
����������
�������

Citation: Baek, Y.; Shin, S. CANon:

Lightweight and Practical Cyber-

Attack Detection for Automotive

Controller Area Networks. Sensors

2022, 22, 2636. https://doi.org/

10.3390/s22072636

Academic Editors: Alexios Mylonas,

Nikolaos Pitropakis and Omprakash

Kaiwartya

Received: 16 February 2022

Accepted: 25 March 2022

Published: 29 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

CANon: Lightweight and Practical Cyber-Attack Detection for
Automotive Controller Area Networks
Youngmi Baek 1,* and Seongjoo Shin 2

1 Department of Computer Software Engineering, Changshin University, Changwon 51352, Korea
2 Resilient CPS Research Center, DGIST, Daegu 42988, Korea; sj_shin@digst.ac.kr
* Correspondence: ymbaek@cs.ac.kr; Tel.: +82-55-250-1314

Abstract: Automotive cyber-physical systems are in transition from the closed-systems to open-
networking systems. As a result, in-vehicle networks such as the controller area network (CAN) have
become essential to connect to inter-vehicle networks through the various rich interfaces. Newly
exposed security concerns derived from this requirement may cause in-vehicle networks to pose
threats to automotive security and driver’s safety. In this paper, to ensure a high level of security
of the in-vehicle network for automotive CPS, we propose a novel lightweight and practical cyber
defense platform, referred to as CANon (CAN with origin authentication and non-repudiation), to be
enabled to detect cyber-attacks in real-time. CANon is designed based on the hierarchical approach
of centralized-session management and distributed-origin authentication. In the former, a gateway
node manages each initialization vector and session of origin-centric groups consisting of two more
sending and receiving nodes. In the latter, the receiving nodes belonging to the given origin-centric
group individually perform the symmetric key-based detection against cyber-attacks by verifying
each message received from the sending node, namely origin authentication, in real-time. To improve
the control security, CANon employs a one-time local key selected from a sequential hash chain (SHC)
for authentication of an origin node in a distributed mode and exploits the iterative hash operations
with randomness. Since the SHC can constantly generate and consume hash values regardless of their
memory capacities, it is very effective for resource-limited nodes for in-vehicle networks. In addition,
through implicit key synchronization within a given group, CANon addresses the challenges of a
key exposure problem and a complex key distribution mechanism when performing symmetric key-
based authentication. To achieve lightweight cyber-attack detection without imposing an additive
load on CAN, CANon uses a keyed-message authentication code (KMAC) activated within a given
group. The detection performance of CANon is evaluated under an actual node of Freescale S12XF
and virtual nodes operating on the well-known CANoe tool. It is seen that the detection rate of
CANon against brute-force and replay attacks reaches 100% when the length of KMAC is over 16 bits.
It demonstrates that CANon ensures high security and is sufficient to operate in real-time even on
low-performance ECUs. Moreover, CANon based on several software modules operates without an
additive hardware security module at an upper layer of the CAN protocol and can be directly ported
to CAN-FD (CAN with Flexible Data rate) so that it achieves the practical cyber defense platform.

Keywords: in-vehicle network; sequential hash chain; one-time key; controller area network

1. Introduction

Cyber-physical systems (CPSs) are commonly applied to critical infrastructure and
future-oriented services enabling the quality of life to be improved. These systems promise
enhanced efficiency, convenience, and safety by integrating physical and computational
components tightly. Recently, the physical components have suffered from various cyber-
attacks, which aim to disrupt the intended functionality of the CPS, such as Stuxnet [1].
Such attacks mainly exploit computational components to manipulate the characteristics
of physical components. The manipulation for the control of the physical component,

Sensors 2022, 22, 2636. https://doi.org/10.3390/s22072636 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22072636
https://doi.org/10.3390/s22072636
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3675-1343
https://doi.org/10.3390/s22072636
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22072636?type=check_update&version=1

Sensors 2022, 22, 2636 2 of 32

therefore, may lead to unexpected accidents and abnormal operations. For instance, in
the case of the electric automotive CPS, an attacked actuator spins the connected motor
quickly and slowly within a range that the driver is not aware of in abnormal situations.
It leads to an increase in fatigue and, consequently, it may break down while driving.
Since the security of the automotive CPS is directly connected to the safety of drivers and
passengers, it is critical to protect them against a cyber-attack. Especially, nodes in the
in-vehicle network for the automotive CPS cannot identify whether a certain node transmits
its message or not because the contents of the transmitted message do not provide any
information about origin. If an adversary (i.e., an infected node) falsifies and then transmits
the control data that is required while driving, the ECUs as nodes control the driving based
on the falsified data received. Therefore, when an internal node is infected through various
routes from the outside, the infected nodes prevent safe operation by transmitting falsified
control data that the driver in a vehicle does not anticipate. This paper allows legitimate
nodes to filter CAN messages from this infected node and to use only safe messages as
control data while driving.

In this paper, to ensure safe traveling control of automotive CPSs, we investigate
an effective and reliable method to support the security service detecting cyber-attacks,
considering technical challenges inherent in in-vehicle networks. In this regard, the three
problems to be solved are formulated as follows:

• PROBLEM 1: What types of cyber-attacks can the proposed security service detect in
real-time? it considers the cyber-attacks that can occur while driving.

• PROBLEM 2: What levels of security and safety can it provide while driving?
• PROBLEM 3: What is a suitable method to provide data integrity and availability for

resource-limited nodes? With such a method, we should consider how to satisfy the
requirements of real-time processing and timeliness for safety-critical applications
such as the automotive CPS.

• PROBLEM 4: How do we minimize a key exposure problem when detecting cyber-
attacks based on a symmetric key? We should address that either the same secret key
used for a long period or the redistribution of new keys increases the potential for
exposing security vulnerabilities when using a key-based detection scheme.

• PROBLEM 5: How do we design a new security service for the legacy in-vehicle
network and the internal architecture in terms of a cost-effective system? We consider
the ways to achieve scalability, feasibility, and adaptability of the proposed security
service at the same time.

To achieve safe control by answering the problems above, we propose a novel practical
cyber defense platform, which is called the controller area network with origin authentica-
tion and non-repudiation (CANon). It offers a lightweight and efficient detection method
against cyber-attacks for the in-vehicle network by employing an origin authentication-
based cyber-attack detection approach using a one-time symmetric key. To detect cyber-
attacks, CANon is focused on identifying whether control messages transmitted from the
origin are trustworthy or not while CANon is able to provide data integrity and availability
for resource-limited nodes.

To conduct lightweight detection in real time, CANon applies a hash function to
verify the origin of the message using an authentication tag. The resource-limited CAN
nodes are sufficient to perform origin authentication within a given limited time while
it provides a high level of security for transmitted messages. To ensure its efficiency,
CANon is designed with a combined method of centralized-session management and
distributed-origin authentication. In centralized-session management, a gateway node is
responsible for managing designated groups and every session of each group. The origin
authentication is distributed to all CAN nodes except for the gateway node. To reduce
key exposure occurrences derived from key re-distribution, CANon does not distribute or
share any secret key over the CAN bus. Instead of key distribution, CANon enables each
node to generate a sequential hash chain only valid to a particular session and to randomly
select a one-time local authentication key only valid to the individual transmission during

Sensors 2022, 22, 2636 3 of 32

the given session. Furthermore, CANon assigns the new state of being random to the
sequential hash chain at the start of a given session for each group in order to improve
security. To evaluate the performance of CANon, we conduct both theoretical security
analysis and experimental analysis and evaluate the performance of CANon in terms
of the robustness against cyber-attacks and the practicality of real-time processing. In
the theoretical analysis, we examine the robustness of CANon against cyber-attacks in
terms of hash collision probabilities as the length of a hashed key is varied. In the case of
experimental analysis, an experimental environment is constructed with real CAN nodes
of Freescale S12XF ECUs and virtual CAN nodes of CANoe.

The main contributions of our research are as follows. First, despite not mounting
additional hardware modules for a new security service, the software-based security
platform we design for resource-limited ECUs ensures a high level of security and operates
very lightly and quickly. Second, CANon is a new security platform that runs on each ECU
without modification of the legacy protocol for in-vehicle networks. In addition to that, this
approach requires the existing ECUs to implement only a minimal security service and to
deploy it to them easily. It indicates that CANon is designed considering scalability. Third,
this is a meaningful attempt to apply a simple sequential hash chain structure practically
alongside real-time cyber-attack detection regardless of any hash functions. The sequential
hash chain with a set of secret keys is managed within the given group and the certain
session. In addition, the strength of the proposed structure is the capability to offer secret
keys constantly without explicitly sharing them. Therefore, due to this structure, a key
chain’s length is not affected by the memory space of the ECU. Finally, to ensure that our
approach is feasible, we implement the proposed CANon in a proof-of-concept prototype.
It demonstrated that CANon not only enables in-vehicle communication in a reliable way
by detecting cyber-attacks with origin-authenticity assessments, but CANon operating in
vehicular ECUs is also lightweight with low computational complexity.

The remainder of this paper is organized as follows. In Section 2, we describe the
background and challenges to be addressed when providing a new security service for
in-vehicle networks, and then introduce our approach at an abstract level to achieve the
goal of this paper. In Section 3, we present the overall design of CANon to perform one-time
local key-based authentication. A theoretical security analysis is conducted to examine
the security level of the proposed CANon in Section 4. In Section 5, we determine the
proposed variables required for offering practicability and then evaluate the performance
of the proposed platform. Finally, Section 6 provides the conclusions.

2. Background and Challenges

This section presents a brief introduction of the conventional CAN protocol and
CAN bus to indicate its vulnerabilities. In addition, we discuss the assumptions and
considerations of efficient cyber-attack detection as well as define a threat model in the
in-vehicle network. We investigate previous studies for cyber-attack detection in CAN to
highlight the difference between our methodology and other work.

To enhance safety and efficiency, modern automotive CPSs are already equipped with
many electrical and electronic devices such as radar, ultrasonic, wheel speed sensors, and
electronic control units (ECUs). In order to move toward full automation, the emerging
advanced driver assistance systems need to be realized. In this regard, there is no doubt that
more ECUs need to be equipped for safe driving, user convenience, and reliable control.
Furthermore, the closed-loop systems of the modern automotive CPS are transformed
into open-networking systems that can perform remote control functions and various
networking-based information services. For instance, automotive manufacturers offer their
own remote services to start, manage, and control vehicles [2–4]. They are commonly
based on wireless networking technologies such as Bluetooth, cellular technology, and
Wi-Fi [5,6]. The in-vehicle network is designed to have one or more gateways to connect
to the external networks, though its architecture is more complicated [7,8]. This leads to
automotive CPSs being exposed to new security vulnerabilities. There are many cases of

Sensors 2022, 22, 2636 4 of 32

cyber-attacks exploiting security vulnerabilities. Hyundai’s BlueLink was demonstrated
to be vulnerable to security threats by security firm Rapid7 [9]. It used the smartphone
and Wi-Fi to hack into the stationary vehicle and succeeded in starting the vehicle remotely.
Chrysler’s vehicles have been hacked and controlled by a laptop more than 10 km away [10].
While driving, the music poured from the speaker and the windshield wipers suddenly
worked regardless of the driver’s intention. The adversaries easily accessed the vehicles in
order to take control of the vehicles. It indicates that in the in-vehicle network, not only are
the plain data transferred between ECUs without encryption but also the unauthorized
user is enabled access to the internal system without any restrictions through the gateway.

To enhance security and protect against the vulnerabilities of the in-vehicle commu-
nication systems, a security service including authentication, confidentiality, and data
integrity is required. Nevertheless, recently, it has not been easy for the automotive CPS
to offer explicit security services for in-vehicle networks. It should take a very cautious
approach for the automotive CPS. In consideration of the uncertainty that will likely appear
in terms of stability, safety, and reliability, it is not easy to change the complex and stable
structure and sophisticated connected components. Moreover, in order to preserve cost-
effective manufacturing, modern automotive CPSs are equipped with many ECUs with
limited performance. They are insufficient to perform encryption and decryption for all
contents of one control message in real-time. To support the heavy-computational function
for confidentiality, additive hardware security modules with a high performance increase
the additional cost and weight, as well as the complexity of manufacturing. Therefore, we
address these technical issues by using a new software-based defense platform considering
practicality and effectiveness.

2.1. Key Characteristics and Limitations of Controller Area Network

In this section, we provide a brief background of the automotive CPS and the commu-
nication protocol applied for the in-vehicle network. The automotive CPS mainly consists
of three major segments: The powertrain, chassis, and body. To support the exchange of
control data needed for traveling control in the major segments, several in-vehicle networks
that exist independently have interconnected each other. This indicates that the in-vehicle
network consists of local networks that can be connected through gateway nodes. A gate-
way node is responsible for forwarding the messages of one network to another network.
Each local network is typically constructed using either the industry-standard controller
area network (CAN), local interconnect network (LIN), or the recently developed FlexRay.
In particular, CAN is mainly used for the body and powertrain [11].

CAN is a de facto standard and a widely supported network in the automotive
industry, requiring minimal manufacturing costs, real-time processing, automation, and
distributed processing. CAN is referred to as a network bus as well as a protocol. CAN is
known as an efficient network with a bus topology in which all CAN nodes (i.e., ECUs) are
physically connected by synchronizing the bit rate [12,13]. In addition, the CAN standard
is widely known as a reliable communication protocol since it is capable of detecting a
message collision and a bit error at a physical layer and autonomously rectifying colliding
transmission. Using contention-based channel access, the CAN protocol broadcasts its
frames containing vehicular control information. In CAN, a node checks the state of its
bus with a busy state or an idle state. It tries to send a message only if it is in an idle state.
There might be one or more nodes to broadcast their own messages on a common CAN
bus. Although collisions are likely to occur on the CAN bus at that time, it has no effect
on the operations of CAN. This is because CAN supports an arbitration mechanism called
carrier sense multiple access/collision detection with an arbitration on message priority
(CSMA/CD & AMP). Therefore, it performs reliably, transmitting a message to arrive in
time for control. In other words, when two or more nodes simultaneously transmit frames,
CSMA/CD & AMP at the physical layer arbitrates this collision in such a way that the node
with the lowest value of the identifier (ID) field in its CAN frame wins. It indicates that the
lowest value has the highest priority in transmissions. This arbitration mechanism controls

Sensors 2022, 22, 2636 5 of 32

all transmissions over the CAN bus at the physical layer. The ID field that presents the
format of a CAN frame is shown in Figure 1.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 33

time for control. In other words, when two or more nodes simultaneously transmit frames,
CSMA/CD & AMP at the physical layer arbitrates this collision in such a way that the
node with the lowest value of the identifier (ID) field in its CAN frame wins. It indicates
that the lowest value has the highest priority in transmissions. This arbitration mechanism
controls all transmissions over the CAN bus at the physical layer. The ID field that pre-
sents the format of a CAN frame is shown in Figure 1.

Start of
Frame

ACK
DelimiterIdentifier End of

FrameRTR
Control Field

R1 R0 DLC
Data CRC

Delimiter
CRC

Sequence ACK

1 11 1 6 64 15 1 1 1 7

Figure 1. Standard format of a CAN 2.0A frame where the marked number indicating the length of
each field is shown in bits.

After one node succeeds in broadcasting its frame, they determine whether to use or
discard it whenever the other nodes receive it. The receiving nodes identify interesting
messages among messages transmitted over the CAN bus by using the value of the iden-
tifier (ID) field of a CAN frame. They do not check who sent the interesting message. In
particular, a high-speed CAN of 1 Mbps for event-driven communication is used for
powertrain and safety-critical systems such as the engine control unit, anti-lock braking,
and cruise control.

Although the classic CAN is designed to transmit an event-triggered message, the
CAN frame can be transmitted either periodically or sporadically to ensure driving safety
[14–17]. In powertrain and body systems, it is especially critical to transmitting messages
periodically in order to ensure reliability, robustness, and real-time processing for vehicle
control. In practice, the actual CAN nodes of a vehicle are designed to periodically broad-
cast their own messages over the CAN bus at a datalink layer. Instead, only designated
nodes interested in the specific message will accept that data from their controllers. In
that, the CAN communication of automotive CPSs operates as multicast communication
where one node sends data to multiple nodes at once on a data layer. In this paper, a
container with information about the different CAN designs specific to each manufacturer
is referred to as CAN-DB (CAN-DataBase) [16,18]. Note that the contents of CAN-DB are
useful for identifying the relationship between the sending and receiving nodes and peri-
odicity for us, but manufacturers do not release the data of CAN-DB at all. In CAN-DB, a
sending node may be designed to broadcast one or more messages over the bus. A receiv-
ing node can be designed to receive the designated messages that are transmitted from
either the same sender or different senders.

As shown in Figure 1, there is no field to provide any information to identify both
sending and receiving nodes since CAN performs message-based transmission using a
message ID. It indicates that it has no capability to identify if a malicious source tampers
with the transmitted data. Moreover, not only does it not provide enough space to convey
security-related information but there is also no reserved field for security services in the
CAN frame. For instance, the firmware for an ECU can be manually updated either with
the help of an external hardware module that is connected directly to the OBD-II (On-
Board Diagnostics version II) port or over the FOTA (Firmware Over-The-Air) using wire-
less connection technology. At that time, there is no doubt that there is still a high chance
that stealthy attacks exist through a backdoor for app hackers and spyware in in-vehicle
networks. Nevertheless, it does not have the ability to detect suspicious messages infil-
trated through the external networks by an adversary in order to cause unintentional be-
havior during driving.

Figure 1. Standard format of a CAN 2.0A frame where the marked number indicating the length of
each field is shown in bits.

After one node succeeds in broadcasting its frame, they determine whether to use or
discard it whenever the other nodes receive it. The receiving nodes identify interesting
messages among messages transmitted over the CAN bus by using the value of the identifier
(ID) field of a CAN frame. They do not check who sent the interesting message. In particular,
a high-speed CAN of 1 Mbps for event-driven communication is used for powertrain and
safety-critical systems such as the engine control unit, anti-lock braking, and cruise control.

Although the classic CAN is designed to transmit an event-triggered message, the
CAN frame can be transmitted either periodically or sporadically to ensure driving
safety [14–17]. In powertrain and body systems, it is especially critical to transmitting
messages periodically in order to ensure reliability, robustness, and real-time processing
for vehicle control. In practice, the actual CAN nodes of a vehicle are designed to pe-
riodically broadcast their own messages over the CAN bus at a datalink layer. Instead,
only designated nodes interested in the specific message will accept that data from their
controllers. In that, the CAN communication of automotive CPSs operates as multicast
communication where one node sends data to multiple nodes at once on a data layer. In
this paper, a container with information about the different CAN designs specific to each
manufacturer is referred to as CAN-DB (CAN-DataBase) [16,18]. Note that the contents
of CAN-DB are useful for identifying the relationship between the sending and receiving
nodes and periodicity for us, but manufacturers do not release the data of CAN-DB at all.
In CAN-DB, a sending node may be designed to broadcast one or more messages over
the bus. A receiving node can be designed to receive the designated messages that are
transmitted from either the same sender or different senders.

As shown in Figure 1, there is no field to provide any information to identify both
sending and receiving nodes since CAN performs message-based transmission using a
message ID. It indicates that it has no capability to identify if a malicious source tampers
with the transmitted data. Moreover, not only does it not provide enough space to convey
security-related information but there is also no reserved field for security services in the
CAN frame. For instance, the firmware for an ECU can be manually updated either with
the help of an external hardware module that is connected directly to the OBD-II (On-Board
Diagnostics version II) port or over the FOTA (Firmware Over-The-Air) using wireless
connection technology. At that time, there is no doubt that there is still a high chance
that stealthy attacks exist through a backdoor for app hackers and spyware in in-vehicle
networks. Nevertheless, it does not have the ability to detect suspicious messages infiltrated
through the external networks by an adversary in order to cause unintentional behavior
during driving.

2.2. Assumptions and Considerations of Efficient Cyber-Attack Detection

In automotive CPS, cyber-attacks conducted through various external links can be
broadly classified into two categories: An injection attack and a hijacking attack. The former
cyber-attack aims to disturb the control ability to drive and the functions of a target system.
To achieve it, an adversary can be connected to an internal CAN network through various
external links, and then infect normal CAN nodes [19]. For instance, it can be connected
directly to the in-vehicle network via physical interfaces such as OBD-II, disc, and USB.
It also exploits a short-range wireless access method such as Bluetooth, radio frequency

Sensors 2022, 22, 2636 6 of 32

identification (RFID), dedicated short-range communication (DSRC), and RF-based remote
keyless entry. Its physical access aims to cause abnormal operations while updating the
ECU’s firmware. In terms of CAN, this type of cyber-attack can take place as a counterfeit
message injection through a compromised ECU. In addition, it may be possible that the
pre-programmed message is sent over the CAN bus after installing the adversary’s short
code into an ECU. It is defined as an injection attack in this paper. The latter cyber-attack
aims to steal and gain privileges to access the internal data and the components of a target
system [20]. This cyber-attack aims to exploit threats through the theft of authentication
and personalization information and illegal acquisition of the authorization of control
service. It is called a hijacking attack in this paper. To conduct this hijacking attack on ECUs,
an adversary needs to first analyze messages shared through the external network, namely
vehicle-to-everything communication. To do this, it exploits long-range wireless access
including broadcasting channels and addressable channels. The broadcasting channels
include GPS, satellite radio, and traffic message channels, and the addressable channels
indicate those of cellular data networks. Through them, the acquired information is used
to infiltrate inside automotive CPSs, which eventually makes the injection attack possible.
Regarding efficiency, the hijacking attack should be defended by the service providers that
provide external networking services. Detecting this cyber-attack is outside the objectives
of our paper. To ensure vehicle safety. especially for driving, this paper focuses on the
development of a robust countermeasure against injection attacks.

In CAN, injection attacks can come in three forms: Modification, replay, and mas-
querade attacks. First, a modification attack modifies the contents of an existing message.
Second, a replay attack transmits the existing message without any modification. Third, in
a masquerade attack, an adversary pretends to be an origin node. In CAN, the masquerade
attack has no choice but to be conducted by exploiting the same ID of the existing message.
This is because the CAN protocol does not provide any information for the identification of
an origin node and only identifies the ID of the transmitted message.

The most straightforward way to detect these cyber-attacks in CAN is to examine
the forgery of the control data transmitted over in-vehicle networks. In other words, to
identify the fact that the messages are not manipulated by any adversary regardless of
its modification or masquerade attack, it needs to verify the data integrity of transmit-
ted control data. One of the most effective ways to guarantee data integrity is to use
cryptographic techniques to provide the confidentiality of information such as AES (i.e.,
symmetric encryption) and SHA-256 (i.e., Secure Hash Algorithms). However, resource-
constrained ECUs in the in-vehicle networks might be not sufficient to perform encryption
and decryption of the control data within a transmission time interval with the range of
5 ms to 100 ms [16,21,22]. Therefore, to implement heavy computational functions such
as encryption, it is inevitable that additional processors are required to possess high per-
formance [23]. To place additional hardware inside the automotive vehicle, it is necessary
to re-design new internal architecture; hence, it inevitably leads to an increase in associ-
ated expenses. Therefore, in the CAN network, rather than applying encryption-based
authentication to low-performance ECUs, we consider the way to achieve scalability and
adaptability of a security service in terms of cost reduction, computational overhead, and
complexity challenge.

As an alternative to the encryption method, there is the use of an authentication tag
that utilizes some of a message, which is referred to as message authentication. Message
authentication, which is commonly used to verify data integrity, is an efficient and proactive
method to defend against data forgery attacks conducted through physical manipulation or
comprised network connections [24,25]. Although message authentication does not provide
the property of non-reputation, in this paper, message authentication aims to provide
both data integrity and origin identification. We use the term message authentication as
synonymous with origin authentication in CAN.

As mentioned above, when a malicious node impersonates a certain normal CAN
node and then transmits the modified control data, the CAN protocol is unable to detect this

Sensors 2022, 22, 2636 7 of 32

cyber-attack in practice. In the literature, most of the studies providing an authentication
service for CAN tackle the message-based transmission of CAN [26–28]. An authentication
tag, which is referred to as a message authentication code (MAC), for message authentica-
tion is mainly generated by a secure hash function from a given original message [29–32].
This approach requires a symmetric key between sending and receiving nodes to generate
and verify MAC [33–35]. Therefore, the level of security of this approach depends on how
sophisticated and secure the distribution of the secret key used is.

The great strength of a symmetric key-based method, which is efficient in terms of
processing cost and speed, is fascinating when applying it to CAN requiring real-time
processing. Unfortunately, in CAN, there are challenges to be addressed in order to perform
efficient cyber-attack detection via origin authentication using secret keys. The longer the
secret key remains unchanged and is used for verification on the CAN bus, the more likely
the secret key will be exposed. This means that adversaries can conjecture and discover the
same secret key since they show the same pattern as many previously transmitted messages.
In order to strengthen the security of the used symmetric key, it is essential to distribute new
secret keys constantly. Therefore, the use of the symmetric key for origin authentication
needs to support a mechanism for managing and distributing secure keys between a pair of
CAN nodes. When performing origin authentication using symmetric keys, many studies
employ different methods to periodically distribute new secret keys [36–38]. Designing a
sophisticated key distribution mechanism, however, may require the sacrifice of real-time
transmission to CAN nodes. For instance, if the secret key used between the sending and
receiving nodes is newly distributed for every transmission, the transmission of a CAN
frame that should be transmitted at a predefined schedule can be delayed due to the time
that it takes to distribute the secret key between CAN nodes. This is because the key
distribution needs to take precedence over data transmission. Using a secure dedicated
channel to distribute a secret key requires the addition of a new physical communication
channel to CAN. It will adversely affect the weight and wiring complexity of the vehicle.

In this paper, to tackle its limitations above, we apply the CAN’s multicasting nature
to node grouping and conduct symmetric key-based authentication detecting cyber-attacks
injected over the CAN bus while minimizing key exposure.

2.3. Conventional Cyber-Attack Detection Methods for Controller Area Network

In this Section, to exploit an origin authentication approach to detect various cyber-
attacks accurately in CAN, we investigate the existing origin authentication methods.
We introduce several approaches, which are suitable to the multicast communication
environment of CAN, to authenticate the data origin efficiently [36,39–42].

One study focuses on a symmetric key-based authentication approach. Peirrig et al.
have proposed a timed efficient stream loss-tolerant (TESLA) scheme in which a digital
signature method is applied to source authentication [39]. It allows a symmetric key to be
exposed to perform the delayed per-packet data authentication for the digital signature
using the received packet sequence. Rather than sharing a secret key at the initial time
point, they inform the packet of the secret key used transmitted at time t of a receiver after
a given delay δ. In other words, a disclosed secret key s(t) of the packet p(t) received
at time t is used to authenticate the packet p(t− δ) received at time t − δ (i.e., δ > 0).
It compares MAC of the received packet r(t− δ) with MAC generated using the disclosed
key s(t). The transmission efficiency is reduced due to additional delivery authentication
information. To synchronize the nodes’ clocks, it should perform the designed initial
protocol and set the parameters at the initial time, such as the key disclosure delay time,
the interval duration time, and the session starting time among nodes. At the same time,
it requires the initialization of a key chain. In addition, one packet should be divided
into small pieces since it is unable to be inserted entirely into a CAN frame due to its size.
This means that it takes longer than the expected time taken to authenticate one packet.
As a practical matter, in CAN, the issues of delayed authentication, the large number of

Sensors 2022, 22, 2636 8 of 32

parameters to be initialized, and the complex dedicated initialization process are great
challenges to satisfying real-time requirements.

In CAN, one study applies a group-based authentication approach. Groza et al. have
proposed a lightweight broadcast authentication protocol for CAN, called LIBRA-CAN,
based on a shared key within a given group [40]. They employ a strategy of two-stage
authentication using both a data-dedicated frame with a message for control and an
authentication-dedicated frame with multiple MACs. Therefore, LIBRA-CAN may con-
sume a maximum of 50% in total CAN bandwidth to authenticate CAN nodes because one
authentication frame is used for each data frame. In LIBRA-CAN, the role of CAN nodes
is divided into a gateway as the master and a node as the slave. A master is responsible
for distributing a secret key to slaves belonging to a given group, as well as performing
the authentication. Each slave transmits its authentication frame after forwarding a data
frame to the master. The authentication frame contains all MACs of slaves in the given
group. Therefore, one master and its slaves can verify its data frame by using the contents
of the transmitted authentication frame. In this regard, to overcome the limited length of a
data field in a CAN frame, it takes preventive measures whereby the slaves’ MACs are split
across multiple authentication frames. This may lead to an increase in the authentication
delay with an increase in the size of a group. Therefore, the effectiveness of LIBRA-CAN
depends on the length of the data field of the CAN frame, the size of a given group, and
the number of groups. Furthermore, to manage different groups, LIBRA-CAN not only
requires the gateway to be a high-computational-powered node but also the slaves to
register themselves for a gateway before data communication.

There is another group-based authentication approach in which nodes vote on the
redundancy of MACs for a group [41]. Voting means that all nodes within a given group
should participate in cross-checking the messages transmitted over a network. Every
member of the group sends its message with both its own MAC and the MACs derived
from the messages transmitted by the other nodes in the group. All receivers vote to
authenticate a sender’s message only when they obtain both the sender’s original message
and the other members’ validities. Therefore, one node is authenticated by this method
only after all nodes of the group transmit their messages with redundant MACs. This is
not suitable for CAN since it causes an authentication delay that cannot be neglected. This
method is designed without considering the time taken to perform the authentication in
a node.

One research study places emphasis on lightweight operation through the combina-
tion of the group and symmetric key-based approaches. Kang et al. proposed a source
authentication protocol based on a one-way hash chain in CAN [36]. In this protocol,
a group shares secret keys during a given period. Receivers verify messages with the
authenticator received from a sender. To address the key exhaustion of the one-way hash
chain and consider the shortage of memory capacity of ECUs, they focus on minimizing
the key generation delay by keeping a small number of keys for authentication. Against
hash collision attacks, they have proposed a tree structure that hierarchically maintains a
certain number of keys for authentication. Nevertheless, authentication suffers from the
depletion of keys in the tree when a series of cyber-attacks continue to occur as frequently
as the height of the designed tree.

One approach as tried to enhance key security by limiting the number of times the
symmetric key is used [42–44]. Hammi et al. proposed a mutual authentication protocol
for network association and data transmission [42]. They use a one-time password (OTP)
for authentication. There are two types of devices: A device with the role of a coordinator
and a device with the role of a member. A new device should first join the network before
transmitting data. The coordinator uses the new device’s OTP to authenticate it. After the
coordinator’s authentication, the coordinator uses that OTP to prove itself while delivering
a secret key, which is required for the device to transmit the data, to the joined member.
In this approach, it is assumed that both the device’s information and a pre-shared key
are never exposed. To generate OTP, it uses the hash-based MAC (HMAC) algorithm

Sensors 2022, 22, 2636 9 of 32

from a pre-shared secret key. Although each device uses different OTPs during network
association and data transmission, the series of OTPs used for each device never varies over
time due to the use of the pre-shared secret key. In addition, they do not provide a certain
key distribution to prevent masquerade attacks. This may also result in successful attempts
to inject brute-force attacks under the assumption that an adversary has enough time.

2.4. Threat Model

Due to the exposed security vulnerabilities of the CAN bus, it is possible for an
adversary to impersonate a legitimate node. The adversary aims to induce a risk of control
over the automotive CPS by forging and transmitting messages as if it was a legitimate
node and then letting receiving nodes use falsified messages to control driving. We define
the capabilities of this malicious node on the CAN bus as follows. The adversary is unable
to access any security information (e.g., a secret key and user processes) held in the physical
memory of CAN nodes. However, due to the nature of the CAN bus, an adversary that
is directly connected to the CAN bus can eavesdrop on all messages sent by legitimate
nodes. It can also inject its forged messages according to the operations of the legacy CAN
protocol. The adversary is capable of finding similar or identical patterns of the contents
from transmitted messages by performing analysis of the eavesdropping on the messages
over the CAN bus. Hence, by eavesdropping over a long duration, the adversary can
construct CAN-DB containing the messages’ meta-information, including the IDs, lengths
of control data, and transmission periodicities for each designated message. Consequently,
the adversary injects various falsified messages based on the constructed CAN-DB into the
CAN bus.

An adversary can conduct four cyber-attacks in the in-vehicle network: A replay attack,
a modification attack, a masquerade attack, and a brute-force attack. These have been
classified based on the transmission period, indicating the interval between the start of the
consecutive message transmissions and whether the control data are tampered with. The
amount of time representing the transmission period of the message sent by a legitimate
node is denoted as the transmission time interval (TTI) in this paper. First, it is defined as a
replay attack when the adversary transmits it again after storing one of the messages sent
over the CAN bus. In particular, a replay attack does not modify the content of the control
data, which is presented in the data field of a CAN frame, in the message. Regardless
of the periodicity of a certain message sent by the legitimate node the adversary injects
it into the CAN bus. Second, it is defined as a modification attack when the adversary
transmits it after the stored message is modified. This attack is also injected regardless of
the message’s transmission periodicity. In the modification attack, the content of the data
field in the message is falsified. Third, when the adversary transmits the forged message
with the TTI of the message of a legitimate sending node, it is referred to as a masquerade
attack. Since the adversary wants to appear as a legitimate CAN node, the masquerade
attack is conducted while exploiting the transmission periodicity of the message sent by
the legitimate node. In addition, it intends to modify the contents of the data field of the
legitimate message transmitted in order to provide the wrong information to the nodes
and cause an unexpected driving state. The injection of the masquerade attack and the
transmission of a legitimate node occur either simultaneously or around the scheduled
TTI of the normal message. A receiving node has no choice but to believe that all of the
received messages are legitimate CAN messages, even if they have different contents. It can
also adroitly change the contents of other fields following the data field in order to cause a
form error when the adversary transmits its own message with the value of the ID field
of the normal message. Against these cyber-attacks, when either sending or receiving
nodes detect the error, the retransmission mechanism of the CAN protocol is conducted
automatically. Consequently, the targeted message is continuously retransmitted. This
behavior, which is typically called a bus-off attack, intends for nodes to enter the bus-off
state. At that time, if the transmission priority of the injected message is the highest,
it can be referred to as a denial-of-service attack. Finally, a brute-force attack adopts a

Sensors 2022, 22, 2636 10 of 32

trial-and-error method to construct valid control data in the data field. If the adversary
launches a brute-force attack by randomly organizing the contents of the data field, it can
be injected regardless of the transmission periodicity of the legitimate message. At that
time, it does not intend to create a new value of the ID field since any receiving node is not
interested in that message if the value of the ID field is replaced with an arbitrary value that
does not exist in CAN-DB. In this sense, the brute-force attack can include modification
and masquerade attacks. Furthermore, in the same way as the masquerade attack, the
brute-force attack can be injected in the way sense that it modifies the values of the control
field, the CRC-related field, and the ACK field. It is regulated in the physical layer of
CAN during transmission due to form errors in the CAN frame. Therefore, a brute-force
attack for form errors is not a valid cyber-attack, but these cyber-attacks also contribute to
increasing the bus load. Consequently, this paper limits the attack model to two types of
cyber-attacks: A brute-force attack, including the modification of the contents of the data
field as if the adversary was a legitimate node, and a replay attack without modification.

3. Cyber-Attack Detection Based on Origin Authentication for Controller Area Network

In this section, we propose a new cyber defense platform to detect various cyber-
attacks flowing into in-vehicle networks from the outside, called CANon. It performs the
detection of cyber-attacks injected through receiver-based origin authentication for one
sending node of a given group. In addition, the origin of the given group is not allowed to
repudiate the fact that it has transmitted its own message over the CAN bus. This is because
receiving nodes of the given group verify every message transmitted by the sending node
using its own information.

To provide a realistic and practical solution for the existing CAN platform, the design
objectives of CANon are as follows. The first is to detect injected cyber-attacks accurately
in real-time. To perform traveling control over the CAN bus, the term real-time means
completing those instructions within the minimum TTI determined for CAN messages.
Therefore, CANon provides legitimate control data for the nodes as well as reliable and
safe driving for humans against replay attacks and brute-force attacks. The second is
to achieve secure origin authentication using the symmetric key-based method while it
achieves un-traceability and addresses the key exposure problem. The third is to reduce
computation and communication costs by minimizing the process of session update, key
generation, and origin authentication so that the operation of CANon does not disturb the
operations of the legacy CAN protocol.

3.1. Overview of CAN with Origin Authentication and Non-Repudiation for Cyber-Attack Detection

To achieve the above factors, we define nodes that use the same secret key, limit the
duration of their use of the secret key to increase security, and regulate explicit behavior
for key synchronization. In this regard, CANon performs (1) grouping based on one-
to-multiple communication, (2) session management different from each group, and (3)
arbitrary key selection from the sequential hash chain with implicit key synchronization.

First, in CANon, according to the nature of the one-to-multiple communication of
CAN, two or more nodes belong to a certain group using the same secret key, which
is referred to as sender-centric group (SCG). The number of nodes in the specific group
depends on the relationship between a sending node and a receiving node. For the sake
of practicability in CANon, a specific SCG is designed using the information of CAN-
DB. To perform origin authentication efficiently, a sending node of CANon attaches an
authentication tag, which is generated by a given hash function and a selected secret
key, to each message to be transmitted within a given SCG. By using the same secret
key as that of the sending node, every receiving node in the given SCG participates in
origin authentication and is responsible for determining whether the received message is
transmitted from a legitimate sending node or not. Since every message to be shared in
the specific SCG is verified for the sending node as origin authentication, the origin cannot
deny the fact of its transmission. If the receiving node determines that a given message

Sensors 2022, 22, 2636 11 of 32

is not transmitted by the legitimate node, the message is detected as a cyber-attack and is
excluded from the vehicle controls at the receiving node.

Second, CANon determines the duration of the use of the same secret key. A secret key
only valid to the given SCG is never used again for origin authentication. This secret key
for each transmission in the given SCG is called a one-time local authentication key (OLAK).
The OLAK is replaced with a new secret key between the sending and receiving nodes
without any additional synchronization process after it is consumed at the transmission of
the sender and the verification of the receiver. Note that, in CANon, although the secret
key given to each transmission is used as a symmetric key, any node in a given SCG does
not exchange the secret key used for origin authentication in advance. Meanwhile, due to
the absence of any reserved field in the CAN frame with the fixed frame length, the space
available for origin authentication is very limited. While CANon inserts a hashing-based
authentication tag into the CAN frame, its length is bound to a small fraction of the data
field. Therefore, the relatively short length of the authentication tag makes it easy for an
adversary to infer security information used for origin authentication. Moreover, if an
adversary attempts numerous cyber-attacks (i.e., brute-force attacks) over a long period
of time, its attacks are more likely to succeed even though the secret key is not exposed.
Therefore, in order to increase the probability of neutralizing previous attempts of brute-
force attacks, CANon defines a session and its duration to constrain the amount of time
to ensure that the same secret key is not used again. The session start is set differently for
each group except for the first session in CANon.

Third, CANon distributes a different random number, which is referred to as salt, for
each SCG in order to start a new session by an enclosed key distribution and management
(E-KDM) mechanism. A new salt is used for session key generation in all nodes of a given
SCG so that it avoids the exposure of a session key. Furthermore, the nodes belonging
to a specific SCG randomly choose one OLAK among a series of secret keys in the given
SCG. When performing the arbitrary choice of OLAK, a sending node uses a random
number, which is referred to as a nonce, and then informs it of the SCG by implicit key
synchronization. Therefore, it reduces the key exposure occurrence much more.

In CANon, there are two types of nodes: A gateway node and a normal node. The
gateway node is a CAN node connecting to another local CAN or other in-vehicle networks
in order to transmit internal data to external local networks and vice versa. In CANon,
a gateway node plays a major role in managing many SCGs and managing a series of
individual sessions for those SCGs. To do this, a gateway node grasps CAN-DB of specific
information of all messages transmitted over each local network. It continuously provides
different salts for generating session keys, which are used to generate a new sequential
hash chain for a given SCG. The normal nodes belong to a specific SCG and individually
participate in a symmetric key-based origin authentication. One node belonging to the
given SCG does not need to know the existence of the other nodes. This indicates that
they do not interact with each other for origin authentication within the designated SCG.
In CANon, it is assumed that the CAN nodes belonging to a given group have already
one initialization vector (IV) before any manufacturer releases the vehicles. This can be
performed at the vehicle manufacturing stage, whereby the IV is distributed within all
nodes through a dedicated secure channel. This means that all nodes on the CAN bus have
the same IV that is not used as a secret key. CANon also assumes that an adversary does
not acquire any knowledge of the hash function used in key generation as mentioned in
Section 2.4. The adversary is not able to access the physical memory section of CAN nodes
to obtain a pre-shared IV.

3.2. Group Organization and Identification

To organize a sender-centric group, CANon utilizes the characteristic of one-to-many
communication of CAN. In the case of CANon, normal nodes that do not belong to a
certain SCG do not exist. One SCG consists of one sending node transmitting its message
and one or more receiving nodes interested in that. It indicates that an SCG consists of

Sensors 2022, 22, 2636 12 of 32

at least two member nodes. In addition, there can be as many SCGs as the total number
of messages transmitted by all sending nodes in one local network. A sending node can
be designed to transmit various messages with different IDs. One receiving node may be
interested in different messages from various sending nodes in order to control driving in a
timely manner. This allows one receiving node to belong to many SCGs at the same time.

Figure 2 shows an example of the CAN network consisting of one gateway and
three CAN nodes (i.e., ECUs). For instance, it is assumed that there are only three messages
to be transmitted by three nodes in Figure 2. Among them, nodes B and C are designed as
sending nodes and node A is interested in each message of the B and C nodes. However,
nodes B and C are not interested in each other’s messages. Therefore, there are three SCGs:
Node A belongs to the SCG for one message of sending node B, the SCG with the other mes-
sage of sending node B, and the SCG for one message of sending node C at the same time.
In CANon, since the SCGs are generated naturally according to the designed messages,
no additional process is required for group organization. The SCGs can be identified by the
identification field of a CAN message, which is defined as group identification (GID).

Sensors 2022, 22, x FOR PEER REVIEW 12 of 33

of specific information of all messages transmitted over each local network. It continu-
ously provides different salts for generating session keys, which are used to generate a
new sequential hash chain for a given SCG. The normal nodes belong to a specific SCG
and individually participate in a symmetric key-based origin authentication. One node
belonging to the given SCG does not need to know the existence of the other nodes. This
indicates that they do not interact with each other for origin authentication within the
designated SCG. In CANon, it is assumed that the CAN nodes belonging to a given group
have already one initialization vector (IV) before any manufacturer releases the vehicles.
This can be performed at the vehicle manufacturing stage, whereby the IV is distributed
within all nodes through a dedicated secure channel. This means that all nodes on the
CAN bus have the same IV that is not used as a secret key. CANon also assumes that an
adversary does not acquire any knowledge of the hash function used in key generation as
mentioned in Section 2.4. The adversary is not able to access the physical memory section
of CAN nodes to obtain a pre-shared IV.

3.2. Group Organization and Identification
To organize a sender-centric group, CANon utilizes the characteristic of one-to-many

communication of CAN. In the case of CANon, normal nodes that do not belong to a cer-
tain SCG do not exist. One SCG consists of one sending node transmitting its message and
one or more receiving nodes interested in that. It indicates that an SCG consists of at least
two member nodes. In addition, there can be as many SCGs as the total number of mes-
sages transmitted by all sending nodes in one local network. A sending node can be de-
signed to transmit various messages with different IDs. One receiving node may be inter-
ested in different messages from various sending nodes in order to control driving in a
timely manner. This allows one receiving node to belong to many SCGs at the same time.

Figure 2 shows an example of the CAN network consisting of one gateway and three
CAN nodes (i.e., ECUs). For instance, it is assumed that there are only three messages to be
transmitted by three nodes in Figure 2. Among them, nodes B and C are designed as sending
nodes and node A is interested in each message of the B and C nodes. However, nodes B
and C are not interested in each other’s messages. Therefore, there are three SCGs: Node A
belongs to the SCG for one message of sending node B, the SCG with the other message of
sending node B, and the SCG for one message of sending node C at the same time. In
CANon, since the SCGs are generated naturally according to the designed messages, no
additional process is required for group organization. The SCGs can be identified by the
identification field of a CAN message, which is defined as group identification (GID).

13

CAN BUS Network

CAN BYPASSKIT(GateWay)

Malicious

A B C

Figure 2. An example of CAN networks.

3.3. A CANon Platform
To detect cyber-attacks, a CANon platform performs two phases sequentially for

each transmission under the combination of distributed origin authentication and central-

Figure 2. An example of CAN networks.

3.3. A CANon Platform

To detect cyber-attacks, a CANon platform performs two phases sequentially for each
transmission under the combination of distributed origin authentication and centralized
session management. First, at each node, transmission time interval-based cyber-attack
detection (TTI-AD) is performed to detect replay attacks and brute-force attacks includ-
ing modification attacks. Secondly, sequential hash chain-based cyber-attack detection
(SHC-AD) is conducted to detect brute-force attacks including modification and masquer-
ade attacks and replay attacks that are not detected in TTI-AD. While carrying out two
phases, the E-KDM simultaneously updates a salt for each SCG under the initiative of a
gateway node.

3.3.1. Transmission Time Interval-Based Cyber-Attack Detection

CANon exploits the time-triggered transmissions of a sending node on the CAN bus
to detect a cyber-attack. Instead of transmitting sporadic messages in real-time and safety-
critical applications, all CAN frames are designed primarily to respond to unexpected
situations with shorter transmission time intervals to ensure reliability [45]. Therefore, the
TTI-AD phase aims to distinguish the transmissions that deviate from the designed TTI. In
detail, the receiving nodes of a given SCG identify irregular transmissions inconsistent with
the schedules of the CAN frame transmissions. Based on the designated CAN message
transmissions, if a receiving node detects an unscheduled transmission, that transmission
can be considered either a replay attack or a brute-force attack, including a modification
attack. Note that we do not aim to identify the certain type of attacks injected.

Sensors 2022, 22, 2636 13 of 32

For instance, there are two normal messages with the given IDs of A and C as shown
in Figure 3. Each message is transmitted with its own TTI. The message with the ID of A
has a higher priority than the message with the ID of C. In the case of the message with
the ID of A, it has continuous intervals specified by time t1, time t3, and time t6. After an
adversary overhears all messages over the CAN bus, two cyber-attacks (marked in red)
based on the message with the ID of A can be launched at time t4 and time t′4, respectively.
A receiving node detects the two messages transmitted at time t4 and t′4 as cyber-attacks
since the reception of the next message deviates from the expected time (i.e., time t6) of the
message with the ID of A.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 33

ized session management. First, at each node, transmission time interval-based cyber-at-
tack detection (TTI-AD) is performed to detect replay attacks and brute-force attacks in-
cluding modification attacks. Secondly, sequential hash chain-based cyber-attack detec-
tion (SHC-AD) is conducted to detect brute-force attacks including modification and mas-
querade attacks and replay attacks that are not detected in TTI-AD. While carrying out
two phases, the E-KDM simultaneously updates a salt for each SCG under the initiative
of a gateway node.

3.3.1. Transmission Time Interval-Based Cyber-Attack Detection
CANon exploits the time-triggered transmissions of a sending node on the CAN bus

to detect a cyber-attack. Instead of transmitting sporadic messages in real-time and safety-
critical applications, all CAN frames are designed primarily to respond to unexpected sit-
uations with shorter transmission time intervals to ensure reliability [45]. Therefore, the
TTI-AD phase aims to distinguish the transmissions that deviate from the designed TTI.
In detail, the receiving nodes of a given SCG identify irregular transmissions inconsistent
with the schedules of the CAN frame transmissions. Based on the designated CAN mes-
sage transmissions, if a receiving node detects an unscheduled transmission, that trans-
mission can be considered either a replay attack or a brute-force attack, including a mod-
ification attack. Note that we do not aim to identify the certain type of attacks injected.

For instance, there are two normal messages with the given IDs of A and C as shown
in Figure 3. Each message is transmitted with its own TTI. The message with the ID of A
has a higher priority than the message with the ID of C. In the case of the message with
the ID of A, it has continuous intervals specified by time 𝑡ଵ, time 𝑡ଷ, and time 𝑡଺. After an
adversary overhears all messages over the CAN bus, two cyber-attacks (marked in red)
based on the message with the ID of A can be launched at time 𝑡ସ and time 𝑡ସᇱ , respectively.
A receiving node detects the two messages transmitted at time 𝑡ସ and 𝑡ସᇱ as cyber-attacks
since the reception of the next message deviates from the expected time (i.e., time 𝑡଺) of
the message with the ID of A.

time

A

A’s Transmission
Time Interval

A A A

C C

C’s Transmission
Time Interval

A

A C

A

AA CAttack Normal frame with A-identifier Normal frame with C-identifier

Expected Transmission Delay,

Figure 3. A transmission time interval-based cyber-attack detection method and the existing CAN’s
problem.

Note that periodic messages are essentially transmitted by avoiding access collisions
and transmission delays in the arbitration mechanism of the CAN protocol. However, an
increase in a CAN bus load rate might lead to consecutive and simultaneous transmis-
sions, which cause collisions and delays [46,47]. Meanwhile, if a large number of sporadic
messages transmitted over the CAN bus suddenly occur, the transmission of the sched-
uled messages that are required to be delivered in time is delayed. It is possible that this
delay occurs even in the case that retransmissions increase due to environmental uncer-
tainty. When an adversary exploits such a delay to inject cyber-attacks, a receiving node
takes two or more messages with the same ID in the scheduled TTI. As shown in Figure

Figure 3. A transmission time interval-based cyber-attack detection method and the existing
CAN’s problem.

Note that periodic messages are essentially transmitted by avoiding access collisions
and transmission delays in the arbitration mechanism of the CAN protocol. However, an
increase in a CAN bus load rate might lead to consecutive and simultaneous transmissions,
which cause collisions and delays [46,47]. Meanwhile, if a large number of sporadic
messages transmitted over the CAN bus suddenly occur, the transmission of the scheduled
messages that are required to be delivered in time is delayed. It is possible that this delay
occurs even in the case that retransmissions increase due to environmental uncertainty.
When an adversary exploits such a delay to inject cyber-attacks, a receiving node takes
two or more messages with the same ID in the scheduled TTI. As shown in Figure 3, in the
case of the message with the ID of C, it has continuous intervals specified by time t2 and
time t5. It is seen that the adversary’s message with the ID of A at time t′4 has a higher
priority in transmission than the message with the ID of C at the pre-determined time
t5. It is indicated that the transmission of the normal message with the ID of C at time t5
becomes delayed by t′5 − t5. This delay leads to a consecutive delay in the transmission
of the new normal message with the ID of A, which shall be scheduled at time t6. The
adversary also tries to inject a new message with the ID of A as a cyber-attack into the CAN
bus at time t′′6 . A receiving node takes two delayed messages with the same ID at t′6 and t′′6 .

In the TTI-AD phase, rather than distinguishing two delayed messages with the same
ID received at time t′6 and t′′6 , CANon intends to first pick out only those messages that
arrived within an acceptable period from the transmitted messages. Although it has a
certain transmission delay, it accepts the message as a candidate message for the next phase
to distinguish normal messages from cyber-attacks. To define the acceptable period for the
candidate message, CANon uses an expected transmission delay that indicates the amount
of time delayed compared to the scheduled transmission time. The expected transmission
delay, denoted as δ, can be defined as follows:

δ = max
1≤i≤n

{0, µi}, (1)

Sensors 2022, 22, 2636 14 of 32

where i and n are the identifier and number of messages transmitted over the CAN bus,
respectively, and µi is the maximum transmission delay time of the messages with the ID
of i. In the case of Figure 3, consequently, the three messages at time t′4, t′6, and t′′6 need to
be identified during the second SHC-AD phase since they exist within δ in the first TTI-AD
phase. The value of δ is set to 5.41 ms by using the jitter measured from our experiment,
which we discuss in Section 5.

3.3.2. Sequential Hash Chain-Based Cyber-Attack Detection

In the automotive CPS, it is very important to satisfy the real-time and timeliness
requirements, especially in terms of CAN frame transmission for ensuring driving safety.
In this regard, CANon needs verification of the corresponding authentication tag to be
completed within a predetermined TTI for each message. In CAN, since the TTI for each
message can vary from five to hundreds of milliseconds depending on ECUs’ roles, in the
worst case, the verification should be finished within 5 ms [14,16]. Due to its light execution,
a hash function is suitable for origin authentication as it satisfies those requirements and
ensures a high level of security. CANon uses a hash function to generate the authentication
tags and secret keys. In CANon, the generated authentication tag is denoted by a keyed-
message authentication code (KMAC). Each node uses only the contents (i.e., control data)
of the data field of the CAN frame to generate KMAC and then adds it to the data field of
the CAN frame for each message.

A common method to generate authentication tags is to use a one-way hash func-
tion [25,36]. It has a particular process to consume the chained hash values in the opposite
direction from the generation direction after generating a hash chain with n hash values.
Due to this unique feature, it satisfies the one-way property, and an adversary will find it
difficult to infer the hash key used. However, in practice, there is a critical limitation of
needing to generate a hash chain with a certain length n beforehand in resource-limited
nodes of CAN. In other words, if n values of a hash chain are all consumed, a new chain
has to be generated with a new initial secret key. At the time, generating a new hash chain
may cause delayed transmissions and requires a key distribution mechanism of a new
initial key. Therefore, the performance of the one-way hash function operating in CAN is
closely affected by a hash table’s length. We should consider a new hash chain structure
irrespective of the length of the hash chain, which does not suffer from key depletion.

To produce KMAC, all nodes in a given SCG use an OLAK, which is selected from
a sequential hash chain (SHC). The SCH is a data structure with a series of secret keys
generated by the iterated hash function using the pre-shared IV as an input parameter.
The security strength in CANon lies in properly determining an OLAK from the SHC
generated using a given hash function. CANon introduces an element of randomness into
the selection of a specific secret key as OLAK. Figure 4 presents the overview of structuring
the proposed SHC by performing a given hash function at the first session and the arbitrary
selection of one OLAK. When selecting an OLAK, it is randomly indexed by a given nonce
in the SHC as shown in Figure 4. Since CANon can continue to generate a new secret
key whenever required without depleting the keys of SHC from a given IV, it eliminates
the need for CANon to store all keys of the SHC in the ECU’s memory. Whenever the
OLAK is requested, the next series for SHC is generated. The OLAK selected to generate an
identified KMAC for each message is never used again for a corresponding session. During
a given session, the nodes in the SCG can generate an SHC with a maximum of m secret
keys. The maximum length of the SHC may depend on the time taken to perform the hash
function m times within the TTI of a given message. Furthermore, as a pair of sending and
receiving nodes in a specific SCG uses the same OLAK selected from SHC, receiving nodes
identify a suspicious frame transmission as a cyber-attack in the second SHC-AD phase
and drop the corresponding message.

Sensors 2022, 22, 2636 15 of 32

Sensors 2022, 22, x FOR PEER REVIEW 15 of 33

To produce KMAC, all nodes in a given SCG use an OLAK, which is selected from a
sequential hash chain (SHC). The SCH is a data structure with a series of secret keys gen-
erated by the iterated hash function using the pre-shared IV as an input parameter. The
security strength in CANon lies in properly determining an OLAK from the SHC gener-
ated using a given hash function. CANon introduces an element of randomness into the
selection of a specific secret key as OLAK. Figure 4 presents the overview of structuring
the proposed SHC by performing a given hash function at the first session and the arbi-
trary selection of one OLAK. When selecting an OLAK, it is randomly indexed by a given
nonce in the SHC as shown in Figure 4. Since CANon can continue to generate a new
secret key whenever required without depleting the keys of SHC from a given IV, it elim-
inates the need for CANon to store all keys of the SHC in the ECU’s memory. Whenever
the OLAK is requested, the next series for SHC is generated. The OLAK selected to gen-
erate an identified KMAC for each message is never used again for a corresponding ses-
sion. During a given session, the nodes in the SCG can generate an SHC with a maximum
of 𝑚 secret keys. The maximum length of the SHC may depend on the time taken to per-
form the hash function 𝑚 times within the TTI of a given message. Furthermore, as a pair
of sending and receiving nodes in a specific SCG uses the same OLAK selected from SHC,
receiving nodes identify a suspicious frame transmission as a cyber-attack in the second
SHC-AD phase and drop the corresponding message.

Hash
function

Hash
function

Hash
function

Hash
function

Hash
function

Hash
function

Initialization
Vector

Secret
Key-1

Secret
Key-2

Secret
Key-3

Secret
Key-4

Secret
Key-5

Secret
Key-n

Sequential hash chain 1
OLAK

….

….

Nonce
OLAK

NonceSequential hash chain 2

Figure 4. Structure of the designed sequential hash chain and selected authentication keys.

In the case of automotive CPS, the contents of the message sent periodically are al-
most similar since the message of CAN is designed to be continuously transmitted for
high reliability of control, with the same control data as mentioned above. However, in
CANon, due to the different OLAKs that vary for each transmission, a different KMAC is
generated regardless of the content of the control data. During a given session, using a
nonce to determine an OLAK randomly provides the one-way property for our CANon.
There is a feature to avoid exposing the secret key wherein performing the forward selec-
tion of a secret key in SHC in such a way allows the sending node to determine a new
nonce for each request and perform implicit synchronization with the receiving node. Fur-
thermore, the security of CANon depends on the property of collision resistance of the
hash function, which we discuss in Section 4.

3.3.3. Enclosed-Key Distribution and Management for Session Management
If the same IV is used for a long period and the length of the secret key is short, the

possibility that the same KMAC is generated increases. Since the data of the periodic mes-
sages designed for control are hardly changed during traveling except for the driver in-
tention, it can generate the same KMACs via hash collisions. Moreover, it is possible to
recover the secret key used by using a key enumeration algorithm if an adversary tries to
spend too much time overhearing the messages and the KMAC over the CAN bus in order
to attempt any type of cyber-attack [48].

CANon defines a session that specifies a time interval to be valid for a certain IV for
SHC generation. The start of each session means a change in the existing SHC. Since a
gateway node has the responsibility of managing each individual session for each SCG, it

Figure 4. Structure of the designed sequential hash chain and selected authentication keys.

In the case of automotive CPS, the contents of the message sent periodically are almost
similar since the message of CAN is designed to be continuously transmitted for high
reliability of control, with the same control data as mentioned above. However, in CANon,
due to the different OLAKs that vary for each transmission, a different KMAC is generated
regardless of the content of the control data. During a given session, using a nonce to
determine an OLAK randomly provides the one-way property for our CANon. There is
a feature to avoid exposing the secret key wherein performing the forward selection of a
secret key in SHC in such a way allows the sending node to determine a new nonce for
each request and perform implicit synchronization with the receiving node. Furthermore,
the security of CANon depends on the property of collision resistance of the hash function,
which we discuss in Section 4.

3.3.3. Enclosed-Key Distribution and Management for Session Management

If the same IV is used for a long period and the length of the secret key is short, the
possibility that the same KMAC is generated increases. Since the data of the periodic
messages designed for control are hardly changed during traveling except for the driver
intention, it can generate the same KMACs via hash collisions. Moreover, it is possible to
recover the secret key used by using a key enumeration algorithm if an adversary tries to
spend too much time overhearing the messages and the KMAC over the CAN bus in order
to attempt any type of cyber-attack [48].

CANon defines a session that specifies a time interval to be valid for a certain IV for
SHC generation. The start of each session means a change in the existing SHC. Since a
gateway node has the responsibility of managing each individual session for each SCG,
it knows the start of the first transmission for each SCG. For this reason, the start time of the
session for each SCG can be varied by the gateway node. To instruct the beginning of a new
session, the gateway node transmits a salt to a given SCG. The i-th session key generated
from the salt and GID is used as the value of the IV (denoted as IVi) for the hash function.
As mentioned above, the vehicle already has the pre-shared IV (denoted as Θ). To start a
new session, the first session key is given as Θ of a given vehicle, namely IV1 = Θ. With
this session key, CANon generates a series of secret keys from a hash function. From the
second session, the session key for each SCG is generated differently due to the different
salt for each SCG and the different GID of the given SCG. At that time, the transmitted salt
is implicitly used to update the existing IVi of the given SCG so that a new session key is
never exposed for synchronizing keys.

The start of a new session for each SCG is initiated by a certain message from the
gateway node, which is defined as a session expiration message (SEM). We design an SEM
with the ID of the smallest value so that its transmission should be prioritized over any
message on the CAN bus. Whenever the session is changed, a new SHC is re-constructed
in all nodes due to a change in the session key for a new session. Sending the SEM aims to
only provide a salt for each SCG to generate the next session key. All nodes of a given SCG
perform the exclusive-OR (XOR) operation of their own GID and the received salt after
receiving the SEM.

Sensors 2022, 22, 2636 16 of 32

Since the SEM’s transmission of a gateway node is based on event-triggered communi-
cation, the SEMs may collide with the scheduled transmission in time. Therefore, a periodic
control message with a lower priority is delayed and retransmitted via the arbitration
mechanism of the CAN protocol compared to the event-triggered message of the SEM with
a higher priority. Such a delayed message should use the old session key during SHC-AD
even if a new session key of each group is changed. Figure 5a shows a simple example
of such a situation. A message, presented as an ash-colored rectangle, is the SEM of the
gateway node, and the periodic messages sent by CAN nodes are presented in different
colors. The smaller number in the rectangles representing the periodic messages indicates a
higher priority in transmission. In the i-th session of a given SCG, the message with a lower
priority of 1 collides with a higher priority of the SEM for generating the i+1th session key
and the gateway node wins at this transmission. The collided message with a priority of
1 tries to be transmitted again when this CAN bus is idle. The scheduled message with
a priority of 2 is impeded by this transmission. At the same time, the gateway node and
the SCG first change the old session key into a new session key due to the success of SEM
transmission. The delayed message with a priority of 2 is delivered after the new session
starts. Although this delayed message is a normal message, it cannot be authenticated due
to a new session key.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 33

knows the start of the first transmission for each SCG. For this reason, the start time of the
session for each SCG can be varied by the gateway node. To instruct the beginning of a
new session, the gateway node transmits a salt to a given SCG. The 𝑖-th session key gen-
erated from the salt and GID is used as the value of the IV (denoted as 𝐼𝑉௜) for the hash
function. As mentioned above, the vehicle already has the pre-shared IV (denoted as Θ).
To start a new session, the first session key is given as Θ of a given vehicle, namely 𝐼𝑉ଵ = Θ. With this session key, CANon generates a series of secret keys from a hash function.
From the second session, the session key for each SCG is generated differently due to the
different salt for each SCG and the different GID of the given SCG. At that time, the trans-
mitted salt is implicitly used to update the existing 𝐼𝑉௜ of the given SCG so that a new
session key is never exposed for synchronizing keys.

The start of a new session for each SCG is initiated by a certain message from the
gateway node, which is defined as a session expiration message (SEM). We design an SEM
with the ID of the smallest value so that its transmission should be prioritized over any
message on the CAN bus. Whenever the session is changed, a new SHC is re-constructed
in all nodes due to a change in the session key for a new session. Sending the SEM aims
to only provide a salt for each SCG to generate the next session key. All nodes of a given
SCG perform the exclusive-OR (XOR) operation of their own GID and the received salt
after receiving the SEM.

Since the SEM’s transmission of a gateway node is based on event-triggered commu-
nication, the SEMs may collide with the scheduled transmission in time. Therefore, a pe-
riodic control message with a lower priority is delayed and retransmitted via the arbitra-
tion mechanism of the CAN protocol compared to the event-triggered message of the SEM
with a higher priority. Such a delayed message should use the old session key during
SHC-AD even if a new session key of each group is changed. Figure 5a shows a simple
example of such a situation. A message, presented as an ash-colored rectangle, is the SEM
of the gateway node, and the periodic messages sent by CAN nodes are presented in dif-
ferent colors. The smaller number in the rectangles representing the periodic messages
indicates a higher priority in transmission. In the 𝑖-th session of a given SCG, the message
with a lower priority of 1 collides with a higher priority of the SEM for generating the 𝑖+1th session key and the gateway node wins at this transmission. The collided message
with a priority of 1 tries to be transmitted again when this CAN bus is idle. The scheduled
message with a priority of 2 is impeded by this transmission. At the same time, the gate-
way node and the SCG first change the old session key into a new session key due to the
success of SEM transmission. The delayed message with a priority of 2 is delivered after
the new session starts. Although this delayed message is a normal message, it cannot be
authenticated due to a new session key.

time

Session i Session i+1 Session i+2

2
1

Session Expiration Messages for SCG

Collision

Delayed Transmission of Message 2
2 2 2 2 21

2 Periodic messages in SCG 11 2 Transmission failures in SCG

...

Delayed Transmission of Message 1

Transmission Time Interval (TTI)

...

...

Session k Session k+1 Session k+2

0 2 1 02 2 0 2 21 20 0
1

0

Session Expiration Messages for SCG k0

TTI of Message 1

TTI of Message 2

(a)

Sensors 2022, 22, x FOR PEER REVIEW 17 of 33

1 20

Session i+1Session i

......
time

Session Coexistence Time between Session and +1

(b)

Figure 5. A grace period to use the old and new session keys together for origin authentication: (a)
Problems of collisions and delayed transmissions; (b) session coexistence time.

Therefore, it is necessary to provide a grace period for delayed transmissions, which
allows receiving nodes to verify the KMAC using the old session key during SHC-AD. As
shown in Figure 5b, to use the old session key together with the new session key, we de-
fine a session coexistence time as a grace period, denoted as 𝜂, as follows: 𝜂 = max௡∈ୗ {0, 𝜏௧௥௔௡௦(𝑛)} + 𝜏௔௨௧௛ + 𝜖, (2)

where 𝑛 is the identifier of transmitted CAN messages when S is a set of all messages to
be transmitted over the CAN bus. 𝜏௧௥௔௡௦ is the maximum transmission delay time meas-
ured when the periodic control messages are transmitted under the condition where there
is no event-triggered message of the gateway node. 𝜏௔௨௧௛ is the maximum time taken to
authenticate a message at each node in SHC-AD. Since 𝜖 is an additive interval to com-
pensate for the loss of the transmitted message in the current session, 𝜖 is set as the larger
value, more sufficient than the mean transmission delay.

Considering its practicability, in this paper, we determine a variable set of 𝜏௧௥௔௡௦ by
examining the measured jitter and 𝜏௔௨௧௛ by examining the time required to perform au-
thentication in real-time. In the case of 𝜏௔௨௧௛, it is necessary to analyze the worst case in
the designed CAN-DB. Since the jitter and time limit can vary depending on the CAN-DB
of released vehicles, the values of the variables defined in (2) are set to be values identified
by the experimental results of Section 5. Consequently, 𝜏௔௨௧௛ is set to 0.3974 ms and 𝜏௧௥௔௡௦ is set to 5.41 ms.

To determine the start time of the session for each SCG, a gateway node exploits the
session duration, regulated by the maximum number of messages that the sending node
can transmit. The session duration time for one session of a given SCG is set to 1.2 s ac-
cording to the security analysis of the probability of success of the cyber-attack in Section
5.2. A gateway node transmits each SEM immediately after the time elapsed by the session
duration from the time of transmitting its first message of the sending node of a given
SCG.

3.4. CANon Operation
In this subsection, we introduce node operation according to the roles of the nodes

in CANon and the detection method in detail. For that, the notations and their descrip-
tions are shown in Table 1. The following terminology is used to effectively introduce the
proposed CANon.

Table 1. Summary of notations used for CANon.

Notation Description Notation Description 𝑢[𝑆|𝑅|𝐺] A CAN node that is divided into sender 𝑢𝑆,
receiver 𝑢𝑅, and gateway 𝑢𝐺

ℂ௨[ௌ|ோ|ீ] A keyed-message authentication code
(KMAC)

G A sender-centric group (SCG) 𝜒 An output of a hash function 𝑖 A session’s identifier H(∙) A hash function Θ A pre-shared initialization vector (IV) || Concatenation operation

Figure 5. A grace period to use the old and new session keys together for origin authentication:
(a) Problems of collisions and delayed transmissions; (b) session coexistence time.

Therefore, it is necessary to provide a grace period for delayed transmissions, which
allows receiving nodes to verify the KMAC using the old session key during SHC-AD.
As shown in Figure 5b, to use the old session key together with the new session key, we
define a session coexistence time as a grace period, denoted as η, as follows:

η = max
n∈S
{0, τtrans(n)}+ τauth + ε, (2)

where n is the identifier of transmitted CAN messages when S is a set of all messages
to be transmitted over the CAN bus. τtrans is the maximum transmission delay time
measured when the periodic control messages are transmitted under the condition where

Sensors 2022, 22, 2636 17 of 32

there is no event-triggered message of the gateway node. τauth is the maximum time
taken to authenticate a message at each node in SHC-AD. Since ε is an additive interval to
compensate for the loss of the transmitted message in the current session, ε. is set as the
larger value, more sufficient than the mean transmission delay.

Considering its practicability, in this paper, we determine a variable set of τtrans
by examining the measured jitter and τauth by examining the time required to perform
authentication in real-time. In the case of τauth, it is necessary to analyze the worst case in
the designed CAN-DB. Since the jitter and time limit can vary depending on the CAN-DB
of released vehicles, the values of the variables defined in (2) are set to be values identified
by the experimental results of Section 5. Consequently, τauth is set to 0.3974 ms and τtrans is
set to 5.41 ms.

To determine the start time of the session for each SCG, a gateway node exploits
the session duration, regulated by the maximum number of messages that the sending
node can transmit. The session duration time for one session of a given SCG is set to
1.2 s according to the security analysis of the probability of success of the cyber-attack in
Section 5.2. A gateway node transmits each SEM immediately after the time elapsed by the
session duration from the time of transmitting its first message of the sending node of a
given SCG.

3.4. CANon Operation

In this subsection, we introduce node operation according to the roles of the nodes in
CANon and the detection method in detail. For that, the notations and their descriptions
are shown in Table 1. The following terminology is used to effectively introduce the
proposed CANon.

Table 1. Summary of notations used for CANon.

Notation Description Notation Description

u[S|R|G]
A CAN node that is divided
into sender uS, receiver uR,
and gateway uG

Cu[S|R|G]
A keyed-message
authentication code (KMAC)

G A sender-centric group (SCG) χ An output of a hash function

i A session’s identifier H(·) A hash function

Θ A pre-shared initialization
vector (IV) || Concatenation operation

Mik
u[S|R|G]

The data of the data field of the
k-th message transmitted by
node u at the i-th session

SEMi
uG

A message of the gateway uG
to update an old session into a
new session for i-th session

∆ Control data of the data field in
CAN frame nUik

A normal node’s nonce to
generate a local one-time
authentication key

nGi
A gateway node’s salt to
generate the next session key
for a given SCG

SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

A session key of the SCG with
identifier

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

in the i-th session

Λik
u[S|R|G]

A one-time local authentication
key (OLAK) forMik

u RShift(·) The maximum number of
iterations of a hash operation⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval for
each SCG as mentioned above. For example, in a given i-th session, the data field of the k-th
message sent by a sending node uS is denoted asMik

uS, where the sending node’s identifier
is the same as the ID of its message to be transmitted over the CAN bus. A session key
for each SCG is denoted as SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

, where i is used as the identifier of the i-th session and

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

indicates the group identification.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

can be also identified by using the contents of the
ID field in the message of the sending node that is only one in the given SCG. Hence, an
initial session key for the given SCG

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

in the first session is given as SK1

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

and is the same as

Sensors 2022, 22, 2636 18 of 32

the pre-shared IV Θ only at the initial state. Except for the first session, the gateway node
periodically transmits SEMs and is identified by the contents of the ID field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender uS generates the KMAC CuS using an OLAK Λik
uS

derived from its SHC by its nonce nUik . In the given group, to transmit its k-th message,
the sender uS performs the following processes during the i-th session. First, the sender
determines its own nonce nUik representing the number of the iterations of the given hash
function. Its iterated executions result in an OLAK Λik

uS. In other words, the latest value
of its SHC becomes the OLAK. The sender’s nonce nUik is randomly selected within a
particular range between the minimum value, denoted as εmin, and the maximum value
of the iterations of the given hash function, denoted as εmax. It is important to provide an
OLAK Λik

uS different from the initial session key SK1

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

for the given group. In CANon, the
value of εmin is set to 1. Since the value of εmax depends on the CAN node’s performance,
in this paper, we intend to determine the maximum number of iterations by using the
experimental results in Section 5. In detail, the maximum value is set to the number of
iterations of the given hash function that can be performed sufficiently within the smallest
TTI for every message sent over the CAN bus. From the experimental results, εmax is set to
be six.

Second, after selecting nonce nUik randomly, the given H(·) iterates nonce nUik times
to build the OLAK Λik

uS of the SCH for the k-th message. First, if this is the first time in the
given session, it performs the nonce nUik times the given H(·) from the current session key
SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

. If this is not the first time, the sender performs the nonce nUik times the given H(·)
from the latest OLAK Λik−1

uR used previously. In addition, only if the current session i is the
first session, the session key SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

is given by Θ. Otherwise, SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

is changed according to

the E-KDM for a gateway-initiated session. Using the control data ∆, the new OLAK Λik
uS,

and the nonce nUik , the sender uS generates its own KMAC (i.e., CuS = H(Λik
uS

∣∣∣∣nUik
∣∣∣∣ ∆))

and then transmitsMik
uS =

[
∆
∣∣∣∣nUik

∣∣∣∣CuS
]
.

3.4.2. Receiver Operation

One or more receivers in a given SCG take the message broadcasted from the sender.
Note that there is only one sender in the given SCG. They independently verify the received
message. As mentioned above, if the receivedMik

uS does not observe the scheduled TTI,
it is discarded during the TTI-AD phase.

During the SHC-AD phase, the receiver performs as follows. First, in a given SCG,
the receiver uR extracts the data (i.e.,Mik

uS =
[
∆
∣∣∣∣nUik

∣∣∣∣CuS
]
) of the data field from the

CAN frame received from the sender. By using the sender’s nonce nUik , the receiver
synchronizes its own SHC with the sender’s. This synchronization indicates generating the
same OLAK by performing the iteration of the given hash function. Therefore, it implicitly
synchronizes its own SHC with the sender’s SHC using the received nonce nUik ofMik

uS. If
this synchronization is the first iteration in the given session, it performs the nonce nUik

times the given H(·) from the current session key SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

. If this synchronization is not the
first time, the receiver performs the nonce nUik times the given H(·) from the latest OLAK
Λik−1

uR used previously. The iterated operations result in building its SHC with a length of
nUik . The latest value of this constructed SCH becomes the receiver’s OLAK Λik

uR that is
the same as the sender’s OLAK Λik

uS, which is used to generate a receiver’s KMAC CuR. At
that time, all nodes of the given SCG use the same session key SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

for the SHC during
the i session. If i = 1, SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

= Θ is used as the first input value to H(·). Otherwise, SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

is
changed periodically according to the E-KDM. Second, the receiver uR compares its own
KMAC CuR with the sender’s KMAC CuS to verify the legitimate message of the sender
uS. If both values are not matched,Mik

uS should be discarded since it is determined as a

Sensors 2022, 22, 2636 19 of 32

cyber-attack. We provide Algorithm 1 as the sender operation described in Section 3.4.2
and Algorithm 2 as the receiver operation.

Algorithm 1: Sender Operations

Input:
Known SKi

G, ∆, i, k, and uS
Given n = 1
Given εmax, the maximum number of iterations of a hash function

Output: Mik
uS = [∆||nUik ||CuS]

1 nUik = an integer value between 1 and εmax

2 While n ≤ nUik

3 If n = 1 Then

4 χ = H(SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

)

5 Else

6 χ = H(χ)

7 End If

8 End While

9 Λik
uS = χ

10 CuS = H(Λik
uS||nUik || ∆)

11 Mik
uS = [∆||nUik ||CuS]

12 TransmitMik
uS

Algorithm 2: Receiver Operations during SHC-AD

Input: Known SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

,Mik
uS, i, k, and uR

Given n = 1

Output: Boolean

1 Extract ∆ fromMik
uS = [∆||nUik ||CuS]

2 Extract nUik fromMik
uS = [∆||nUik ||CuS]

3 Extract CuS fromMik
uS = [∆||nUik ||CuS]

4 While n ≤ nUik

5 If n = 1 Then

6 χ = H(SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

)

7 Else

8 χ = H(χ)

9 End If

10 End While

11 Λik
uR = χ

12 CuR = H(Λik
uR||nUik || ∆)

13 IF CuR = CuS Then

14 Verify CuS as TRUE

15 Else

16 Verify CuS as FALSE

17 DiscardMik
uS

18 End If

3.4.3. Gateway Operation

In CANon, a new session indicates that a given SCG should obtain a new session
key for building its new SHC. The start of a new session for each SCG is designated by a
gateway node. The processes of updating each session are the same as Algorithm 1 of the

Sensors 2022, 22, 2636 20 of 32

sender and Algorithm 2 of the receiver for the SHC-AD phase except for the process of
determining the number of iterations of H(·) to generate a new session key.

In updating the current session, the gateway node and all nodes of the given SCG par-
ticipate. The gateway uG sequentially transmits SEMs for each group with a predetermined
session duration time. Every session after the first session becomes a gateway-initiated
session. A gateway-initiated session for each group is defined as being initiated when the
gateway uG transmits the SEM (i.e, SEMi

uG =
[
∆‖nGi‖CuG

]
). As mentioned above, the

SEM is defined as an event-triggered message with the highest priority compared to any
other periodic message. To generate this SEM, a gateway node randomly selects the salt
nGi. The minimum and maximum values of the salt nGi are determined in the same way
as the nonce nUik described in Section 3.4.2.

To prove a gateway node itself, it provides its KMAC by performing a given H(·) nGi

times from the existing session key SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

for SCG

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

(
only i f i = 0, SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

= Θ
)
. By using three

values of the session key SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

, the salt nGi, and the control data ∆ that is padded with ran-
domized bits, the gateway node generates its KMAC (i.e., CuG = H

(
SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

∣∣∣∣nGi
∣∣∣∣ ∆

)
) based

on the given H(·). After the gateway node transmits its message SEMi
uG =

[
∆
∣∣∣∣nGi

∣∣∣∣CuG
]
,

all nodes in the given SCG

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

verify the KMAC of the origin and then generate a new session
key SKi+1

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

. The next session key SKi+1

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

for each SCG also needs to be stored in the gateway
node in order to perform the session synchronization between the gateway node and the
SCGs. Both the salt nGi and GID

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

are used to generate the next session key, which is used
to create a series of secret keys.

The gateway node performs RShift(·) after conducting the bitwise-exclusive OR op-
eration (i.e.,

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

⊕ nGi) so that a new nonce lies in the range of εmin to εmax. The RShift(·)
function fills each bit with zeros from the most-significant bit to the least-significant bit
until the result of

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

⊕ nGi is less than or equal to εmax. Therefore, it aims to generate as
many executions of H(·) as possible within a given time on a resource-limited normal node.
When updating the current session, the gateway node performs the process presented in
Algorithm 3.

The SEM message of the gateway node instructs a specific SCG

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

to start a new session
by replacing the old session key with the new session key. After all of the SCG verifies the
SEM of the gateway node, to generate a new session key SKi+1

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

for the next session i + 1, all of
the nodes repeatedly perform the given hash operation with the current session key SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

. The
number of iterations of the given H(·) is determined by the result of RShift

(
G⊕ nGi+1). Since

each SCG has a different identifier, the new session key SKi+1

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

is determined differently on each
SCG. We present the operation of the SCG starting a gateway-initiated session in Algorithm 4.

Algorithm 3: Gateway Operations in E-KDM

Input:
Known SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

, i, and uG
Given n = 1, ∆ = bits padded with randomized bits, k = 0

Output: SKi+1

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

, SEMi+1
uG

1 nGi+1 = an integer value between 1 and εmax

2 CuG = H(SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

||nGi+1|| ∆)
3 SEMi+1

uG = [∆||nGi+1||CuG]

4 ε = RShift(G⊕ nGi+1)

5 χ = SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

6 While n ≤ ε

7 χ = H(χ)

8 End While

9 SKi+1

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

= χ

10 Transmit SEMi+1
uG

11 Return SKi+1

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

Sensors 2022, 22, 2636 21 of 32

Algorithm 4: Group Operations in E-KDM

Input: Known SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

, SEMi+1
uG ,

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

, and i
Given n = 1

Output: SKi+1

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

1 Extract ∆ from SEMi+1
uG = [∆||nGi+1||CuG]

2 Extract nGi+1 from SEMi+1
uG = [∆||nGi+1||CuG]

3 Extract CuG from SEMi+1
uG = [∆||nGi+1||CuG]

4 CuR = H(SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

||nGi|| ∆)
5 IF CuR == CuG Then

6 Verify CuG as TRUE

7 Else

8 Verify CuG as FALSE

9 Discard SEMi+1
uG

10 Return

11 End If

12 ε = RShift(

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

⊕ nGi+1)

13 χ = SKi

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

14 While n ≤ ε

15 χ = H(χ)

16 End While

17 SKi+1

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

= χ

18 Return SKi+1

Sensors 2022, 22, x FOR PEER REVIEW 18 of 33

ℳ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

The data of the data field of the 𝑘-th mes-

sage transmitted by node 𝑢 at the 𝑖-th ses-

sion

𝑆𝐸𝑀𝑢𝐺
𝑖

A message of the gateway 𝑢𝐺 to update

an old session into a new session for 𝑖-th

session

Δ Control data of the data field in CAN frame 𝑛𝑈
𝑖𝑘

A normal node’s nonce to generate a local

one-time authentication key

𝑛𝐺𝑖
A gateway node’s salt to generate the next

session key for a given SCG
𝑆𝐾ℊ

𝑖
A session key of the SCG with identifier ℊ

in the 𝑖-th session

Λ𝑢[𝑆|𝑅|𝐺]
𝑖𝑘

A one-time local authentication key (OLAK)

for ℳ𝑢
𝑖𝑘 RShift(∙)

The maximum number of iterations of a

hash operation
⊕ Bitwise exclusive-OR operation

In CANon, a gateway node manages a series of sessions with a given time interval

for each SCG as mentioned above. For example, in a given 𝑖-th session, the data field of

the 𝑘 -th message sent by a sending node 𝑢𝑆 is denoted as ℳ𝑢𝑆
𝑖𝑘 , where the sending

node’s identifier is the same as the ID of its message to be transmitted over the CAN bus.

A session key for each SCG is denoted as 𝑆𝐾ℊ
𝑖 , where 𝑖 is used as the identifier of the i-th

session and ℊ indicates the group identification. ℊ can be also identified by using the

contents of the ID field in the message of the sending node that is only one in the given

SCG. Hence, an initial session key for the given SCG ℊ in the first session is given as 𝑆𝐾ℊ
1

and is the same as the pre-shared IV 𝛩 only at the initial state. Except for the first session,

the gateway node periodically transmits SEMs and is identified by the contents of the ID

field in its SEM.

3.4.1. Sender Operation

For each transmission, the sender 𝑢𝑆 generates the KMAC ℂ𝑢𝑆 using an OLAK Λ𝑢𝑆
𝑖𝑘

derived from its SHC by its nonce 𝑛𝑈
𝑖𝑘. In the given group, to transmit its 𝑘-th message,

the sender 𝑢𝑆 performs the following processes during the 𝑖-th session. First, the sender

determines its own nonce 𝑛𝑈
𝑖𝑘 representing the number of the iterations of the given

hash function. Its iterated executions result in an OLAK 𝛬𝑢𝑆
𝑖𝑘 . In other words, the latest

value of its SHC becomes the OLAK. The sender’s nonce 𝑛𝑈
𝑖𝑘 is randomly selected

within a particular range between the minimum value, denoted as 𝜀𝑚𝑖𝑛, and the maxi-

mum value of the iterations of the given hash function, denoted as 𝜀𝑚𝑎𝑥. It is important

to provide an OLAK 𝛬𝑢𝑆
𝑖𝑘 different from the initial session key 𝑆𝐾ℊ

1 for the given group.

In CANon, the value of 𝜀𝑚𝑖𝑛 is set to 1. Since the value of 𝜀𝑚𝑎𝑥 depends on the CAN

node’s performance, in this paper, we intend to determine the maximum number of iter-

ations by using the experimental results in Section 5. In detail, the maximum value is set

to the number of iterations of the given hash function that can be performed sufficiently

within the smallest TTI for every message sent over the CAN bus. From the experimental

results, 𝜀𝑚𝑎𝑥 is set to be six.

Second, after selecting nonce 𝑛𝑈
𝑖𝑘 randomly, the given H(∙) iterates nonce 𝑛𝑈

𝑖𝑘

times to build the OLAK 𝛬𝑢𝑆
𝑖𝑘 of the SCH for the 𝑘-th message. First, if this is the first time

in the given session, it performs the nonce 𝑛𝑈
𝑖𝑘 times the given H(∙) from the current

session key 𝑆𝐾ℊ
𝑖 . If this is not the first time, the sender performs the nonce 𝑛𝑈

𝑖𝑘 times the

given H(∙) from the latest OLAK Λ𝑢𝑅
𝑖𝑘−1 used previously. In addition, only if the current

session 𝑖 is the first session, the session key 𝑆𝐾ℊ
𝑖 is given by Θ . Otherwise, 𝑆𝐾ℊ

𝑖 is

changed according to the E-KDM for a gateway-initiated session. Using the control data

Δ, the new OLAK 𝛬𝑢𝑆
𝑖𝑘 , and the nonce 𝑛𝑈

𝑖𝑘, the sender 𝑢𝑆 generates its own KMAC (i.e.,

ℂ𝑢𝑆 = H(𝛬𝑢𝑆
𝑖𝑘 ||𝑛𝑈

𝑖𝑘|| Δ)) and then transmits ℳ𝑢𝑆
𝑖𝑘 = [Δ||𝑛𝑈

𝑖𝑘 ||ℂ𝑢𝑆].

4. Security Analysis
4.1. Probability of Success of Cyber-Attack

As mentioned above in Section 2.4, the cyber-attacks we consider in the in-vehicle
network are largely divided into two categories: A replay attack and a brute-force attack.
In the case of the replay attack, after the adversary stores the eavesdropping message, it re-
transmits the same message with a delay over the CAN bus. At that time, the adversary
does not modify the contents of the message. If the message with the falsified control data
is transmitted with a delay after eavesdropping, this cyber-attack is referred to as a brute-
force attack, including both modification and masquerade attacks. CANon guarantees
the detection of all injected replay attacks by the receiving nodes of a given SCG since the
OLAK is changed for every message.

In the case of a brute-force attack, the probability of success of the cyber-attack may
depend on the length of the data field and the length of TTI. This cyber-attack aims to
disrupt driving safety by allowing an adversary to succeed in any one of several attempts.

In a brute-force attack, the adversary abusing the message ID of a legitimate node
injects arbitrary data into the CAN bus. This is because any injected brute-force attack is
discarded at the receiving node unless the adversary captures the message ID of a legitimate
node. In this regard, since the adversary could design more sophisticated attacks, it takes
the form of a masquerade attack or a modification attack, and the forged or arbitrary control
data can be set in the data fields of the CAN message. As mentioned in Section 2.1, the
length of the CAN data field is only 8 bytes. CANon exploits this data field of the CAN
frame, which consists of three parts: Control data, a nonce, and KMAC. When an adversary
tries to reconstruct the contents of this data field to succeed in a brute-force attack, it should
focus on the two remaining parts, excluding the falsified control data. This is because the
adversary is sufficiently able to determine the fact that the control data are rarely changed
from periodic transmissions of the legitimate CAN node.

In this regard, we note that the success of the brute-force attack depends on the lengths
of the KMAC and the nonce. The total length of the KMAC and the nonce is available up to

Sensors 2022, 22, 2636 22 of 32

8 bytes if there are no control data to be transmitted. Hence, there exists a total number
of 2(64−d) cases of brute-force attacks, where the number of bits of the control data to be
transmitted is denoted as d. Considering only brute-force attacks, the success rate of those,
denoted as Sµ, is given as:

Sµ =
1

2(64−d)
(3)

In order to increase the probability of success of the cyber-attack, an adversary intends
to inject the brute-force attack over the CAN bus according to a given TTI of a legitimate
CAN node. The receiving nodes in the SCG are able to detect it, except in the case of
determining the received message as a normal message due to the hash collision occurrence,
even though that message is a cyber-attack. A hashing operation to generate KMAC may
typically cause the hash collision occurrence, which produces the same hash values with
different inputs. For this reason, the probability of success of the cyber-attack is equal
to the hash collision occurrence rate. In addition, the possibility of the hash collision
occurrence can be described by using the well-known birthday paradox that is introduced
as a counterintuitive observation [49]. Based on the birthday paradox, we formulate the
probability of success of the cyber-attack, which is denoted as p(n; φ). It indicates the
probability of a hash collision occurring when there are n CAN messages for one session.

p(n; φ) = 1− φ!
φn(φ− n)!

, (4)

where φ is the number of different hash values (i.e., KMACs) that can be generated within
one session and n is the maximum number of CAN messages that can be generated for a
given session. Note that the maximum number n of CAN messages transmitted for one
session is not only the same as the length of the SCH, but it is also the same as the number
of CAN messages to be manipulated by the adversary for one session. The number of hash
values, denoted as φ, varies as a function of the length of KMAC. The data field of the CAN
frame is usually composed of at least one byte of control data. In CANon, it is assumed
that the maximum length for KMAC is limited to 32 bits, which is half the length of the
data field. From the results of (4), Table 2 shows the probability of success of a cyber-attack
as a function of the length of KMAC.

Table 2. Probability of success of a cyber-attack as a function of the length of KMAC.

Length of KMAC
(φ, bit)

Number of CAN Messages
(n)

Collision Probability
(p(n; φ), %)

32

100 0.0001152511
200 0.0004633319

1000 0.0116292153
2000 0.0465320233
3000 0.1046840574

24

25 0.0017881242
50 0.0073013096
100 0.0295000054
200 0.1185433950

16
100 7.2785590519
200 26.2108503279

8
100 99.999999928
200 100

The results of Table 2 indicate that brute-force attacks hardly succeed when the length
of KMAC is over 24 bits. In particular, it is shown that when the number of CAN messages
is between 25 and 50, they provide very low success probabilities of 0.0017% and 0.0073%,
respectively, during one session. Moreover, if the number of CAN messages is below 200 at

Sensors 2022, 22, 2636 23 of 32

a KMAC length of 32 bits, it is difficult for an adversary to succeed. From the results of
Table 2, it is theoretically proven that CANon is capable of guaranteeing security against
brute-force attacks under certain conditions of a given KMAC length and a given number
of CAN messages. To validate the performance of CANon under the maximally acceptable
condition from Table 2, the condition (i.e., a 32-bit KMAC and 3000 messages) with a
collision probability of 0.104% is used in our experiment.

4.2. Analysis of Key Freshness

To detect cyber-attacks in the in-vehicle network, CANon uses two secret keys: An
OLAK and a session key. In the case of the OLAK, its freshness is guaranteed by the
randomness while a sending node selects it. In addition, it is valid only for the TTI of the
transmitted message. That is, the OLAK of CANon is valid with a minimum of 5, which is
the smallest TTI of the CAN message according to the CAN-DB.

In CANon, even when assuming that the first part of the current message to be
transmitted is constructed with the same value as that (e.g., the ID field and the control
field) of the previous message, the message is varied. This is because the data field is filled
with the control data and the algorithmic data by CANon. However, the values of the data
field in the individual messages generated from two OLAKs may be the same if a hash
collision of two different OLAKs occurs when the control data between two messages is
the same. To minimize these collision occurrences, CANon defines the duration time of
one session as the amount of time taken for a sending node to transmit messages with
different values. In other words, CANon intends to continue the low probability of hash
collision occurrences during one session by using the values of Table 2. Therefore, the same
bit-streams within a given session hardly exist as the same messages cannot be created
twice or more, with a 99.9% probability under our experimental conditions (i.e., a 32-bit
KMAC and 3000 messages).

In the case of the session key, the level of the key freshness may depend on the duration
time of the session. At the start of each session, the nodes belonging to the SCG receive a
newly assigned salt to generate a session key that contributes to preventing the exposure of
the key. Furthermore, the session key is not used directly to transmit the message. Even
if an adversary determines a certain pattern of the contents of the eavesdropping CAN
message, the obtained information is only valid to be exploited for the corresponding
session since it is useless in the new session. Nevertheless, to perform a cyber-attack based
on the obtained session key, the adversary needs more information. Moreover, CANon
regulates the start time of each session with a fixed duration time for every SCG. The
freshness of the session key is achieved for the session duration time.

5. Performance Evaluation

In this section, we evaluate the performance of CANon under the CAN environment,
which is constructed via a combination of (1) a testing software tool (i.e., CANoe) used by
automotive manufacturers and ECU suppliers, (2) real ECUs mounted in automobiles for
CAN, and (3) the message sets of the SAE benchmark [16,18]. We add the message of the
gateway to the message sets of the SAE benchmark, as shown in Table 3.

Table 3. Definition of a gateway’s message in the message set used.

Message ID (Hex) Message Size (bit) Period (ms) Deadline (ms) From To Description

0 Session 8 1000 0 Gateway All Session Change

5.1. Experimental Environment

We build an experimental in-vehicle network environment with a hardware ECU node
using Freescale S12XF board and software ECU nodes through the CANoe testing software.
The constructed environment is shown in Figure 6.

Sensors 2022, 22, 2636 24 of 32

Sensors 2022, 22, x FOR PEER REVIEW 24 of 33

with a 99.9% probability under our experimental conditions (i.e., a 32-bit KMAC and 3000
messages).

In the case of the session key, the level of the key freshness may depend on the dura-
tion time of the session. At the start of each session, the nodes belonging to the SCG receive
a newly assigned salt to generate a session key that contributes to preventing the exposure
of the key. Furthermore, the session key is not used directly to transmit the message. Even
if an adversary determines a certain pattern of the contents of the eavesdropping CAN
message, the obtained information is only valid to be exploited for the corresponding ses-
sion since it is useless in the new session. Nevertheless, to perform a cyber-attack based
on the obtained session key, the adversary needs more information. Moreover, CANon
regulates the start time of each session with a fixed duration time for every SCG. The
freshness of the session key is achieved for the session duration time.

5. Performance Evaluation
In this section, we evaluate the performance of CANon under the CAN environment,

which is constructed via a combination of (1) a testing software tool (i.e., CANoe) used by
automotive manufacturers and ECU suppliers, (2) real ECUs mounted in automobiles for
CAN, and (3) the message sets of the SAE benchmark [16,18]. We add the message of the
gateway to the message sets of the SAE benchmark, as shown in Table 3.

Table 3. Definition of a gateway’s message in the message set used.

Message ID (Hex) Message Size (bit) Period (ms) Deadline (ms) From To Description
0 Session 8 1000 0 Gateway All Session Change

5.1. Experimental Environment
We build an experimental in-vehicle network environment with a hardware ECU

node using Freescale S12XF board and software ECU nodes through the CANoe testing
software. The constructed environment is shown in Figure 6.

(a) (b)

Figure 6. An experimental environment: (a) A snapshot of hardware components connected to CA-
Noe; (b) a topology of the CAN network on CANoe.

The nodes of CANon use a hash function using a dynamic linking library (DLL), and
the functionality of CANon is implemented by the communication access programming
language (CAPL). In our experiment, the designated in-vehicle network consists of eight
CAN nodes: Seven nodes referring to the SAE benchmark and one gateway node. By us-

Figure 6. An experimental environment: (a) A snapshot of hardware components connected to
CANoe; (b) a topology of the CAN network on CANoe.

The nodes of CANon use a hash function using a dynamic linking library (DLL), and
the functionality of CANon is implemented by the communication access programming
language (CAPL). In our experiment, the designated in-vehicle network consists of eight
CAN nodes: Seven nodes referring to the SAE benchmark and one gateway node. By using
a Freescale S12XF board, one real CAN node is implemented as the transmission control.
Each of the seven virtual nodes of CANoe plays the roles of battery control, vehicle
controller (V/C), inverter/motor controller (I/M C), instrument panel display control,
driver inputs control, brakes control, and one gateway node, respectively. Every node of
the CAN network is capable of transmitting, as well as receiving, messages. Table 4 shows
the specification of the tools that constructed our experimental environment.

Table 4. Specification of hardware and software used in our experiment.

Tool Model Note

Microcontroller Freescale S12FX 40 MHz and 512 KB
Emulator USB S08/HCS12 BDM Multilink -
Compiler Code Warrior For Freescale MCU

Software CANoe v8.5
CAN Network simulator, CAPL,
run on a system with an i7-7700
(4.20 GHz) Intel CPU and 16 G RAM

Connector VN1630A Interface device

As mentioned above, the data field of the CAN frame is defined to deliver control data
with 8 bytes. To perform transmission of the message through CANon, we reconstruct the
data field with the control data of 3 bytes limited to the SAE benchmark, a nonce of 1 byte,
and a KMAC of 4 bytes.

5.2. Determination of Variables

It is important to determine the values of the variable set of τauth and τtrans denoted
in Equation (2) for CANon. Determining the individual values of this variable set has the
effect of determination of the session coexistence time η. τauth of this variable set is also
used to determine the session duration time for each SCG. The value of τtrans is the same as
that of δ of Equation (1). Moreover, in this subsection, we determine the hash function to
be used for generating and verifying KMACs and the maximum length of SHC per session.

Sensors 2022, 22, 2636 25 of 32

First, CANon should determine one element of the variable set, namely τauth, which
represents the maximum amount of time allowable to perform one-time origin authentica-
tion in real-time. τi

auth of the sending node i is given by:

τi
auth =

t
(nsnt + nrecv)

, (5)

where nsnt and nrecv are the numbers of sent and received messages, respectively, from
node i for unit time t. From Equation (5), τauth can be derived as

τauth= max
i
{τi

auth, 0}. (6)

To set the variable τauth, we investigate the total number of message transmissions that
should be completed during a given period, and for this, we utilize a certain node with the
maximum load in terms of message transmission. In our experimental environment based
on the SAE benchmark, the V/C node performs the most transmissions of CAN messages
over the CAN bus per unit time t. In detail, since the V/C node sends and receives 822 and
1684 CAN messages, respectively, for every 1 s, it takes at least 0.3974 ms for the V/C node
to complete its transmission. Therefore, τauth is set to 0.3974 ms in the worst-case scenario
since that of Equation (2) requires the completion of verifying KMAC.

Second, to determine the value of the second element of the variable set, namely
τtrans, we measure the jitter of the transmitted messages. The maximum jitter among
measurements can determine the expected transmission delay δ of Equation (1). In this
paper, in order to grasp the variable instinctively, the jitter is presented as the transmission
delay of the CAN messages even though the term jitter typically refers to the variation in the
transmission delay. Note that, in the CAN protocol, the transmission of the CAN message
with the highest priority (i.e., the lowest ID) is never affected by other transmissions.
Therefore, the jitter is measured for the CAN message with the highest priority presented
in the SAE benchmark. Figure 7 presents the measured jitter as a function of the number of
messages transmitted. As it is shown that the longest jitter representing the worst case is
5.41 ms, τtrans is set to the longest jitter, which indicates the maximum transmission delay
in Equation (2). From the experiment results, the session coexistence time η is set to 10 ms,
which is rounded off below the decimal point of the sum of the maximum of τtrans, τauth
(i.e., 0.3974 ms), and ε.

Sensors 2022, 22, x FOR PEER REVIEW 26 of 33

the transmission delay. Note that, in the CAN protocol, the transmission of the CAN mes-
sage with the highest priority (i.e., the lowest ID) is never affected by other transmissions.
Therefore, the jitter is measured for the CAN message with the highest priority presented
in the SAE benchmark. Figure 7 presents the measured jitter as a function of the number
of messages transmitted. As it is shown that the longest jitter representing the worst case
is 5.41 ms, 𝜏௧௥௔௡௦ is set to the longest jitter, which indicates the maximum transmission
delay in Equation (2). From the experiment results, the session coexistence time 𝜂 is set to
10 ms, which is rounded off below the decimal point of the sum of the maximum of 𝜏௧௥௔௡௦, 𝜏௔௨௧௛ (i.e., 0.3974 ms), and 𝜖.

Figure 7. Jitter of the lowest CAN message transmitted over the CAN bus.

Third, to determine the session duration time, we exploit both the number of mes-
sages that can be transmitted per session and the time allowable for authentication (𝜏௔௨௧௛).
In our environment, a size of 32 bits is assigned to KMAC. This is because, as shown in
Table 2, the collision probability approximately reaches the value of 0.105%, which is ac-
ceptable when the length of KMAC (𝜙) is 32 bits and the number of messages (𝑛) is 3000.
We set the session duration time to 1.2 s which is obtained by multiplying 𝜏௔௨௧௛ of the V/C
node by 𝑛 of 3000.

Fourth, we suggest a hash function suitable to generate OLAK and verify KMAC in
SCG. For the CAN protocol, CANon utilizes a simple algorithm. A hash function is typi-
cally classified into a cryptographic hash function and a non-cryptographic hash function.
In general, the cryptographic hash function is known as having higher security than a
non-cryptographic hash function. Meanwhile, the non-cryptographic hash function has
lower complexity in terms of computation than the cryptographic hash function, which
requires a great deal of processing time and system resources [48,50]. In order to deter-
mine the hash function used in CANon, considering our environment, we measure the
time taken to perform several hash functions to create OLAK and verify KMAC, among
various hash functions that are frequently used. We perform a comparison of SHA-256,
SHA-1, and the modified CRC [51,52]. The modified CRC is not a standard CRC-32 check-
sum and destroys the linearity as the modified CRC utilizes the IV changed for each mes-
sage [51,52]. In this paper, it is already assumed that the modified CRC is a secret that is
known only to the sender and receiver CAN nodes. Table 5 shows the mean time taken
for executing each hash function, including SAH-256, SHA-1, and the modified CRC32,

Figure 7. Jitter of the lowest CAN message transmitted over the CAN bus.

Sensors 2022, 22, 2636 26 of 32

Third, to determine the session duration time, we exploit both the number of messages
that can be transmitted per session and the time allowable for authentication (τauth). In our
environment, a size of 32 bits is assigned to KMAC. This is because, as shown in Table 2,
the collision probability approximately reaches the value of 0.105%, which is acceptable
when the length of KMAC (φ) is 32 bits and the number of messages (n) is 3000. We set the
session duration time to 1.2 s which is obtained by multiplying τauth of the V/C node by n
of 3000.

Fourth, we suggest a hash function suitable to generate OLAK and verify KMAC
in SCG. For the CAN protocol, CANon utilizes a simple algorithm. A hash function
is typically classified into a cryptographic hash function and a non-cryptographic hash
function. In general, the cryptographic hash function is known as having higher security
than a non-cryptographic hash function. Meanwhile, the non-cryptographic hash function
has lower complexity in terms of computation than the cryptographic hash function, which
requires a great deal of processing time and system resources [48,50]. In order to determine
the hash function used in CANon, considering our environment, we measure the time
taken to perform several hash functions to create OLAK and verify KMAC, among various
hash functions that are frequently used. We perform a comparison of SHA-256, SHA-1,
and the modified CRC [51,52]. The modified CRC is not a standard CRC-32 checksum and
destroys the linearity as the modified CRC utilizes the IV changed for each message [51,52].
In this paper, it is already assumed that the modified CRC is a secret that is known only to
the sender and receiver CAN nodes. Table 5 shows the mean time taken for executing each
hash function, including SAH-256, SHA-1, and the modified CRC32, which is denoted as
mCRC32, and is 1000 times in the real node. It indicated that SHA-256 and SHA-1 are not
suitable for CANon as performing the given tasks takes much more time than τauth (i.e.,
0.3974 ms). Hence, the modified CRC is used in our experiments due to the resource-limited
CAN node. For practicability, considering that the virtual nodes of CANoe execute the
modified CRC32 much faster than the real node does, we assign the specific amount of
time as a delay to virtual nodes for every calculation. This leads to the synchronization of
the execution time between real and virtual nodes.

Table 5. Mean time taken to perform hash functions one time in Freescale S12XF.

Function Processing Time (ms)

SHA-256 5.3410
SHA-1 3.3328

mCRC32 0.0177

Lastly, we need to examine the maximum value, denoted as εmax, of nUik , in order
to define the range for nUik (i.e., nUik = [x

∣∣ 1 ≤ x ≤ εmax]). The amount of time required
for authentication should be highly affected by the number of iterations of performing the
hash function, except for the amount of time taken to generate a new session key. We have
already determined that the time taken for authentication for each CAN node should not
exceed τauth of 0.3974 ms. Hence, the maximum number (i.e., εmax) of iterations is bound to
the given τauth. Figure 8 presents the mean time taken to authenticate each CAN message
and the mean time taken to generate a new session key for each session as a column chart.
They are measured for 10,000 trials in the real node with an increase in the number of
iterations of performing hash functions. From Figure 8, it is seen that the time taken to
generate a session key is less than the time taken to authenticate the message because it
additionally requires the time to generate and verify KMAC. When the number of iterations
reaches six, we find that the mean time for performing authentication is 0.362547 ms, which
does not exceed the value of τauth. Hence, in CANon, εmax is set to six.

Sensors 2022, 22, 2636 27 of 32

Sensors 2022, 22, x FOR PEER REVIEW 27 of 33

which is denoted as mCRC32, and is 1000 times in the real node. It indicated that SHA-
256 and SHA-1 are not suitable for CANon as performing the given tasks takes much more
time than 𝜏௔௨௧௛ (i.e., 0.3974 ms). Hence, the modified CRC is used in our experiments due
to the resource-limited CAN node. For practicability, considering that the virtual nodes of
CANoe execute the modified CRC32 much faster than the real node does, we assign the
specific amount of time as a delay to virtual nodes for every calculation. This leads to the
synchronization of the execution time between real and virtual nodes.

Table 5. Mean time taken to perform hash functions one time in Freescale S12XF.

Function Processing Time (ms)
SHA-256 5.3410
SHA-1 3.3328

mCRC32 0.0177

Lastly, we need to examine the maximum value, denoted as 𝜀௠௔௫, of 𝑛𝑈௜ೖ, in order to
define the range for 𝑛𝑈௜ೖ (i.e., 𝑛𝑈௜ೖ = [𝑥| 1 ≤ 𝑥 ≤ 𝜀௠௔௫]). The amount of time required for
authentication should be highly affected by the number of iterations of performing the
hash function, except for the amount of time taken to generate a new session key. We have
already determined that the time taken for authentication for each CAN node should not
exceed 𝜏௔௨௧௛ of 0.3974 ms. Hence, the maximum number (i.e., 𝜀௠௔௫) of iterations is bound
to the given 𝜏௔௨௧௛. Figure 8 presents the mean time taken to authenticate each CAN mes-
sage and the mean time taken to generate a new session key for each session as a column
chart. They are measured for 10,000 trials in the real node with an increase in the number
of iterations of performing hash functions. From Figure 8, it is seen that the time taken to
generate a session key is less than the time taken to authenticate the message because it
additionally requires the time to generate and verify KMAC. When the number of itera-
tions reaches six, we find that the mean time for performing authentication is 0.362547 ms,
which does not exceed the value of 𝜏௔௨௧௛. Hence, in CANon, 𝜀௠௔௫ is set to six.

Figure 8. Time taken to verify the CAN message and update a gateway-initiated session as a func-
tion of iterations of a given hash function.

Figure 8. Time taken to verify the CAN message and update a gateway-initiated session as a function
of iterations of a given hash function.

5.3. Experimental Results

In this subsection, we evaluate the performance of CANon in terms of the detection
rate against brute-force attacks and delayed-replay attacks. All of the results are presented
with an increase in the load rate of the CAN bus, which is related to the number of injected
cyber-attacks (i.e., a cyber-attack rate). To inject cyber-attacks into the CAN bus, there is one
virtual node acting as an adversary that is added to our experiment environment. From
several experimental results, it is known that if the load rate of the CAN bus exceeds 70%,
most of the transmitted messages are lost and CAN falls into a bus-off state by the generated
error frames [14,18,46,47]. Therefore, in our experiment, the sum of the transmission rates
of the adversary and the legitimated CAN nodes are not able to exceed 70% of the CAN
bus load.

5.3.1. CANon’s Defensibility

The adversary aims to compromise the control of the targeted vehicle, rather than stop
its operation, so it injects manipulation under three scenarios: Only brute-force attacks
occur, only delayed-replay attacks occur, and both attacks coexist. For all cyber-attacks, the
TTI of the manipulated messages ranges from 5 to 10 ms.

In our experiment, a brute-force attack is conducted by the adversary node that sends
its manipulated CAN message with a data field of arbitrary generated values among IDs
less than the value of 6. After all the messages that violate the regular transmission schedule
are first detected and then eliminated in the TTI-AD phase, the remaining CAN messages
enter the SHC-AD phase. Table 6 shows the performance of detection against brute-force
attacks as a function of the bus load rate. All values are rounded to the first decimal place
as shown in Table 6. It is shown that when the bus load rate is 58.7%, the brute-force attack
comprises 3.87% (i.e., 8554) of the total number of messages transmitted over the CAN
bus. As the bus load rate increases, the detection rate against cyber-attacks increases in
the first TTI-AD phase. This is because the adversary transmits its message regardless of
regular transmission schedules of the legitimate messages. When the bus load rate reaches
a lower value, it is likely that the adversary enables the brute-force attacks to be injected at
roughly the same TTI as the regular TTI or with little collision delay. Therefore, at a lower
bus load rate, many more cyber-attacks are detected in the second SHC-AD using KMAC
and OLAK. Furthermore, from the results of Table 6, it is seen that CANon does not allow

Sensors 2022, 22, 2636 28 of 32

false-positive detection of cyber-attacks. Hence, these results demonstrate that CANon is
robust against brute-force attacks.

Table 6. Detection performance against brute-force attacks as a function of the bus load rate.

Bus load rate 58.7% 61% 63.3% 65.7%

Total number of CAN messages
including brute-force attacks 221,193 230,426 238,686 247,682

Attack rate 1 3.9% 7.5% 10.8% 13.9%

Detection rate in TTI-AD 1 38.8% 45.0% 60.0% 70.3%
Detection rate in SHC-AD 1 61.2% 55.0% 40.0% 29.7%

False positive rate 0% 0% 0% 0%
1 Rounded to the first decimal place.

Second, the adversary conducts the delayed-replay attack by capturing the data field
of the message transmitted by a normal node. After a specific time interval, the adversary
node sends its own message with the same contents of that data field. Although the TTI is
randomly selected for every attack injection, Table 7 presents the performance of detection
against delayed-replay attacks as a function of the bus load rate. In contrast to brute-force
attacks, delayed-replay attacks cannot be frequently injected into the CAN bus. This is
because such attacks can only be carried out by capturing the legitimate messages sent
in the given TTI. In this regard, when the bus load rate is low, the number of injected
cyber-attacks is very small. As mentioned above, the adversary randomly chooses its
TTI for each transmission in the specific range of 5 ms to 10 ms. Given the TTI of this
cyber-attack is 5 ms, it tends to fall within the expected transmission delay δ of 5.41 ms
configurated in CANon. This makes it difficult to detect this type of cyber-attack based on
the interval in the first TTI-AD phase. These results can be seen at higher bus load rates
(≥61.1%) in Table 7. In the case of the lowest bus load rate in Table 7, it is seen that all
cyber-attacks are detected in the first phase because they significantly deviate from the
specified transmission delay.

Table 7. Detection performance against delayed-replay attacks as a function of the bus load rate.

Bus load rate 56.32% 61.1% 63.1% 65.56%

Total number of CAN messages
including delayed-replay attacks 212,172 230,214 236,282 245,240

Attack rate 1 0.1% 7.9% 10.4% 13.6%

Detection rate in TTI-AD 1 100% 1.0% 8.4% 30.8%
Detection rate in SHC-AD 1 0% 99.0% 91.6% 69.2%

False positive rate 0% 0% 0% 0%
1 Rounded to the first decimal place.

Lastly, the adversary aims to conduct a series of brute-force and delayed-replay attacks.
This experiment is conducted in a real environment where both cyber-attacks exist. The
configuration for each attack is the same as those of the first and second cyber-attacks
described above, respectively. The results shown in Table 8 evidence the fact that the
brute-force attacks injected at a random TTI are identified effectively in the TTI-AD phase,
while the delayed-replay attacks injected with legitimate contents are accurately identified
in the SCH-AD phase using the OLAK and KMAC-based detection method.

In the case of the brute-force attack, our finding is that the second phase (i.e., SHC-AD)
has better detection performance than that of the first phase (i.e., TTI-AD) under lower
bus loads. As the bus load increases, the performance during the first phase is gradually
improved. In contrast to CANon’s defensibility against brute-force attacks, in the case of
delayed-replay attacks, it is found that the performance of the second phase is significantly
better than that of the first phase when the bus load is increased. From these results,

Sensors 2022, 22, 2636 29 of 32

it is assumed that during the first phase, CANon is robust against brute-force attacks,
and during the second phase, it is robust against delayed-replay attacks. Therefore, the
results shown in Table 8 support our above assumptions. In a real environment where both
cyber-attacks exist at the same time, CANon shows good performance, as shown in Table 8,
in which the first and second phases can be used complementarily to each other under a
higher bus load.

Table 8. Detection performance against cyber-attacks as a function of the bus load rate.

Bus load rate 66.93%

Total number of CAN messages
including cyber-attacks 252,974

Attack type Brute-force attacks Delayed-replay attacks

Attack rate 1 6.78% 8.97%

Detection rate in TTI-AD 1 68.70% 20.03%

Detection rate in SHC-AD 1 31.30% 79.97%

False positive rate 0% 0%
1 Rounded to the first decimal place.

5.3.2. Comparison of Theoretical Analysis and Experimental Performance

To make general conclusions, we compare the results of theoretical analysis with our
experiments as a function of the length of KMAC. Figure 9 presents the comparison of the
results between the theoretical analysis and the experiment when the bus load rate is given
as 63.76%. In Figure 9, two theoretical results include the cyber-attack success probability
related to the length of KMAC in Equation (3) and that related to the length of KMAC and
the hash collision occurrence when the number of the messages is 200, given in Table 2.
They are shown with the cyber-attack success rate of CANon under a series of brute-force
and delayed-replay attacks.

Sensors 2022, 22, x FOR PEER REVIEW 30 of 33

5.3.2. Comparison of Theoretical Analysis and Experimental Performance
To make general conclusions, we compare the results of theoretical analysis with our

experiments as a function of the length of KMAC. Figure 9 presents the comparison of the
results between the theoretical analysis and the experiment when the bus load rate is
given as 63.76%. In Figure 9, two theoretical results include the cyber-attack success prob-
ability related to the length of KMAC in Equation (3) and that related to the length of
KMAC and the hash collision occurrence when the number of the messages is 200, given
in Table 2. They are shown with the cyber-attack success rate of CANon under a series of
brute-force and delayed-replay attacks.

As shown in Figure 9, the result of Equation (3) marked in light gray decreases as a
function of the length of KMAC, and the result of Equation (4) marked in dark gray also
tends to a decrease, as shown in Table 2. The result of CANon outperforms the theoretical
results, regardless of the length of KMAC, since CANon is capable of identifying suspi-
cious messages as cyber-attacks during the first phase of two phases. It is shown that in
the case of the shortest-length KMAC of 8 bits, the experimental result of CANon is similar
to the result of Equation (3) in the theoretical analysis. This indicates that the probability
of hash collision occurrence is too relatively high under the condition that a pool of gen-
erated KMACs is very small due to the short length of KMAC. Nevertheless, note that the
value of the cyber-attack success rate against CANon is only 0.0447%. The comparison
result demonstrates that CANon based on two phases provides robustness and enhanced
security for CAN against brute-force and replay attacks even with the 16-bit KMAC.

Figure 9. Comparison of the cyber-attack success rate between the theoretical analysis and the ex-
periment as a function of the size of KMAC.

6. Conclusions
To conduct lightweight and fast detection against cyber-attacks, this paper proposed

CANon, which provides a realistic and practical solution for the existing CAN platform
without modification. To ensure its efficiency, CANon designs a combined approach of
centralized session management and distributed group authentication. In centralized ses-
sion management, a gateway node is responsible for managing designated groups and
every session of each group. Group authentication is distributed to all CAN nodes except
for the gateway node. For the sake of low design complexity, according to the nature of

Figure 9. Comparison of the cyber-attack success rate between the theoretical analysis and the
experiment as a function of the size of KMAC.

As shown in Figure 9, the result of Equation (3) marked in light gray decreases as a
function of the length of KMAC, and the result of Equation (4) marked in dark gray also

Sensors 2022, 22, 2636 30 of 32

tends to a decrease, as shown in Table 2. The result of CANon outperforms the theoretical
results, regardless of the length of KMAC, since CANon is capable of identifying suspicious
messages as cyber-attacks during the first phase of two phases. It is shown that in the
case of the shortest-length KMAC of 8 bits, the experimental result of CANon is similar to
the result of Equation (3) in the theoretical analysis. This indicates that the probability of
hash collision occurrence is too relatively high under the condition that a pool of generated
KMACs is very small due to the short length of KMAC. Nevertheless, note that the value
of the cyber-attack success rate against CANon is only 0.0447%. The comparison result
demonstrates that CANon based on two phases provides robustness and enhanced security
for CAN against brute-force and replay attacks even with the 16-bit KMAC.

6. Conclusions

To conduct lightweight and fast detection against cyber-attacks, this paper proposed
CANon, which provides a realistic and practical solution for the existing CAN platform
without modification. To ensure its efficiency, CANon designs a combined approach of
centralized session management and distributed group authentication. In centralized
session management, a gateway node is responsible for managing designated groups and
every session of each group. Group authentication is distributed to all CAN nodes except
for the gateway node. For the sake of low design complexity, according to the nature of the
CAN protocol, some CAN nodes are grouped around a sender node and independently
participate in authenticating an origin node of its group.

To reduce key exposure occurrences derived from key re-distribution, CANon does not
distribute or share any secret key over the CAN bus. Instead of key distribution, CANon is
designed using a sequential hash chain only valid to a particular session and a one-time
local authentication key only valid to individual transmission during the given session.
To improve security, authentication keys are randomly selected, and CANon randomly
assigns the new state of being to the sequential hash chain at the start of a given session for
each group.

To evaluate the performance of CANon, we conducted both a theoretical security
analysis and an experimental analysis. First, in the theoretical analysis, we examined the
robustness of CANon against cyber-attacks in terms of hash collision probabilities as the
length of the hashed key is varied. Second, in the case of the experimental analysis, an
experimental environment was constructed with real CAN nodes of Freescale S12XF ECUs
and virtual CAN nodes of CANoe. We evaluated the performance of CANon in terms of
its defense performance against cyber-attacks and the practicality of real-time processing.
It can be seen that the detection rate of CANon against brute-force and replay attacks
reaches 100% when the length of KMAC is over 16 bits. These results demonstrate that
CANon can provide high security even in CAN messages where the length of the data field
is only 64 bits.

The experimental results demonstrate that even resource-limited CAN nodes are
sufficient in detecting cyber-attacks by performing origin authentication within a given
limited time while providing a high level of security for transmitted messages.

Author Contributions: Conceptualization, Y.B. and S.S.; methodology, Y.B.; software, Y.B. and S.S.;
validation, Y.B. and S.S.; formal analysis, Y.B.; investigation, Y.B.; resources, Y.B.; data curation, Y.B.;
writing—original draft preparation, Y.B. and S.S.; writing—review and editing, Y.B.; visualization,
Y.B. and S.S.; supervision, Y.B.; project administration, Y.B.; funding acquisition, Y.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2021R1F1A1048179) and the Changshin University
Research Fund of Changshin-2021-017.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2022, 22, 2636 31 of 32

References
1. Langner, R. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Secur. Priv. 2011, 9, 49–51. [CrossRef]
2. BlueLink. Available online: http://bluelink.hyundai.com/main/index.html (accessed on 9 December 2018).
3. Mercedes Me Connect. Available online: https://www.mercedes-benz.com/en/mercedes-me/connectivity/ (accessed on

9 December 2018).
4. BMW Connected Drive. Available online: https://www.bmw-connecteddrive.co.uk/app/index.html (accessed on 9 December 2018).
5. Silva, J.F.M.C.; Santos, D.M.S.; Marques, V.C.; Oliveira, K.D.; Rodrigues, T.O.; Texeira, R.G.F.; Menezes, J.W.M.; Silva, F.D. A Study

of Bluetooth Application for Remote Controlling of Mobile Embedded Systems. In Proceedings of the 2012 Brazilian Symposium
on Computing System Engineering, Natal, Brazil, 5–7 November 2012; p. 116.

6. Qi, Z.; Dong, P.; Ma, K.; Sargeant, N. A design of in-car multi-layer communication network with Bluetooth and CAN bus.
In Proceedings of the 2016 IEEE 14th International Workshop on Advanced Motion Control (AMC), Auckland, New Zealand,
22–24 April 2016; pp. 323–326.

7. Dudu, T.S.; Yadav, S.G.; Kumar, M.A.; Rani, N.C. In-Vehicle Automotive Network Gateway Electronic Control Unit for Low Price
Vehicle. SASTech-Tech. J. RUAS 2009, 8, 79–86.

8. Lokman, S.F.; Othman, A.T.; Abu-Bakar, M.H. Intrusion detection system for automotive Controller Area Network (CAN) bus
system: A review. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 184. [CrossRef]

9. Security Affairs. Available online: https://securityaffairs.co/wordpress/58402/breaking-news/hyundai-blue-link-flaws.html
(accessed on 28 December 2021).

10. The Jeep Hackers Are Back to Prove Car Hacking Can Get Much Worse. Available online: https://www.wired.com/2016/08/
jeep-hackers-return-high-speed-steering-acceleration-hacks/#:~{}:text=3%3A30%20PM-,The%20Jeep%20Hackers%20Are%20
Back%20to%20Prove%20Car%20Hacking%20Can,still%20be%2D%2D%2Dmuch%20worse.&text=They%20could%20even%20
disable%20the%20car\T1\textquoterights%20brakes%20at%20low%20speeds (accessed on 28 December 2021).

11. Lynch, K.; Marchuk, N.; Elwin, M. Controller Area Network. In Embedded Computing and Mechatronics with the PIC32 Microcontroller;
Newnes: Oxford, UK; Boston, MA, USA, 2015.

12. Farsi, M.; Ratcliff, K.; Barbosa, M. An overview of controller area network. Comput. Control. Eng. J. 1999, 10, 113–120. [CrossRef]
13. Need a Simple, Practical Intro to CAN Bus? Available online: https://www.csselectronics.com/pages/can-bus-simple-intro-

tutorial (accessed on 28 December 2021).
14. Talbot, S.C.; Ren, S. Comparison of fieldbus systems can, ttcan, flexray and lin in passenger vehicles. In Proceedings of the 2009

29th IEEE International Conference on Distributed Computing Systems Workshops, Monteral, QC, Canada, 22–26 June 2009;
pp. 26–31.

15. SAE. SAE Technical Report J2056/1: Class C Application Requirement Considerations; Technical Report in SAE handbook; Society of
Automotive Engineers: Pittsburgh, PA, USA, 2000.

16. Tindell, K.; Burns, A. Guaranteed Message Latencies for Distributed Safety-Critical Hard Real-Time Control Networks; Department of
Computer Science, University of York: York, UK, 1994; Volume 229, p. 8523751.

17. Kopetz, H. A Solution to An Automotive Control System Benchmark; Research Report 4/1994; Institut für Technische Informatik,
Technische Universität Wein: Vienna, Austria, 1994.

18. Tindell, K.; Burns, A.; Wellings, A.J. Calculating controller area network (CAN) message response times. Control Eng. Pract. 1995,
3, 1163–1169. [CrossRef]

19. Checkoway, S.; McCoy, D.; Kantor, B.; Anderson, D.; Shacham, H.; Savage, S.; Koscher, K.; Czeskis, A.; Roesner, F.; Kohno, T.
Comprehensive experimental analyses of automotive attack surfaces. In Proceedings of the 20th USENIX Security Symposium
(USENIX Security 11), San Francisco, CA, USA, 8–12 August 2011; pp. 6–22.

20. Charlie, M.; Chris, V. CAN Message Injection: OG Dynamite Edition. Illmatics. 2016. Available online: https://illmatics.com/
can%20message%20injection.pdf (accessed on 28 December 2021).

21. Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805. [CrossRef]
22. Stumpf, F.; Meves, C.; Weyl, B.; Wolf, M. A security architecture for multipurpose ECUs in vehicles. In Proceedings of the 25th

Joint VDI/VW Automotive Security Conference, Ingolstadt, Germany, October 2009; Available online: https://www.evita-project.
org/Publications/SMWW09.pdf (accessed on 28 December 2021).

23. Mundhenk, P.; Paverd, A.; Mrowca, A.; Steinhorst, S.; Lukasiewycz, M.; Fahmy, S.A.; Chakraborty, S. Security in automotive
networks: Lightweight authentication and authorization. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 2017, 22, 1–27.
[CrossRef]

24. Salem, N.B.; Hubaux, J.P. Securing wireless mesh networks. IEEE Wirel. Commun. 2006, 13, 50–55. [CrossRef]
25. Tsudik, G. Message authentication with one-way hash functions. ACM SIGCOMM Comput. Commun. Rev. 1992, 22, 29–38.

[CrossRef]
26. Groza, B.; Murvay, P.S. Security solutions for the controller area network: Bringing authentication to in-vehicle networks. IEEE

Veh. Technol. Mag. 2018, 13, 40–47. [CrossRef]
27. Woo, S.; Jo, H.J.; Lee, D.H. A practical wireless attack on the connected car and security protocol for in-vehicle CAN. IEEE Trans.

Intell. Transp. Syst. 2014, 16, 993–1006. [CrossRef]
28. Kumari, S.; Khan, M.K.; Li, X. An improved remote user authentication scheme with key agreement. Comput. Electr. Eng. 2014, 40,

1997–2012. [CrossRef]

http://doi.org/10.1109/MSP.2011.67
http://bluelink.hyundai.com/main/index.html
https://www.mercedes-benz.com/en/mercedes-me/connectivity/
https://www.bmw-connecteddrive.co.uk/app/index.html
http://doi.org/10.1186/s13638-019-1484-3
https://securityaffairs.co/wordpress/58402/breaking-news/hyundai-blue-link-flaws.html
https://www.wired.com/2016/08/jeep-hackers-return-high-speed-steering-acceleration-hacks/#:~{}:text=3%3A30%20PM-,The%20Jeep%20Hackers%20Are%20Back%20to%20Prove%20Car%20Hacking%20Can,still%20be%2D%2D%2Dmuch%20worse.&text=They%20could%20even%20disable%20the%20car\T1\textquoteright s%20brakes%20at%20low%20speeds
https://www.wired.com/2016/08/jeep-hackers-return-high-speed-steering-acceleration-hacks/#:~{}:text=3%3A30%20PM-,The%20Jeep%20Hackers%20Are%20Back%20to%20Prove%20Car%20Hacking%20Can,still%20be%2D%2D%2Dmuch%20worse.&text=They%20could%20even%20disable%20the%20car\T1\textquoteright s%20brakes%20at%20low%20speeds
https://www.wired.com/2016/08/jeep-hackers-return-high-speed-steering-acceleration-hacks/#:~{}:text=3%3A30%20PM-,The%20Jeep%20Hackers%20Are%20Back%20to%20Prove%20Car%20Hacking%20Can,still%20be%2D%2D%2Dmuch%20worse.&text=They%20could%20even%20disable%20the%20car\T1\textquoteright s%20brakes%20at%20low%20speeds
https://www.wired.com/2016/08/jeep-hackers-return-high-speed-steering-acceleration-hacks/#:~{}:text=3%3A30%20PM-,The%20Jeep%20Hackers%20Are%20Back%20to%20Prove%20Car%20Hacking%20Can,still%20be%2D%2D%2Dmuch%20worse.&text=They%20could%20even%20disable%20the%20car\T1\textquoteright s%20brakes%20at%20low%20speeds
http://doi.org/10.1049/cce:19990304
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
http://doi.org/10.1016/0967-0661(95)00112-8
https://illmatics.com/can%20message%20injection.pdf
https://illmatics.com/can%20message%20injection.pdf
http://doi.org/10.1016/j.comnet.2010.05.010
https://www.evita-project.org/Publications/SMWW09.pdf
https://www.evita-project.org/Publications/SMWW09.pdf
http://doi.org/10.1145/2960407
http://doi.org/10.1109/MWC.2006.1632480
http://doi.org/10.1145/141809.141812
http://doi.org/10.1109/MVT.2017.2736344
http://doi.org/10.1109/TITS.2014.2351612
http://doi.org/10.1016/j.compeleceng.2014.05.007

Sensors 2022, 22, 2636 32 of 32

29. Dubrova, E.; Näslund, M.; Selander, G.; Lindqvist, F. Message authentication based on cryptographically secure CRC without
polynomial irreducibility test. Cryptogr. Commun. 2018, 10, 383–399. [CrossRef]

30. Krovetz, T.; Black, J.; Halevi, S.; Hevia, A.; Krawczyk, H.; Rogaway, P. UMAC: Message Authentication Code Using Universal Hashing;
RFC 4418; The Internet Society: Reston, VA, USA, 2006. [CrossRef]

31. Mikami, S.; Watanabe, D.; Li, Y.; Sakiyama, K. Fully integrated passive UHF RFID tag for hash-based mutual authentication
protocol. Sci. World J. 2015, 2015, 498610. [CrossRef] [PubMed]

32. Krawczyk, H. The order of encryption and authentication for protecting communications (or: How secure is SSL?). In Proceedings
of the Annual International Cryptology Conference, Santa Barbara, CA, USA, 19–23 August 2001; Springer: Berlin/Heidelberg,
Germany, 2001; pp. 310–331.

33. Shamir, A. How to share a secret. Commun. ACM 1979, 22, 612–613. [CrossRef]
34. Harn, L.; Lin, C. Strong (n, t, n) verifiable secret sharing scheme. Inf. Sci. 2010, 180, 3059–3064. [CrossRef]
35. Li, Q.; Cao, G. Multicast authentication in the smart grid with one-time signature. IEEE Trans. Smart Grid 2011, 2, 686–696.

[CrossRef]
36. Kang, K.D.; Baek, Y.; Lee, S.; Son, S.H. An attack-resilient source authentication protocol in controller area network. In Proceedings

of the 2017 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Beijing, China,
18–19 May 2017; pp. 109–118.

37. Wardoyo, R.; Setyaningsih, E.; Sari, A.K. Symmetric key distribution model using rsa-crt method. In Proceedings of the 2018
Third International Conference on Informatics and Computing (ICIC), Wuhan, China, 17–18 October 2018; pp. 1–9.

38. Yashaswini, J. Key Distribution for Symmetric Key Cryptography: A Review. Int. J. Innov. Res. Comput. Commun. Eng. 2015, 2015,
2320–9801.

39. Perrig, A.; Canetti, R.; Tygar, J.D.; Song, D. Efficient authentication and signing of multicast streams over lossy channels.
In Proceedings of the 2000 IEEE symposium on security and privacy (S&P 2000), Berkeley, CA, USA, 14–17 May 2000; pp. 56–73.

40. Groza, B.; Murvay, S.; Herrewege, A.V.; Verbauwhede, I. LiBrA-CAN: A lightweight broadcast authentication protocol for
controller area networks. In Proceedings of the International Conference on Cryptology and Network Security 2012 (CANS 2012),
Darmstadt, Germany, 12–14 December 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 185–200.

41. Szilagyi, C.; Koopman, P. Low-cost multicast authentication via validity voting in time-triggered embedded control networks.
In Proceedings of the 5th Workshop on Embedded Systems Security 2010 (WESS 2010), Scottsdale, AZ, USA, 24 October 2010;
pp. 1–10.

42. Hammi, M.T.; Livolant, E.; Bellot, P.; Serhrouchni, A.; Minet, P. A lightweight mutual authentication protocol for the IoT. In
Proceedings of the International Conference on Mobile and Wireless Technology 2017 (ICMWT 2017), Kuala Lumpur, Malaysia,
26–29 June 2017; Springer: Singapore, 2017; pp. 3–12.

43. Hsieh, W.B.; Leu, J.S. Design of a time and location based One-Time Password authentication scheme. In Proceedings of the 2011
7th international wireless communications and mobile computing conference 2011, Istanbul, Turkey, 5–8 July 2011; pp. 201–206.

44. Avdonin, I.; Budko, M.; Budko, M.; Grozov, V.; Guirik, A. A method of creating perfectly secure data transmission channel
between unmanned aerial vehicle and ground control station based on one-time pads. In Proceedings of the 2017 9th International
Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT 2017), Munich, Germany,
6–8 November 2017; pp. 410–413.

45. Zhu, X.; Zhang, H.; Cao, D.; Fang, Z. Robust control of integrated motor-transmission powertrain system over controller area
network for automotive applications. Mech. Syst. Signal Process. 2015, 58, 15–28. [CrossRef]

46. SAE J1939 Bandwidth, Busload and Message Frame Frequency. Available online: https://copperhilltech.com/blog/sae-j1939-
bandwidth-busload-and-message-frame-frequency/ (accessed on 28 December 2021).

47. Olsson, H. Vehicle Data Acquisition Using Can. OptimumG, Technical Report. 2012. Available online: https://students.
optimumg.com/wp-content/uploads/2017/04/vehicledatacan.pdf (accessed on 28 December 2021).

48. Rogaway, P.; Shrimpton, T. Cryptographic hash-function basics: Definitions, implications, and separations for preimage resistance,
second-preimage resistance, and collision resistance. In Proceedings of the International workshop on fast software encryption
2004 (FSE 2004), Delhi, India, 5–7 February 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 371–388.

49. Flajolet, P.; Gardy, D.; Thimonier, L. Birthday paradox, coupon collectors, caching algorithms and self-organizing search. Discret.
Appl. Math. 1992, 39, 207–229. [CrossRef]

50. Koromilas, L.; Vasiliadis, G.; Athanasopoulos, E.; Ioannidis, S. GRIM: Leveraging GPUs for kernel integrity monitoring. In Pro-
ceedings of the International Symposium on Research in Attacks, Intrusions, and Defenses 2016 (RAID 2016), Telecom SudParis,
Evry, France, 19–21 September 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 3–23.

51. Eckhoff, D.; Limmer, T.; Dressler, F. Hash tables for efficient flow monitoring: Vulnerabilities and countermeasures. In Proceedings of
the IEEE 34th Conference on Local Computer Networks 2009 (LCN 2009), Zurich, Switzerland, 20–23 October 2009; pp. 1087–1094.

52. Qian, Y.; Ye, F.; Chen, H.H. Security in 5G Wireless Networks. In Security in Wireless Communication Networks; Wiley: Hoboken, NJ, USA,
2021; pp. 281–310.

http://doi.org/10.1007/s12095-017-0227-8
http://doi.org/10.17487/rfc4418
http://doi.org/10.1155/2015/498610
http://www.ncbi.nlm.nih.gov/pubmed/26491714
http://doi.org/10.1145/359168.359176
http://doi.org/10.1016/j.ins.2010.04.016
http://doi.org/10.1109/TSG.2011.2138172
http://doi.org/10.1016/j.ymssp.2014.11.011
https://copperhilltech.com/blog/sae-j1939-bandwidth-busload-and-message-frame-frequency/
https://copperhilltech.com/blog/sae-j1939-bandwidth-busload-and-message-frame-frequency/
https://students.optimumg.com/wp-content/uploads/2017/04/vehicledatacan.pdf
https://students.optimumg.com/wp-content/uploads/2017/04/vehicledatacan.pdf
http://doi.org/10.1016/0166-218X(92)90177-C

	Introduction
	Background and Challenges
	Key Characteristics and Limitations of Controller Area Network
	Assumptions and Considerations of Efficient Cyber-Attack Detection
	Conventional Cyber-Attack Detection Methods for Controller Area Network
	Threat Model

	Cyber-Attack Detection Based on Origin Authentication for Controller Area Network
	Overview of CAN with Origin Authentication and Non-Repudiation for Cyber-Attack Detection
	Group Organization and Identification
	A CANon Platform
	Transmission Time Interval-Based Cyber-Attack Detection
	Sequential Hash Chain-Based Cyber-Attack Detection
	Enclosed-Key Distribution and Management for Session Management

	CANon Operation
	Sender Operation
	Receiver Operation
	Gateway Operation

	Security Analysis
	Probability of Success of Cyber-Attack
	Analysis of Key Freshness

	Performance Evaluation
	Experimental Environment
	Determination of Variables
	Experimental Results
	CANon’s Defensibility
	Comparison of Theoretical Analysis and Experimental Performance

	Conclusions
	References

