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Abstract: The dynamic vision sensor (DVS) measures asynchronously change of brightness per pixel,
then outputs an asynchronous and discrete stream of spatiotemporal event information that encodes
the time, location, and sign of brightness changes. The dynamic vision sensor has outstanding
properties compared to sensors of traditional cameras, with very high dynamic range, high tem-
poral resolution, low power consumption, and does not suffer from motion blur. Hence, dynamic
vision sensors have considerable potential for computer vision in scenarios that are challenging
for traditional cameras. However, the spatiotemporal event stream has low visualization and is
incompatible with existing image processing algorithms. In order to solve this problem, this paper
proposes a new adaptive slicing method for the spatiotemporal event stream. The resulting slices of
the spatiotemporal event stream contain complete object information, with no motion blur. The slices
can be processed either with event-based algorithms or by constructing slices into virtual frames and
processing them with traditional image processing algorithms. We tested our slicing method using
public as well as our own data sets. The difference between the object information entropy of the
slice and the ideal object information entropy is less than 1%.

Keywords: dynamic vision sensor; spatiotemporal event stream; adaptive slicing

1. Introduction

Currently, the mainstream imaging devices are CCD and CMOS image sensors, which
output relatively intuitive and eye-pleasing images at a fixed frame rate. However, the
frame-based sensor captures a series of frames that have information about the entire scene
in the field of view. Therefore, there is a lot of redundant background information in each
frame when we apply a camera to object tracking. Moreover, due to the limitation of frame
rate, the motion information of high-speed moving objects will be lost between frames.
In order to meet the needs of computer vision in challenging scenarios for frame-based
cameras, people invented dynamic vision sensors [1–4]. As a result of their unique pixel
structure, these sensors only respond where the light intensity changes, and have the ad-
vantages of high dynamic range, low data volume, and low power consumption [5]. Hence,
dynamic vision sensors have been gradually applied to object tracking [6–8], surveillance
and monitoring [9–13], star tracking [14], etc.

1.1. Dynamic Vision Sensor

The dynamic vision sensor is inspired by the biological retina, and its structural
composition is shown in Figure 1 [15]. A pixel of the dynamic vision sensor consists of a fast
logarithmic photoreceptor, a differencing circuit, and two comparators. The fast logarithmic
photoreceptor circuit is similar to the cone cells in the retina for photoelectric conversion.
The differential circuit, like bipolar cells in the retina, is used to obtain changes in light
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intensity. The comparison circuit is similar to the retina’s ganglion cells for outputting
the light intensity change sign. When the light intensity is enhanced, it outputs an ON
signal; otherwise, it outputs an OFF signal. As a result of its unique pixel structure, its
working principle is similar to the human channel attention mechanism, as the dynamic
vision sensor only responds to places where the light intensity changes in the scene, hence
there is no data redundancy. The output ON/OFF signal is called event ei = e(xi, yi, ti, pi),
which contains position, microsecond timestamp, and polarity information. Combined
with the characteristics of the dynamic vision sensor, we call the set of output events in
the spatiotemporal domain as the spatiotemporal event stream. The spatiotemporal event
stream can be defined as the following:

E =
N

∑
i=1

e(xi, yi, ti, pi) (1)

where e is an event of the spatiotemporal event stream, [x, y] denotes location of the pixel
generating the event, p ∈ {−1, +1} indicates the polarity of the change in illumination at the
pixel causing the event, and t represents the time at which the event occurred; i is the index
of events in the spatiotemporal event stream, and Σ indicates adding the new event to the
spatiotemporal data stream.
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Figure 1. Three-layer model of a human retina and corresponding DVS pixel circuitry. The first layer 

is similar to retinal cone cells for photoelectric conversion; the second layer, similar to bipolar cells 

in the retina, is used to obtain changes in light intensity; the third layer is similar to the ganglion 

cells of the retina for outputting the light intensity change sign. 

1.2. The Related Work to Building Virtual Frames by Accumulating Events 

DVS output is an event stream of address events (𝑥, 𝑦) in time, hence the output data 

of the dynamic vision sensor are called the spatiotemporal event stream, as shown in Fig-
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searchers slice the spatiotemporal data stream with a constant time interval or a constant 

event number [16–20] to construct a virtual frame, and then use traditional image pro-
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Figure 1. Three-layer model of a human retina and corresponding DVS pixel circuitry. The first layer
is similar to retinal cone cells for photoelectric conversion; the second layer, similar to bipolar cells in
the retina, is used to obtain changes in light intensity; the third layer is similar to the ganglion cells of
the retina for outputting the light intensity change sign.

1.2. The Related Work to Building Virtual Frames by Accumulating Events

DVS output is an event stream of address events (x, y) in time, hence the output
data of the dynamic vision sensor are called the spatiotemporal event stream, as shown
in Figure 2. As a result of changes in the speed or the number of objects, the event
distribution will change sharply in space and time. Moreover, in the field of machine
vision, most researchers slice the spatiotemporal data stream with a constant time interval
or a constant event number [16–20] to construct a virtual frame, and then use traditional
image processing methods for object recognition or tracking. In general, we think an good
virtual frame should include complete object information and no motion blur, which is
a good beginning for further image processing. On the contrary, if object information is
missing or there is motion blur in the virtual frame, the object recognition accuracy and
other image processing effects will be seriously affected. Therefore, it is essential to choose
an appropriate event slicing method.
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Figure 2. Illustration of DVS output and virtual frame. (a) Moving object of DVS observation;
(b) the visualization of the event stream, DVS output is the event stream of address events (x, y) in
time. Each address event signals that the pixel at that coordinate experienced a change of light at that
instant. (c) The virtual frame constructed by the slice in (b).

The constant time interval slice of the event stream is defined as follows:

E(τ) =
tk+τ

∑
tk

{e(xi, yi, ti, pi)|ti ∈ [tk, tk + τ]} (2)

Therefore, the virtual frame obtained through the constant time interval is defined
as follows:

f (x, y, T) =
tk+τ

∑
tk

{e(xi, yi, ti, pi)|ti ∈ [tk, tk + τ]} (3)

In the same way, the constant event number slice of the event stream and the con-
structed virtual frame are defined below as (4) and (5):

E(N) =
m+N

∑
m
{e(xi, yi, ti, pi)|i ∈ [m, m + N]} (4)

f (x, y, T) =
m+N

∑
m
{e(xi, yi, ti, pi)|i ∈ [m, m + N]} (5)

where τ and N are fixed values obtained by experience. T is the mean timestamp of all
events in the event stream.

Although the two slicing methods of the constant time interval and constant event
number are simple and direct, the slicing effect is limited by the object speed and number,
and the slicing quality is not ideal for dynamic scenes. When the object speed or number
changes, if the time interval is too long or the number of events is too large, this will
result in motion blur, as shown in Figure 3a. On the contrary, if the time interval is too
short or the number of events is too small, the object information will be lost, as shown in
Figure 3b,d. The motion blur and object information loss will bring computational errors to
object recognition and tracking, making it difficult to artificially determine the time interval
or the number of events.

The Adaptive Time-Surface with Linear Time Decay (ATSLTD) event-to-frame conver-
sion algorithm in [21] slices the spatiotemporal event stream by calculating the confidence
interval of the information entropy of the virtual frames with sharp and clear edges. How-
ever, the confidence interval of the information entropy has not been updated, thus it
is not suitable for complex motion scenes. The authors of [22] propose a method called
AreaEventNumber; instead of rotating the slices based on the sum of the whole slice event
number, AreaEventNumber triggers the slice rotation once any one of the area’s event
numbers (Area Event Counters) exceeds the threshold value k. However, this method still
requires experience to determine the threshold k.
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Figure 3. (a,b) are virtual frames constructed from slice-a and slice-b of (e), which are sliced by the
constant time interval. The object in fast motion generates very dense events, hence the virtual frame
(a) constructed by slice-a has motion blur; the object in slow motion generates very sparse events,
thus the virtual frame (b) constructed by slice-b loses object information. (c,d) are virtual frames
constructed from slice-c and slice-d of (f), which are sliced by the constant event number. Due to
the change of speed or number of objects, the number of events in the event flow changes sharply.
Therefore, the number of events in slice-c is not suitable for slice-d; the virtual frame (c) constructed
by slice-c has neither motion blur nor information loss, but the virtual frame (d) constructed by slice-d
loses object information. (e,f) are spatiotemporal distributions of event streams caused by moving
objects. As a result of the change of the speed and number of objects, the event distribution changes
sharply in space and time.

In order to solve the problem of motion blur or object information loss caused by
improper slicing of the spatiotemporal event stream, we propose a new adaptive slicing
method for the spatiotemporal event stream. The event slice is defined as follows:

E(∆t) =
tk+∆t

∑
tk

{e(xi, yi, ti, pi)|ti ∈ [tk, tk + ∆t]} (6)

where tk is the start of the event slice, ∆t represents the time length of the event slice, and
E(∆t) represents the event slice.

When the speed or the number of objects changes, ∆t also adjusts dynamically, and
there is no motion blur or information loss in E(∆t). The slicing effect is shown in Figure 4.

1.3. The Main Contributions of This Paper

Firstly, this paper proposes a past events remove mechanism to obtain a reference
frame with clear and sharp edges while reducing noise; secondly, a group of virtual frames
F(n) = { f1, f2, . . . fn} is randomly constructed from event slices to calculate the similarity
Sn = {s1, s2, . . . sn} between F(n) and the reference frame, and then use Sn to calculate the
confidence interval. Finally, the events are accumulated in millisecond units to construct
the virtual frame until the similarity between the virtual frame and the reference frame is
within the confidence interval. The confidence interval is updated dynamically with the
scene change. In a word, the main contributions of this paper are as follows:

(1) A past event elimination mechanism is proposed, which can obtain a virtual frame
with clear and sharp edges at any time;
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(2) The adaptive slicing of the spatiotemporal event stream will not cause object motion
blur or loss of object information;

(3) In order to adapt to different motion scenes, the calculation parameters are
updated adaptively.
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Figure 4. (a–d) are virtual frames constructed by adaptive slicing from the spatiotemporal event
stream (e). When the number of objects changes or the speed of objects changes, our method can
select appropriate slices from the rapidly changing event stream to construct a virtual frame without
motion blur and information loss; (e) the spatiotemporal distribution of event stream caused by
moving object.

2. Materials and Methods

In this part, we first explain how to use the past events remove mechanism to obtain
an ideal frame with clear and sharp edges in Section 2.1, and then introduce a method to
adaptively slice the spatiotemporal event stream to ensure that the spatiotemporal event
slice contains complete object information without motion blur in Section 2.2. Next, we
introduce our method in detail.

2.1. The Past Events Remove Mechanism

This method is inspired by the authors of [23] who use a local planar approximation
of the surface of active events to calculate the lifetime of events, then use the new event’s
velocity information to reset the lifetime of the neighbouring pixel in a negative velocity
direction to achieve the purpose of edge refinement. Our method directly uses the optical
flow information to find the past events of the current event, and remove them to obtain the
reference frame. Compared with the method of [23], our calculation is more straightforward.
As the name suggests, the past events remove mechanism finds the past events of the current
event and clears them. It is used to obtain a virtual frame with clear and sharp edges, which
is then used as a reference frame for subsequent spatiotemporal event stream slicing. The
overall description of the past events remove mechanism is shown in Algorithm 1.
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Algorithm 1 Past events remove mechanism
Input: Spatiotemporal event stream: ∑N

i=1 e(xi, yi, ti)
Output: An event stream that can form a reference frame with clear and sharp edges:

E(∆ f ) = ∑
tk+∆ f
t f

{e(xi, yi, ti)|ti ∈
[
t f , tk + ∆ f

]
}

1 For e(xi, yi, ti) in ∑N
i=1 e(xi, yi, ti) do

2 R = {e(x, y, t)|x ∈ [xi − 1, xi + 1], y ∈ [yi − 1, yi + 1], t ≤ ti}
3 Calculating the optical flow information of R
4 Get

→
v(ei) of e(xi, yi, ti) by vector synthesis

5 For e(x, y, t)∈R do
6 2, 3, and 4
7 End

8 Get
→
Vei of e(xi, yi, ti) by local consistency

9 Obtain the past events of e(xi, yi, ti) according to the movement direction of the event, and
remove the past events.

10 End

The input of the algorithm is a spatiotemporal event stream, and the output is a
spatiotemporal event stream that can form a reference frame with clear and sharp edges.
The local event plane R composed of the current event and its eight neighbor events is
shown in the red area in Figure 4a:

R =

 e1 = (xi − 1, yi + 1, t1) e2 = (xi, yi + 1, t2) e3 = (xi + 1, yi + 1, t3)
e4 = (xi − 1, yi, t4) ei = (xi, yi, ti) e6 = (xi + 1, yi, t6)

e7 = (xi − 1, yi − 1, t7) e8 = (xi, yi − 1, t8) e9 = (xi + 1, yi − 1, t9,)

 (7)

This method does not use the polarity information of the event, and the polarity
information does not participate in the construction of the local event plane, hence it is
not displayed. If there are no eight neighbor events around the current event, the event is
defined as noise and removed.

Then, the optical flow of the current event and eight neighbor events is calculated by
the method in [24] to synthesize the motion vector of the current event. Since a single event
cannot reflect the motion information of the object, the local consistency is used so that
the motion direction of the current event is determined by the motion direction of most
surrounding events. Since those events in the neighborhood are triggered by the same
object or pattern, the motion vectors of eight neighbor events are calculated by the same

method, as shown in Figure 5b. The motion vector of the current event
→
Vei is

→
Vei =

→
v(ei)

+
N

∑
j=1

→
v(ej)

(N = 9, j 6= 5) (8)

where
→

v(e) is the event motion vector obtained through optical flow.
The past events of the current event are obtained according to the negative direction

of motion of the current event, and are removed to obtain a reference frame with clear and
sharp edges. According to the calculation process of the algorithm, each pixel position of
our algorithm will only retain the latest time events. If multiple events occur at the same
pixel position, they will be removed by the past events remove mechanism in the algorithm.
As shown in Figure 6, the reference frame is defined as follows:

f (x, y, T) =
tk+∆ f

∑
tk

{e(xi, yi, ti, pi)} −
t f

∑
tk

{e(xi, yi, ti, pi)}

=
tk+∆t

∑
t f

{e(xi, yi, ti, pi)|ti ∈
[
t f , tk + ∆ f

]
}

(9)
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where t f is the start time of the event stream used to form reference frame; tk is the start
time of the event stream used in Algorithm 1; ∆ f is the time length of of the event stream
used in Algorithm 1; tk + ∆ f is the end time of the event stream used in Algorithm 1.
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Figure 6. (a) A virtual frame composed of cumulative events; (b) a reference frame with clear and
sharp edges obtained by the past events remove mechanism.

2.2. Adaptive Slicing of the Spatiotemporal Event Stream

The proposed method first calculates the similarity between the reference frame and a
group of randomly constituted virtual frames in Section 2.2.1, then calculates the confidence
interval of the similarity in Section 2.2.2, and adaptively updates the confidence interval in
combination with the changes of the moving scene in Section 2.2.3.

If the similarity between the virtual frame formed by the accumulated events and the refer-
ence frame is within the confidence interval, it is considered that the accumulated spatiotemporal
event slice contains complete object information without causing motion blur. Otherwise, it is de-
termined whether to continue accumulating events or to update the confidence interval according
to the situation of the object in the event stream. The overall description is shown in Algorithm 2.
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Algorithm 2 Adaptive slicing of spatiotemporal event stream
Input: Spatiotemporal event stream: ∑N

i=1 e(xi, yi, ti)
Output: The spatiotemporal event slice which contains complete moving object information
without motion blur.E(∆t) = ∑t+∆t

t e(xi, yi, t = roundup( ti
1000 ))

1 Get a reference frame f (x, y, T) by Algorithm 1
2 For ∆t = 1:1:n do
3 sn = Algorithm3 (E(∆t))
4 End
5 Calculate the confidence interval [α, β] of sample [s1, s2, . . . sn]
6 ∆t = 1
7 For E(∆t) do
8 sn = Algorithm3 (E(∆t))
9 If α < sn < β

10 Break. Here E(∆t) contains complete moving object information without motion blur.
11 Else if (β < sn) or (sn< α and sn > sn+1)
12 Break, Update confidence interval, ∆t = 1
13 Else
14 ∆t = ∆t + 1, continue
15 End

2.2.1. Calculation of Similarity

The spatiotemporal event stream is accumulated at an interval of 1 ms, and then the
similarity is calculated with the reference frame by improved pHash [25]. The overall
description is shown in Algorithm 3.

Algorithm 3 Calculation method of image similarity

Input: Spatiotemporal event stream: E(∆t) = ∑t+∆t
t e

(
xi, yi, t = roundup

(
ti

1000

))
And Output of algorithm 1: E(∆ f ) = ∑

tk+∆ f
t f

{e(xi, yi, ti)|ti ∈
[
t f , tk + ∆ f

]
}

Output: Similarity between f (x, y, T) and f (x, y, T): sn
1 Build event stream E(∆t) as a virtual frame: f (x, y, T)
2 Build E(∆ f ) as an idea virtual frame: f (x, y, T)
3 DCT( f (x, y, T)) and DCT( f (x, y, T))
4 Extract the hash values of f (x, y, T) and f (x, y, T)
5 Compare the similarity of hash values

Since the dynamic vision sensor only responds where the light intensity changes, its
image information is high-frequency information. In order to make better use of the data
characteristics of the spatiotemporal event stream, Discrete Cosine Transform (DCT) is
carried out on the virtual frame.

The DCT of the virtual frame is defined as follows:

f (u, v) = c(u)c(v)
N−1

∑
x=0

N−1

∑
y=0

f (x, y, t) cos [
(x + 0.5)π

N
u] cos[

(y + 0.5)π
N

v] (10)

The DCT of the reference frame is defined as follows:

f (u, v) = c(u)c(v)
N−1

∑
x=0

N−1

∑
y=0

f (x, y, T) cos [
(x + 0.5)π

N
u] cos[

(y + 0.5)π
N

v] (11)

where c(u) is:

c(u) =


√

1
N , u = 0√
2
N , u 6= 0

(12)

Next, we obtain the frequency coefficient matrix of the virtual frame. The frequency
coefficient matrix values become higher from the upper left corner to the lower right corner.
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Therefore, we select the value of the 8 × 8 area in the lower right corner as a high frequency
coefficient, according to experience. After that, we calculate the mean value of the high-
frequency coefficients, and set the high-frequency coefficient larger than the mean value
to 1 and lower than the mean value to 0 to obtain the image hash value. We compare the
proportion of the hash value difference of the two images in all hash values using Hamming
distance in order to obtain the similarity.

2.2.2. Calculation of Confidence Interval

In order to obtain spatiotemporal event streams that contain complete object information
without motion blur, we introduce the concept of the confidence interval of similarity. If the
similarity between the virtual frame formed by the accumulated events and the reference
frame is within the confidence interval, it is considered that the accumulated spatiotemporal
event slice contains complete object information without causing motion blur.

To calculate the lower and upper bounds of the confidence interval, we collect a set
of similarity S = {s1, s2, s3, . . . , sn} between the virtual frame and idea virtual frame. The
mean and variance of S are S and δ2. Since the virtual frame is formed by the gradual
accumulation of events, S are independent and distributed as a normal distribution S ∼
N
(
µ, δ2). Here we define a pivotal quantity Z, as follows:

Z =
S− µ√

δ2

n

∼ N(0, 1) (13)

The calculation equation of confidence level 1− α is shown below:

P

{
−Z α

2
≤ S−µ√

δ2
n

≤ Z α
2

}
= P

{
−Z α

2

√
δ2

n ≤ S− µ ≤ Z α
2

√
δ2

n

}
= P{S− Z α

2

√
δ2

n ≤ µ ≤ S + Z α
2

√
δ2

n }
= 1− α

(14)

where α is a two-sided significance level. We use α = 0.05 in this work, which means
when the confidence level is 95%, the confidence interval of similarity S is obtained with
the following:

[α, β] = [S− Z α
2

√
δ2

n
, S + Z α

2

√
δ2

n
] (15)

According to the t-distribution table, Z α
2
= 1.984. In order to achieve a better slicing

effect, confidence interval [α, β] always dynamically update with the moving scene, hence
the sample number n will also be dynamically adjusted according to the actual scene.

2.2.3. Adaptive Updating of Calculation Parameters

In theory, the similarity between the virtual frame and reference frame should meet
the normal distribution with the increase of event accumulation time, as shown by the
black line in Figure 7.

In order to adapt to different motion scenes, the confidence interval is updated in the
following two cases:

si =

{
si > β
si ≤ α and si−1 > si

(16)
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3. Experiment

This section introduces the datasets used for the comparative experiment in Section 3.1,
then uses four methods to carry out the comparative experiment and analyze the test results
in Section 3.2.

3.1. Data Sets

The existing data sets play an important role in algorithm comparison. Firstly, we
select the data set (Figure 7) described in [26] for comparative experiment. Then we use
iniVation’s event camera DAVIS346 to build a new data set for comparative experiments
in other motion scenes. It also provides a data set with appropriate complexity, and can
meet different needs for scientific researchers engaged in this research. The resolution of
DAVIS346 is 346 × 260 and it allows output event information (x, y, t, p), IMU data, and
traditional APS frame with time information at the same time. It can meet the needs of
image acquisition and index calculation of complex moving scenes.

3.1.1. Public Data Sets

The data sets from [26] contains the data of objects with speed changes photographed
in different scenes and different angles. The information of data sets contain:

• The asynchronous event stream;
• Intensity images at about 24 Hz;
• Inertial measurements (3-axis gyroscope and 3-axis accelerometer) at 1 kHz;
• Ground-truth camera poses from a motion-capture system k with sub-millimeter

precision at 200 Hz (for the indoor data sets);
• The intrinsic camera matrix.

The events, IMU data, and APS frame contained in the data sets are useful for compar-
ison with our slicing algorithm and index calculation. Here, we only select the shapes data
set from the data sets (Figure 8) for comparison.
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event stream generated by the object in (a).

3.1.2. Our Data Sets

We use the DAVIS346 to build our data sets to verify the practical application effect of
the algorithm in different motion scenes.

The data sets contain the following:

• A single moving object in a static background, such as a tank, plane, or car;
• The object having a complex motion state, such as the sudden disappearance or

increase of the object in the motion scene along with a change of speed;
• Moving object in a dynamic background.

For the data sets, the motion first begins with excitation of each single degree of
freedom separately; then, combined and faster excitations are performed. This results in
increasing difficulty and a higher event rate over time.

The data sets contain the event stream information of the moving object, APS frame
with time information, and IMU data.

1. Data collection of the single moving object in the static background: the camera is
stationary, and the object moves at a changing speed (Figure 9).

2. Data collection in complex motion: the camera is stationary, there is multi-object
motion, and the number of objects sometimes increases and sometimes decreases
(Figure 10).

3. Data collection in the dynamic background: the object moves at variable speed in a
complex background environment with the camera moving (Figure 11).
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Figure 11. (a) The object used to generate the event stream; (b) three-dimensional spatiotemporal
event stream generated by the object in (a).

3.2. Comparisons and Analysis

We use three methods to compare with our algorithm in this paper, including constant
time interval, constant event number, and ATSLTD. We take the information entropy as
the comparison index. Firstly, the spatiotemporal event slicing E(∆t) is constructed into a
virtual frame, and then the APS frame at the same time is found to compare the difference
of information entropy between them. It is worth noting that the event camera responds to
the place where the light intensity changes in the scene. Under constant external lighting
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conditions, only the edge and texture of the object will cause a response of the event camera.
The object information in the event stream is similar to the edge information of the object.
Thus, we extract the edge of the APS frame and then calculate the information entropy of
the edge image for index calculation.

3.2.1. Experiment I

1. Experiment

In order to reflect fairness, the proposed method, the method in [21], the constant
event number, and the constant time interval are used to compare the slicing effects in the
public data sets [26]. Firstly, the proposed method slices the event stream in the data set into
1691 segments within 1–8828 ms. The object information contained in the event segment is
neither missing nor motion blur. Secondly, the constant event number is used to slice the
spatiotemporal event stream, and each slice contains 813 events (n = total number/1691);
some virtual frame effect is shown in Figure 12b. Thirdly, the event stream is sliced by the
method of the constant time interval, and the time length of each slice is 5 ms (∆t = total
time/1691); some virtual frame effect is shown in Figure 12c. Finally, the ATSLTD is used
to slice the event stream; some virtual frame effect is shown in Figure 12d. In order to judge
the slicing effect more intuitively, the slicing effect pictures selected by the four methods
correspond to the APS frame in Figure 12a.

2. Analysis

Visually speaking, the method of constant event number, ATSLTD, and the methods
proposed achieved good results. As a result of the change of object motion speed, the event
slice cut by the method of constant time interval has the phenomenon of object information
loss. It is worth noting that although the slicing method with constant event number
achieved a good slicing effect, the number of events selected for slicing was determined
by our method. In the process of practical application, there is no possibility to obtain the
number of events in advance, and the number of events can only be determined according
to experience. Therefore, when the object number changes or the background changes, the
constant event number cannot achieve ideal slicing effect. Since the objects in the dataset
are simple geometric figures, the block information entropy will not fluctuate greatly in the
process of object movement, and ATSLTD also achieved ideal results visually. However,
in complex motion scenes or complex object textures, this method may not achieve ideal
results. This part of the study will be carried out in experiment II and experiment III.

What we see is not necessarily true. In order to evaluate the slicing effect of event stream
more objectively, we first construct the virtual frame with the event slice and then compare it
with the information entropy of the APS frame at the same time. Figure 13a is the information
entropy curve of the virtual frame obtained by four slicing methods and APS frame. Figure 12b
is the difference curve between the information entropy of virtual frame obtained by four
methods and APS frame. The red curve in the figure represents our proposed method. It can
be seen that the difference between the information entropy of the virtual frame constructed
by our proposed method and the APS frame is lower than that of the other three methods,
and the difference is the smallest among the four methods. The mean value of the difference
between the information entropy of the virtual frame obtained by four methods and the APS
frame is shown in Table 1. It also shows that there is neither loss of object information nor
motion blur in the event stream slice by the proposed method.
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Table 1. The mean value of the difference between the information entropy of virtual frame obtained
by the four methods and APS frame.

The Method The Mean of Average Difference

Constant Event Number 0.0150
Constant Time Interval 0.0390

ATSLTD 0.0186
Proposed 0.0064

3.2.2. Experiment II

1. Experiment

Experiment 1 only verified the slicing effect on simple geometry, which is not always
simple geometry in practical application. Therefore, in order to verify the slicing effect of
the proposed algorithm on actual moving objects, data set (2) is selected for experiment II.
Data set (2) includes Su-33 fighters with complex textures, and aircraft carriers that appear
and disappear from time to time. The object’s texture and motion meet experimental
requirements. The slicing effect is shown in Figure 14.

2. Analysis

As can be seen from the slicing effect in the figure above, when the object texture is
complex, and their numbers increase or decrease, the virtual frames formed by the event
slice cut with our method can contain complete object information without motion blur.
Other methods have more or less object information loss. Figure 15a is the information
entropy curve of the virtual frame obtained by the four slicing methods and the APS frame.
Figure 15b is the difference curve between the information entropy of the virtual frame
obtained by the four methods and APS frame. The red curve in the figure represents our
proposed method. The mean value of the information entropy difference of the proposed
method is 0.0061 (Table 2), which is the smallest of the four methods. This shows that the
slicing effect of the proposed method is better than that of the other algorithms, even for
complex moving objects.

3.2.3. Experiment III

1. Experiment

Experiments I and Experiments II verify the slicing effect of the algorithm on simple
geometric objects and complex moving objects using public data sets and own data sets,
respectively. However, there are also moving objects in dynamic backgrounds in practical
applications. This experiment aims to verify the slicing effect under dynamic backgrounds.
The data set of Experiment III is data set (3), which is constructed when the object moves at
variable speed in a complex background environment with the camera moving. The slicing
effect is shown in Figure 16.

2. Analysis

It is worth noting that although the slicing method with the constant number of events
achieved a good slicing effect, the number of events selected for slicing was determined
by our method. In the process of practical application, there is no possibility to obtain the
number of events in advance, and the number of events can only be determined according
to experience. As a result of the changes in object speed, the object information in the
event stream slice obtained with a fixed length of time has an image tail phenomenon.
The confidence interval in [21] is not updated with the scene change, thus it cannot be
cut effectively when the scene changes, resulting in the loss of object information. In our
method, the virtual frames formed by the event stream slice in the dynamic background
contain complete object information without motion blur.
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Figure 15. (a) The information entropy curve of virtual frame obtained by the four slicing methods
and APS frame; (b) the difference curve between the information entropy of virtual frame obtained
by the four methods and APS frame.
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Table 2. The mean value of the difference between the information entropy of virtual frame obtained
by the four methods and APS frame.

The Method The Mean of Average Difference

Constant Event Number 0.0135
Constant Time Interval 0.0459

ATSLTD 0.0335
Proposed 0.0061
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Figure 16. (a) APS frame; (b) virtual frame constructed with constant event number; (c) virtual frame
constructed by constant time interval; (d) virtual frame constructed with ATSLTD; (e) virtual frame
constructed with the proposed method.

In order to evaluate the slicing effect more objectively, we compare the information
entropy, as shown in Figure 17. It can be seen from the figure that the information entropy
difference of our method is lower than that of the other methods, and the average value of
information entropy difference is 0.0071 (Table 3).
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Table 3. The mean value of the difference between the information entropy of virtual frame obtained
by the four methods and APS frame.

The Method The Mean of Average Difference

Constant Event Number 0.0393
Constant Time Interval 0.2064

ATSLTD 0.2884
Proposed 0.0071

4. Discussion

As a result of the above experiments, it is fully proved that the fixed number of events
and fixed length of time methods exhibit the phenomenon of dragging, or lack information
for the object with complex motion conditions or changing motion scenes. ATSLTD can
slice effectively in a single object and simple motion scene, but there will be information
loss when the motion scene is complex and changing. Our proposed method can achieve an
ideal slicing effect in different motion situations, even in complex motion scenes. However,
the distribution of event streams in time and space are related to the moving speed of
the object. Therefore, when there are two objects with significant speed differences in the
scene, our method cannot achieve a perfect slicing effect. The means of achieving a perfect
slicing effect when there are two objects with significant speed differences in the scene is
one of our future research directions. Moreover, the complexity of our proposed algorithm
reduces the computing speed; thus, obtaining better slices with faster computing speed
is another one of our future research directions. In addition, the ideal frame obtained by
Algorithm 1 is used as a reference frame to slice the event stream. The ideal frame is a
reference standard. Therefore, the similarity between the ideal frame of Algorithm 1 and
the APS frame is higher than our algorithm, but Algorithm 1 loses events and discards
the advantage of high temporal and spatial resolution of the event stream. Therefore, if
one is only interested in the frame quality for computer vision processing, the output of
Algorithm 1 provides valuable knowledge.

5. Conclusions

In this paper, we proposed an adaptive slicing method based on the spatiotemporal
event stream for dynamic vision sensors, which provides a solution for the application
of traditional algorithms and an appropriate preprocessing method for event-based algo-
rithms. Each spatiotemporal event segment contains complete object information without
motion blur. In order to verify the slicing effect of this algorithm in different motion scenes,
this paper specially constructed the data sets, and provided a data set with appropriate
complexity to meet different needs for scientific researchers engaged in this field. The
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proposed method was compared with other methods using different data sets. The results
showed that the difference between the information entropy of the virtual frame and the
APS frame is lower than for other methods. This method is not only suitable for various
complex motion scenes, but also better than existing algorithms.
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