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Abstract: Few-shot learning (FSL) is of great significance to the field of machine learning. The
ability to learn and generalize using a small number of samples is an obvious distinction between
artificial intelligence and humans. In the FSL domain, most graph neural networks (GNNs) focus on
transferring labeled sample information to an unlabeled query sample, ignoring the important role
of semantic information during the classification process. Our proposed method embeds semantic
information of classes into a GNN, creating a word embedding distribution propagation graph
network (WPGN) for FSL. We merge the attention mechanism with our backbone network, use
the Mahalanobis distance to calculate the similarity of classes, select the Funnel ReLU (FReLU)
function as the activation function of the Transform layer, and update the point graph and word
embedding distribution graph. In extensive experiments on FSL benchmarks, compared with the
baseline model, the accuracy of the WPGN on the 5-way-1/2/5 shot tasks increased by 9.03, 4.56, and
4.15%, respectively.

Keywords: few-shot learning; graph neural network; semantic information; attention mechanism;
Mahalanobis distance; FReLU

1. Introduction

Most successful deep-learning architectures are based on rich labeled datasets. How-
ever, in special practical application scenarios, only small numbers of labeled data may
be available, owing to certain limitations. Therefore, there is a need to acquire informa-
tion on new classes based on limited labeled data. This is known as few-shot learning,
in which tasks use a small number of labeled samples to predict unlabeled ones. There
are a variety of approaches that have been proposed for FSL to address the deficiency of
labeled data.

Meta-learning is one of the main methods used in FSL. Model-Agnostic Meta-
Learning (MAML) [1] uses an initialization parameter that requires only a few samples to
perform gradient descent and to achieve good results when encountering new problems.
Because the MAML method only adjusts parameters according to different tasks, the
trained model is prone to overfitting. Task Agnostic Meta-learning for few-shot Learning
(TAML) [2] is an improvement on the MAML algorithm. The original design explicitly
requires that the parameters of the model have no preference for different tasks during
regularization. Meta-learning with memory Augmented Neural Networks (MANN) [3]
uses a recurrent neural network (RNN) to memorize the representation of the previous
task. Although this method is helpful for learning new tasks, the weight of the RNN
updating process is still slow, which makes the training process difficult. Meta-learning
with differentiable closed-form solvers [4] uses simpler differentiable regression methods
that have closed-form solutions to replace the original learning algorithms (e.g., the
k-nearest-neighbor (KNN) algorithm and the convolutional neural network) and has
inspired our idea of combining a traditional learning algorithm with a neural network.
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Belonging Network (BeNet) [5] uses basic statistical information of the target class to
find the simple mean and variance information to improve performance of the training
image set. Regularization using knowledge distillation when learning small datasets [6]
leverages the knowledge distillation method, which found that increasing the distillation
parameter “temperature” can improve model accuracy, especially for small numbers
of training data. However, if the testing and training sets show a large difference with
regard to their distribution, the output of the model will be highly unsatisfactory. Task-
Aware Feature Embeddings for low-shot learning (TAFE-Net) [7] innovatively uses the
meta-learning method to dynamically select weight parameters. According to various
tasks, different weight parameters are selected, and the weight decomposition method
is used to render this computationally possible. Because the few-shot dataset has no
corresponding class description information, the meta-learner’s ability to represent the
embedded features of the task is affected. Hence, the experimental effect is only slightly
improved compared with other algorithms. Therefore, how to effectively use the limited
dataset information has become the focus of our research.

Metric learning maps images into an embedding space where images of the same
class are located close to each other, and the images of different classes are farther
apart. The Siamese Neural Network [8] limits the structure of the input images and
can automatically discover the generalizable features of the new samples. However,
because it is sensitive to the differences between the two images, it may easily result
in misclassification. Matching networks [9] construct an end-to-end nearest-neighbor
classifier. Through meta-learning training, the classifier can quickly adapt to new tasks
with few samples. However, when the label distribution has obvious deviations (e.g.,
being fine-grained), the model becomes unusable. Few-shot image classification with
Differentiable Earth Mover’s Distance and structured classifiers (DeepEMD) [10] splits
an image into multiple tiles and introduces a new distance measurement method (i.e.,
Earth Mover’s Distance (EMD)) and calculates the best matching cost between each
tile of the query set and the support-set image, which indicates the degree of similarity
between the two. Boosting few-shot learning with adaptive margin loss [11] improves
the classification effect of the original algorithm by introducing adaptive margin loss
of class-relevant or task-relevant information and uses the semantic similarity between
different categories to generate adaptive edges. However, there is no correlation between
the two proposed edge generation methods. Improved few-shot visual classification [12]
uses the Mahalanobis distance to calculate the distance between samples; however, it
focuses largely on dividing the most accurate inter-class interval for the existing samples
and neglects learning the image features. The metric learning above makes us realize the
importance of a distance measurement in FSL.

In this study, we propose a new model for FSL called the word embedding distribution
propagation graph network. As illustrated in Figure 1, the word embedding distribution
graph is merged into the GNN, and the fine-grained few-shot classification task is solved
by the cyclic calculation method. The contributions of this work are summarized below.

First, the WPGN uses the GloVe model to extract the class label information as a word
vector. The WordNet model is used to weigh the class distribution similarity. It embeds
class semantic information into the GNN. Using the word embedding distribution graph,
the WPGN solves the problem of low classification accuracy caused by the similarity of
fine-grained image features.

Second, we replace the ReLU activation function of the GNN with the FReLU [13]
function. Compared with ReLU, FReLU is more suitable for processing vision tasks and can
further improve classification accuracy. At the same time, according to our experiments, the
Mahalanobis distance exhibits a better classification performance than Euclidean distance
for FSL. Furthermore, the covariance matrix is used to eliminate the variance and dimen-
sionality between each component. Therefore, we used Mahalanobis distance instead of
Euclidean distance to calculate the distance between samples.
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Finally, we combine the Efficient Channel Attention (ECA) [14] and our backbone
network (ResNet-12), called ECAResNet-12, which can introduce few extra parameters,
almost ignore calculations, and bring performance gain. ECAResNet-12 can better extract
image feature information through one-dimensional convolution to efficiently achieve
local cross-channel interaction, which extracts the dependencies between channels and
avoids dimensionality reduction, and further improves the classification performance
of GNN.

The remainder of this paper is organized as follows. Section 2 describes related
work. Section 3 focuses on the few-shot task and introduces the framework of WPGN in
detail. Section 4 presents a discussion of the results of the WPGN comparison experiments,
ablation studies and practical application example, demonstrating the effectiveness of
WPGN on FSL.

Figure 1. The figure shows a 3-way-1 shot task, where 1, 2, 3 represent the support set, 4 represents
the query set, and the red line segment represents the mini-mum similarity between 4 and other
support set samples. After cyclic calculation of the L-layer Point Graph and Word Distribution Graph,
the class output with the closest distance between 4 and the other three types of samples in the Word
Distribution Graph is finally selected as the prediction result.

2. Related Work

Recently, there have been many high-quality works in Few-Shot Learning with novel
ideas, which are different from meta-learning and metric learning. We will introduce them
from four parts: graph neural network, transfer learning, semantic information, attention
mechanism and application.

2.1. Graph Neural Network

The GNN, which is a new method for performing FSL, is a multi-layer network
with a weight-sharing property. The GNN is a graph model composed of nodes and
edges. Each node represents an input image, and the weight on each edge represents
the relationship between different images. This relationship can consist of the distance
or the similarity between the images. FSL with graph neural networks [15] transfers
the distance metric from a Euclidean space to a non-Euclidean one, and its core idea
is the same as that of most GNNs. It transfers the label information of labeled images
to unlabeled query images. On the basis of the abovementioned GNN method, the
Edge-labeling Graph Neural Network (EGNN) [16] uses edge label prediction instead of
node label prediction as well as a two-dimensional edge features to explicitly express
the similarities and differences between classes. Although it shows the great potential of
GNN in FSL, the distribution information of the sample is ignored. Most GNN methods
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based on meta-learning focus on the instance-level relationship between samples, and
the Distribution Propagation Graph Network (DPGN) [17] further extends this idea by
explicitly simulating the distribution relationship from one instance to all other instances
in a 1-vs.-N manner. DPGN proposes a dual-graph neural network model, which es-
tablishes the cyclic propagation process between the two graphs. The instance- and
distribution-level relationships are then combined to create a better environment for
few-shot classification. Unfortunately, DPGN completely ignores semantic information,
which is important for fine-grained classification. Therefore, DPGN shows poor classi-
fication performance. The looking-back [18] method proposed absorbs the lower-level
information in the hidden layers of the neural network using a GNN. Denoising Au-
toEncoders (DAE) [19] proposed a structure comprising denoising autoencoders using a
graph neural network, exploited the connection between nodes to perform reconstruc-
tion, and updated the classification weight vector. However, the DAE completely ignores
the semantic information of the image.

2.2. Transfer Learning

The transfer-learning scheme for semi-supervised few-shot learning (TransMatch) [20]
uses transfer learning and weight imprinting to generate classifier weights, and it uses the
MixUp method to perform semi-supervised training, demonstrating that transfer learning
can achieve better results in small sample scenarios. Although the accuracy of transfer
learning is lower than that of an FSL model because of its flexibility, we use this idea to
extract semantic information.

2.3. Semantic Information

The classification method based on semantic information uses target label infor-
mation as prior knowledge to assist target classification. Multiple-Semantics [21] uses
a variety of semantic information to enrich the information source of small sample
learning, which is closer to the situation of humans learning new things and reminds
us that human beings will refer to label information when classifying. Variational Au-
toEncoders [22] proposed a cross and distribution aligned-variational autoencoder that
combines image feature information and semantic information to construct latent fea-
tures containing important multi-model information to infer the classification of unseen
samples. However, methods for obtaining accurate semantic information are an im-
portant factor that limits the application of these methods. Learning Compositional
Representations [23] decomposed the image representation into multiple attribute rep-
resentations and improved the representation ability of the feature extraction network
by adding loss-function constraints. The characteristics of manual labeling limit the
applicability of the model. A classification hierarchical structure [24] uses the semantic
relationship between classes to perform additional supervision on the feature extraction
network and guide it to learn additional transferable feature information. This helps the
KNN algorithm obtain more accurate classification results. Semantic feature augmen-
tation in few-shot learning [25] also uses semantic information to expand the data. It
encodes the feature data to map the semantic space, and it then performs classification by
decoding the enhanced information. The result is better than that of data augmentation
at the image level. A new hierarchical semantic embedding [26] framework effectively
uses the hierarchical classification structure to guide network feature learning, encodes
the correlation between different hierarchical classes, and achieves better performance
on fine-grained image classification. However, this framework requires the manual an-
notation of datasets, which affects its practical applicability because manual annotation
is tedious and time consuming. To sum up, our research focuses on acquiring accurate
semantic information without manual annotation.



Sensors 2022, 22, 2648 5 of 20

2.4. Attention and Application

Few-shot classification via adaptive attention [27] introduces a channel attention
mechanism and a spatial attention mechanism to optimize feature maps. Although simpler
and more effective than other models, it lacks the ability to adapt to new tasks. As there are
fewer samples for learning in FSL, it means that richer features should be extracted from
each image, and an attention mechanism can meet this demand. Voronoi Decomposition-
based Random Region Erasing [28] generates new artificial images with randomly covered
regions of irregular shape and augments the original dataset to train the neural network
more efficiently. Multimodal few-shot learning for gait recognition [29] combines CNNs
and RNNs using multi-modal time-series learning to map the latent embedding vector
space and to address the open-set gait recognition problem. The wide application of FSL
makes us realize the great research potential in this field.

Based on this research and our own work, we now introduce the WPGN and follow
the dual-graph cyclic calculation method of the DPGN to construct a point graph and word
embedding distribution graph that extract semantic information using the GloVe [30] model,
and we eliminate the need for manual labeling, thereby achieving better classification results
than extant methods.

3. Method

In this section, we first provide the background of our FSL task, and we then discuss
our proposed WPGN in detail.

3.1. Problem Definition

The goal of an FSL task is to train a model to perform well in cases when only
few samples are given. Our few-shot task provides a support set S, a query set Q, and
training image dataset Dtrain. Each task contains N classes with K samples per class, which
implies an N-way-K shot setting. We compare the few-shot task to the traditional image
classification task in Figure 2, where Figure 2a represents the traditional image classification.
We train the model on the training set in 10 classes, and then use the trained model to test
the accuracy on the testing set. Conversely, Figure 2b represents a few-shot classification.
There are five classes in the training, and five images of S in each class, indicating the
5-way-5 shot task category. After obtaining the trained model, the accuracy of the model is
tested on the S and Q of the testing set. The testing task process is the same as the training
task: a 5-way-5 shot task.

Figure 2. Few-shot tasks and traditional image classification tasks in CUB-200-2011 dataset: (a) tradi-
tional classification; (b) few-shot classification.
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3.2. Feature Extraction with ECA-Net

The image contains a foreground and background, and the quality of feature ex-
traction will directly affect the classification effect of the GNN. In ResNet-12, different
regional features of the image are treated equally. However, in the classification task, we
hope that the network can pay more attention to the foreground and ignore the back-
ground. Therefore, as shown in Figure 3, we have added a channel attention mechanism,
ECA-Net, to the ResNet-12 network, to enable our backbone to ignore the background,
highlight the foreground, and further improve the quality of feature extraction. In the
backbone, with the increase in the number of channels, the resolution of the feature map
will decrease. In the course of the channel attention learning, if either the resolution or
the number of channels is too low, it will result in a decline in the image extraction qual-
ity. Because the channel attention mechanism has certain requirements on the resolution
and channel number of feature map, we choose the feature map with medium channel
number and resolution, that is, an ECA mechanism is added to the feature map with
128 channels.

Figure 3. ECAResNet-12 network architecture.

3.3. Word Embedding Distribution Propagation Graph Network

As shown in Figure 1, the WPGN consists of L layers, and each layer contains a
point graph and a word embedding distribution graph, which are designed based on
a GNN. The ECAResnet-12 backbone network is used for feature extraction. First, an
image feature is extracted in the feature extraction layer as the initialization informa-
tion of the point graph. Second, according to the corresponding class label of the im-
ages, the word vectors of each class are embedded using the GloVe model to provide
the initial information of the word embedding distribution graph. Third, we merge the
point graph and word embedded distribution graph, update the position of the node in
the point graph, and cyclically generate the point graph and word-embedded distribu-
tion graph for each layer. Finally, the distance between nodes in the point graph judges
the similarity between the query set and the support set, and the class of the query set
is predicted.

3.3.1. Point Graph

The point graph was designed based on the GNN and generated according to the
extracted image feature information. The point graph represents the position of each
instance in the sample space. The nodes in the point graph are initialized as follows:

Vp
0,i = fextract(gi) (1)
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where gi represents each image sample instance, fextract() represents the backbone network
for image extraction. Edge Ep

l,ij in the point graph represents the image feature similarity,
which can be calculated using the following formula:

Ep
l,ij = M(Vp

l,i, Vp
l,j)× Ep

l−1,ij (2)

where Vp
l,i and Vp

l,j respectively represent nodes i and j in the point graph, and when l equals

zero, Ep
l−1,ij equals one. M represents the Mahalanobis distance. The calculation formula is

as follows:

M(i, j) =
1
2
(i− j)T(

∼
Qτ)

−1
(i− j) (3)

Because FSL uses tasks as a unit of learning, we use τ for specific task and c for a class

in task τ.
∼

Qτ represents the estimated value of the covariance matrix between images in

task τ.
∼

Qτ
c is the estimated value of the covariance matrix between images of task τ and

class c.

∼
Qτ =

N

∑
c=1

∼
Qτ

c
N

=
N

∑
c=1

1
N
(λτ

c Qτ
c + (1− λτ

c )Q
τ) (4)

where N represents the number of classes in task τ. Qτ
c is the true value of the covariance

matrix between images of class c in task τ.

Qτ
c =

1
|K| ∑

gi∈K
( fextract(gi)− µc)( fextract(gi)− µc)

T (5)

where µc represents the mean value of the feature embedding matrix, fextract(), in the
support set image in task τ. K represents the number of images in the support set of class
c in task τ. Qτ is the true value of the covariance matrix between all classes of images in
task τ.

Qτ =
N

∑
c=1

Qτ
c

N
(6)

The weight λτ
c is calculated by the following method:

λτ
c =

K
K + 1

(7)

In existing GNNs, the focus is on the use of methods for embedding information. The
choice of metric is also important. Previous selection of the metric involves two unrealistic
assumptions: feature dimensions are not correlated, and there is consistent covariance.
Mahalanobis believes that different types of images can have different covariances, and
the distribution of those images is closer to the real situation and must remain in focus.
The Mahalanobis distance can deal with the problem of non-independent and identical
distributions among various dimensions in high-dimensional linearly distributed data.
Because the amount of data in the FSL task is small, it is important to consider the difference
in image covariance of different categories. The Mahalanobis distance is the normalized
distance of non-uniform distribution in Euclidean space, without considering the influence
of data dimension. Furthermore, the correlation between variables is considered according
to the distribution of features in the whole space. Therefore, it can better describe the
similarity between data.
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The Mahalanobis distance is an excellent way to solve the differences between classes;
hence, the WPGN uses it to calculate the distance between them. To verify the effectiveness
of Mahalanobis distance, we compare the classification results of three datasets by changing
the measurement method of the similarity calculation. The experimental results are shown
in Table 1.

Table 1. Different measurement methods.

Distance
Manhattan Euclidean Mahalanobis

Dataset

CUB-200-2011 83.51 83.81 84.34
MiniImageNet 69.92 70.34 70.69

CIFAR-FS 79.6 79.9 80.4

As seen in Table 1, the Manhattan distance appears to have the lowest accuracy. The
Mahalanobis distance has certain advantages compared with the Manhattan and Euclidean
distances; therefore, we choose it as the best method to calculate the similarity of class in
the WPGN.

3.3.2. Word Embedding Distribution Graph

Similar to the point graph, the word embedding distribution graph is designed based
on the GNN, which is generated by semantic information. The GloVe word embedding
model is adopted to vectorize object labels in the training. WordNet [31] is used to calculate
the similarity between nodes.

The GloVe model performs a vector representation of words, which makes the vectors
contain as much semantic and grammatical information as possible. The GloVe model
first constructs a word co-occurrence matrix based on a large corpus, and then trains word
vectors with fixed dimensions, such that the distance between word vectors of different
words is close to the distance between different words in the co-occurrence matrix. While
reducing the dimension of data, the loss of accuracy is reduced as much as possible, and
the trained word vectors are finally obtained. The word vectors of the GloVe model can be
added and subtracted. For example,

fg(King)− fg(Man) + fg(Woman) = fg(Queen) (8)

where fg() represents the word vectors trained by the GloVe model. The fact that the word
vectors can be added and subtracted allows us to create and generate it in a full sample
space. This method is conducive to expanding the distance between classes in the full
sample space, thus improving the classification performance. We extract the label of each
class in the dataset as word vectors through the pre-trained GloVe model to use it as the
initial node of the word embedding distribution graph.

The node Vw
l,i in the word embedding distribution graph represents the instance of

each image gi embedded by semantic information, and the Vw
0,i initial value is as follows:

Vw
0,i = fg(labelc) (9)

where labelc represents the label of class c.
Each edge in the word distribution graph Ew

l,ij stands for the similarity between the
semantic distribution features of different samples, and the calculation formula is as follows:

Ew
l,ij = M(Vw

l,i , Vw
l,j)× Ew

l−1,ij × fw(Vw
l,i , Vw

l,j) (10)

where l equals zero, and Ew
l−1,ij equals one. To prevent Ew

0,ij from disappearing after many
iterations of Ew

l,ij, the number of iteration layers is discussed in the experiment. The number
of layers is set to five to avoid the disappearance of Ew

0,ij.
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Here, fw represents the similarity calculated by the WordNet model, and the calcula-
tion method is as follows:

fw(x, y) =
1

abs(mmin − xmin) + abs(mmin − ymin)
(11)

where xmin, ymin, and mmin represent the minimum depths of the word set. These three
parameters are calculated as follows:

xmin = mindepth(x)
ymin = mindepth(y)

mmin = mindepth(m)
(12)

Parameter m represents the lowest common upper word set, and the calculation
formula is as follows:

m = Lowhy(x, y) (13)

3.3.3. Loop Computation

The positions between instances in the word embedding distribution graph represent
the distribution of different instances in the sample space. After the WPGN is initialized,
the model will perform cyclic calculations combined with word embedding to learn image
features and predict the classification of the images. The cycle calculation process is shown
in Figure 4.

Figure 4. Cycle calculation process of the WPGN.

At first, the image through feature extraction network ECAResNet-12 is used as the
initial node Vp

0,i of point graph 0 layer. The GloVe model is used to extract semantic
information as the initial node Vw

0,i of word embedding distribution graph 0 layer. Then,
Mahalanobis distance is used as a measure of the distance between nodes and the edges of
the point graph Ep

0,ij, and the word embedding distribution graph Ew
0,ij is calculated. Second,

Ew
0,ij and Vp

0,i will update the point graph through W2P and obtain point graph node Vp
1,i.

After the calculation of Ep
1,ij, Ep

1,ij and Vw
0,i, it will update the word embedding distribution

graph through P2W and obtain node Vw
1,i. Finally, the Ew

1,ij is calculated according to its
nodes, where the dual-graph of layer 1 is calculated, and the calculation is repeated as
described above until layer L is reached.
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Updating the Point Graph

The process of updating the point graph is shown in Figure 5a. The point graph is
adjusted in the Transform layer, which consists of a Conv layer, a BatchNorm layer, and
a FReLU activation function, which transmits information in reverse. The adjustment
strategy W2P is shown as follows:

Vp
l,i = fFR

(
fBN

(
fconv2d

(
N

∑
j=1

(Ew
l−1,ij ·V

p
l−1,j), Vp

l−1,i

)))
(14)

where fconv2d() represents the convolution operation, and fBN() represents the Batch Nor-
malization operation. Then, node Vp

l,i of the next layer is obtained.

Figure 5. Details about W2P strategy and P2W strategy in the WPGN. (a) W2P; (b) P2W.

Updating the Word Embedding Distribution Graph

The process of updating the word embedding distribution is shown in Figure 5b. The
word embedding distribution graph is adjusted by the Transform layer, which includes the
full connection layer and the FReLU activation function, which provides fusion transfer
adjustments. We propagate the query set images without label information from the point
graph to the word embedding distribution graph. The node adjustment method P2W is
as follows:

Vw
l,i = fFR( fFC

(∣∣∣ |Nj=1(Ep
l,ij), Vw

l−1,i)) (15)

where | | is the concatenation operator, which aggregates scalar Ep
l,ij into vectors.

FReLU Activation Function

FReLU is a simple and effective activation function suitable for processing visual tasks.
It improves the ReLU by adding negligible spatial conditions overhead. FReLU is more
suitable for the GNN than ReLU. We use FReLU to combine features in the Transform
layer of W2P and P2W in the same way that WPGN obtains the point graph and word
embedding distribution graph of the next layer. The FReLU is calculated as follows:

fFR(x) = Max(x, T(x)) (16)
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where T(x) represents a simple and efficient spatial context feature extractor. T(x) is
defined as follows:

T(x) = fBN( fconv2d(x)) (17)

To verify the effectiveness of FReLU in the WPGN, we compare the classification
results using different activation functions on the CUB-200-2011 dataset. The experimental
results are shown in Table 2.

Table 2. Effectiveness of introducing FReLU into the WPGN.

Function ReLU PReLU Swish LeakyReLU FReLU

Acc 82.51 82.92 83.55 83.95 84.34

Here, the activation function has a non-negligible impact on the WPGN model. Com-
pared with the LeakyReLU, FReLU used in this study has a certain degree of accuracy
improvement. From ReLU to the latest FReLU, the accuracy of the WPGN has increased
by 1.83%.

3.3.4. Loss Function

We use the Softmax function as the classification function, combining point graph loss
and word embedding distribution graph loss as the loss value of the WPGN. The prediction
process of each node is as follows:

P(yi|xi) = So f tmax

(
K

∑
j=1

Ep
l,ij · one-hot(yj)

)
(18)

where P(yi|xi) is the most probable class, given sample xi that belongs to the point graph,
and yi is the label of the j th sample in the support set.

The calculation steps of the loss function are as follows.

1. Calculate the point graph loss:

Lp
l = LCE(P(yi

∣∣∣xi), yi) (19)

where Lp
l represents the loss of the L-layer point graph, and LCE is the cross-entropy

loss function.
2. Calculate the word embedding distribution graph loss:

Pw(yi|xi) = Softmax

(
K

∑
j=1

Ew
l,ij · one-hot(yj)

)
(20)

where Pw(yi|xi) is the most probable class, given sample xi that belongs to the word
embedding distribution graph.

Lw
l = LCE(Pw(yi|xi), yi) (21)

3. Calculate the model loss.

To balance the two losses, we introduce weight λ and calculate the total loss as follows:

Lloss = λLp
l + (1− λ)Lw

l (22)
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The classification accuracy is shown in the Table 3 as λ takes different values.

Table 3. λ’s influence on classification accuracy.

λ 0.1 0.2 0.3 0.4 0.5

Acc 81.86 82.32 82.59 82.85 83.15

λ 0.6 0.7 0.8 0.9 1.0

Acc 83.32 83.51 83.82 84.34 83.88

It can be seen from Table 3, with the increase in λ value, the classification accuracy
gradually improves. When λ is 0.9, the highest accuracy rate can be obtained, and when it
is greater than 0.9, the classification accuracy begins to decrease. The WPGN obtains the
minimum loss value when λ is 0.9; thus, we set λ to 0.9.

4. Experiment
4.1. Experimental Environment and Datasets

The experimental environment of this paper is shown in Table 4.

Table 4. Hardware and software environments.

GPU Python Torch CUDA Torchvision Torchnet

1080Ti 3.5.2 1.1 10.1 0.3.0 0.0.4

We selected three types of standard datasets in FSL: MiniImageNet [9], CUB-200-
2011 [32] and CIFAR-FS [4]. The details of the images, classes, training/validation/test set
divisions and the image resolutions of each dataset are shown in Table 5.

Table 5. Details for few-shot dataset benchmarks.

Dataset Images Classes Train/Val/Test Resolution

MiniImageNet 60 k 100 64/16/20 [9] 84 × 84
CUB-200 11.7 k 200 100/50/50 [33] 84 × 84
CIFAR-FS 60 k 100 64/16/20 [4] 32 × 32

As illustrated in Figure 6, the image features of the four different classes of birds in
the CUB-200-2011 dataset are similar and more difficult to distinguish.

Figure 6. Four different classes of birds in CUB-200-2011.
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4.2. Experimental Settings

The WPGN uses cyclic computation to construct the network structure, including
the point graph and word embedding distribution graph. Mutual updating between the
dual-graph is the biggest feature of the WPGN. Therefore, the total number of layers of
the WPGN affects the final classification results. To find the layer number that best fits the
network structure, we trained the WPGN on the CUB-200-2011 dataset by changing the
layer number to obtain the classification accuracy of each training model. The experimental
results are shown in Figure 7.

Figure 7. Effects of different layer numbers on classification accuracy.

Here, we can see that the abscissa represents the number of layers, zero represents
no cyclic calculation, and one represents one cycle calculation. When the layer number
increases from zero to five, the classification accuracy increases by nearly 17%. However,
the growth of classification accuracy tends to be flat and slightly oscillates when the
layer number is greater than five. Therefore, we chose five as the final layer number of
the WPGN.

To more intuitively show the impact of different layer numbers on the WPGN’s
classification accuracy, the labeled class [1–5] was selected for the experiment, and a
heat map was used to show the change of classification accuracy with the increase in
layer numbers.

The brighter parts indicate high confidence. Figure 8a did not use a cycle for calcula-
tion; hence, the classification accuracy was low, resulting in fuzzy predictions and a greater
possibility of predicting the wrong label. Figure 8e has five layers, and with the exception of
the ground-truth location, the other parts have darker colors, meaning that the probability
of an accurate prediction is much higher than that of the prediction error.
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Figure 8. Impact of different layer numbers in the WPGN on classification accuracy: (a) layer 0;
(b) layer 1; (c) layer 2; (d) layer 3; (e) layer 5; (f) ground truth.

The parameter settings obtained in the WPGN are shown in Table 6 and listed
by experiment.

Table 6. Hyperparameter settings.

Parameter Value

Adam learning rate 10−3

Decay learning rate 10−1

Decay iterations 12,000
Weight decay 10−5

Layer number 5

4.3. Evaluation

In this paper, classification accuracy was used to evaluate the performance of the
model. The higher the accuracy, the better the performance of the model. We randomly
selected n = 10,000 tasks, and we published the mean accuracy and the 95% confidence
interval. The calculation formula of accuracy is as follows:

n

∑
i=1

Acci
n

(23)

4.4. Experimental Results

For this study, we used ConvNet, RestNet-12 and ECAResNet-12 as the backbone
network of features traction with three tasks: 5-way-1 shot/2 shot/5 shot. The experimental
results are shown in Table 7 on the CUB-200-2011 dataset.
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Table 7. Few-shot classification accuracies on CUB-200-2011.

Model Backbone 1 Shot 2 Shot 5 Shot

MAML ConvNet 55.92 ± 0.87 / 72.09 ± 0.76
MatchingNet ConvNet 61.16 ± 0.95 / 72.86 ± 0.69
RelationNet ConvNet 62.45 ± 0.89 / 76.11 ± 0.66
CloserLook ConvNet 60.53 ± 0.87 / 79.34 ± 0.69

DPGN (Batch size: 30) ConvNet 75.52 ± 0.59 85.65 ± 0.52 89.31 ± 0.51
DPGN (Batch size: 40) ConvNet 76.05 ± 0.51 / 89.08 ± 0.38
WPGN (Batch size: 30) ConvNet 81.25 ± 0.46 88.62 ± 0.38 92.65 ± 0.42

FEAT ResNet-12 68.87 ± 0.22 / 82.90 ± 0.15
DPGN (Batch size: 30) ResNet-12 75.31 ± 0.31 87.72 ± 0.41 90.26 ± 0.30
DPGN (Batch size: 40) ResNet-12 75.71 ± 0.47 / 91.48 ± 0.33
WPGN (Batch size: 30) ResNet-12 83.05 ± 0.45 91.31 ± 0.34 93.91 ± 0.33
WPGN (Batch size: 30) ECARes-12 84.34 ± 0.66 92.28 ± 0.41 94.41 ± 0.28

As can be seen from Table 7, the classification accuracy of the WPGN under three
backbone networks and three tasks is higher than the other methods. When the feature
extraction backbone network is ECAResNet-12 and the tasks are 5-way-1 shot, 5-way-2
shot, and 5-way-5 shot, the accuracy of the WPGN is improved by nearly 9.0%, 4.5%,
and 4.1%, respectively, compared with the DPGN. The accuracy of the WPGN under
the 5-way-2 shot task is approximately 2% higher than that of the DPGN under 5-way-
5 shot. The experimental results prove and demonstrate that our WPGN is robust in
fine-grained classification.

The experimental results are shown in Figure 9 on the MiniImagenet and CIFAR-
FS datasets.

Figure 9. Experimental results on the MiniImagenet and CIFAR-FS. (a) MiniImagenet; (b) CIFAR-FS.
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Here, the DPGN Conv represents the feature extraction backbone network as Con-
vNet on the DPGN, the WPGN ResNet represents the feature extraction backbone
network as ResNet-12 on the WPGN, whereas the WPGN ECARes represents the fea-
ture extraction backbone network as ECAResNet-12 on the WPGN. From Figure 9,
we can see that on the MiniImagenet dataset and the CIFAR-FS dataset, the classi-
fication accuracy of the WPGN is higher than that of the DPGN on the three tasks.
Moreover, when the feature extraction backbone network adopted ECAResNet-12,
its classification effect was better than that of ConvNet and ResNet-12. The exper-
iment demonstrated that the WPGN performs better in a dataset having fewer ob-
fuscating features. The accuracy of the CIFAR-FS dataset was lower than that of
the MiniImagenet dataset because its background had a much smaller impact on the
classification accuracy.

Moreover, compared with the DPGN, our model had less computational overhead
while improving accuracy. This is because FSL is trained in task units. For each task,
the first layer of the DPGN distribution graph requires a large number of calculations to
initialize, whereas the first layer of the word distribution graph associated with the WPGN
only needs to obtain the word vectors of the corresponding category. Thus, initialization is
completed much faster. The time used for the same number of steps of WPGN and DPGN
training is shown in Table 8. For the same number of rounds of training, WPGN requires
far fewer calculations than DPGN.

Table 8. Training time comparison.

WPGN DPGN

Steps 40,000 40,000
Time (minutes) 416 724

In addition, compared with the number of training rounds, as shown in the left
side of Figure 10, the loss convergence speed of WPGN is significantly faster than that
of DPGN, which shows that the WPGN is better in total training time. We found that
WPGN converged in 12,000 rounds. Hence, we reduced the learning rate for further
optimization. DPGN requires at least 15,000 rounds to converge such that the learning
rate can be reduced. We tried to reduce the learning rate for DPGN at 12,000 rounds, but
experimental results show that the accuracy of DPGN was reduced by ~2%. The right side
of Figure 10 shows that, compared with DPGN, WPGN converges faster and significantly
improves test accuracy. At the same time, after several rounds of training, the performance
of WPGN will not obviously decline, which proves that the model is more robust and less
prone to overfitting.

Because the WPGN model is better than the DPGN in terms of calculation overhead
and accuracy, it demonstrates that our research content has a good prospect for real-
world applications.

4.5. Ablation Studies

In order to verify the validity of each component in WPGN, we will add word
embedding, Mahalanobis distance, FReLU and ECA to the baseline model one by one.
In the baseline model, the distance measurement method is Euclidean distance, and
the activation function is the Leakey ReLU function. The ablation experiment can
fully prove the effectiveness of the components. The results of the ablation experiment
on the CUB-200-2011 and CIFAR-FS datasets under 5-way-1 shot tasks are shown
in Table 9.
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Figure 10. Training loss and test accuracy comparison.

Table 9. Ablation experiment on CUB-200-2011 and CIFAR-FS.

Datasets Word
Embedding

Mahalanobis
Distance FReLU ECA

Attention Accuracy

× × × × 75.31√
× × × 82.54

CUB-200-2011
√ √

× × 82.91√ √ √
× 83.10√ √ √ √

84.34

× × × × 76.8√
× × × 78.9

CIFAR-FS
√ √

× × 79.2√ √ √
× 79.5√ √ √ √

80.4

As observed from the results in the table, after the word embedding distribution
graph was added to the WPGN, the classification accuracy of the two datasets increased
by 7.23% and 2.1%. Using Mahalanobis distance in the similarity calculation method, the
classification accuracy increased by ~0.4%. The activation FReLU function also improved
the classification accuracy of the model, and although it is not as great as the first two
innovations, it contributes to the improvement of model accuracy. Finally, by integrating
the ECA attention module into ResNet-12, the accuracy of our model has increased by
1.2%. From the experimental results, it can be seen that for these two datasets, the four
innovations described in this paper improved the classification accuracy of the model.

4.6. Practical Application Example

In order to prove the great potential of WPGN in practical application, we added an
example to apply the trained WPGN to the classification of specific rare birds. In this case,
seven species of rare birds in bird habitats were selected, as shown in Figure 11, of which
two belonged to storks as shown in the upper part and five belong to cranes at the bottom.
We can see that the similarity between these birds is high, although these birds belong to
different categories. It is difficult for ordinary people to distinguish these seven species
of birds if you are not a professional ornithologist. Generally speaking, compared with
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common image classification problems, fine-grained classification faces the images with
more similar appearance characteristics. In addition, there are interference factors such as
posture, illumination, viewing angle, occlusion and background in the collection, which
lead to the characteristics of small differences between classes and large differences with
classes. By using category labels, WPGN can first increase the distance between storks
and cranes, and the distance between storks and cranes from the word vectors will be
greater than the distance between subcategories. Second, in the subcategories of cranes or
storks, word vectors can also divide well according to the category labels. Finally, image
information is embedded into GNN to classify birds with the aid of semantic information.

The example contains 350 images of seven species of birds, and we use WPGN trained
on the CUB-200-2011 dataset to test this example with 7-way-1 shot task. In this example,
the accuracy of WPGN on the 7-way-1 shot task is 82.45%, while our baseline model is
72.14%. Importantly, semantic information can be obtained without manual tagging. This
example illustrates the huge potential of WPGN in practical application.

Figure 11. Practical application example of rare bird classification.

5. Conclusions

In this paper, we proposed the WPGN. To the best of our knowledge, this is the first
attempt at combining semantic information with the GNN in FSL. Several experiments
showed that our method achieves state-of-the-art results in fine-grained FSL. Compared
with the baseline, the 5-way-1 shot task was improved by nearly 9%. At the same time,
we can see that WPGN has a greater accuracy improvement on the CUB-200-2011 dataset
than the other two datasets. The CUB-200-2011 dataset is a fine-grained dataset containing
200 categories of birds. Because of the great similarity between the classes, the fusion
of semantic information and visual information can play a better role in this application
scenario. In the use of semantic information, we used the GloVe model to extract word
vectors, which greatly enhanced the practicability of this method. The effect of WPGN in
the classification of rare birds shows that the method is flexible and feasible in practical
applications. However, there are some limitations to our model. The WPGN fails to
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integrate semantic information with the GNN to the maximum extent and must therefore
be improved in this regard. In future works, we will explore further improved methods
to embed semantic information in fine-grained FSL to improve the influence of semantic
information on classification accuracy. The uncertainty of a graph neural network in terms
of layers will also be the focus of our future work.
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