistance in clinical practice when
adopting suitable and advanced Al model in digital pathology examinations to provide
more efficient and precise segmentation results for pathologists.

6. Conclusions

This paper presents a multi-scale deep convolution neural network with integration
of different magnification feature maps in an attention method. Three main concepts
have been developed in our model: (a) feature extraction from high-magnification and
low-magnification images respectively by separate convolutional networks, (b) integration
of the two magnification feature maps in an attention method, and (c) the decoder structure
to recover the lost information from low-level feature maps in encoder layer. As shown in
our results, multi-scale deep attention neural network demonstrates the multi-scale patches
that could improve the segmentation performance on Masson bile duct segmentation task.
Furthermore, 72.5% IOU and 84.1% F1-score were achieved in our approach, better than
other networks reported earlier.

Although the labeling job for digital pathological image is time consuming, we are
still ongoing to increase the labeled case to improve the accuracy of the proposed model.
In addition, a new post-processing mechanism would be tried to reduce the false-positive
rate and keep the IoU score. The post-processing mechanism in development is to provide
confirmed patches and candidate for doctors to quickly filter the candidate patches.
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