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Abstract: Industrial control systems (ICS) are applied in many fields. Due to the development of
cloud computing, artificial intelligence, and big data analysis inducing more cyberattacks, ICS always
suffers from the risks. If the risks occur during system operations, corporate capital is endangered.
It is crucial to assess the security of ICS dynamically. This paper proposes a dynamic assessment
framework for industrial control system security (DAF-ICSS) based on machine learning and takes an
industrial robot system as an example. The framework conducts security assessment from qualitative
and quantitative perspectives, combining three assessment phases: static identification, dynamic
monitoring, and security assessment. During the evaluation, we propose a weighted Hidden Markov
Model (W-HMM) to dynamically establish the system’s security model with the algorithm of Baum–
Welch. To verify the effectiveness of DAF-ICSS, we have compared it with two assessment methods
to assess industrial robot security. The comparison result shows that the proposed DAF-ICSS can
provide a more accurate assessment. The assessment reflects the system’s security state in a timely
and intuitive manner. In addition, it can be used to analyze the security impact caused by the
unknown types of ICS attacks since it infers the security state based on the explicit state of the system.

Keywords: security; dynamic assessment; industrial control systems; weighted hidden Markov model

1. Introduction

The industrial control system can be remotely interacted with and communicated
with cloud services [1], cyber-physical systems [2], or edge devices in a highly networked
environment [3]. Cyber-attacks are increasingly becoming a threat to ICS; thus, their
security is critical [4,5]. Once an essential piece of equipment experiences a safety incident,
it causes a shutdown of the system and even causes casualties [6].

The security assessment of industrial control systems is an integral part of security [7,8].
The system’s security integrates internal attributes and external environments. The ele-
ments involved in assessment have the following characteristics: large number, strong
correlation, and poor accessibility. Thus, evaluating the security of the system accurately
is difficult.

In recent years, security assessment research has mainly focused on artificial intelli-
gence [9], medical subjects [10,11], infrastructure [12], power systems [13], coal mining [14],
chemicals [15], etc. The industrial field focuses on assessing the system’s functional safety
or the static information security assessment for the design, and its security status is easily
observerd [16,17]. However, the critical equipment executing complex control tasks in
ICS is challenging for capturing security statuses directly. System security information
is also related to running variables, such as system operating status and environmental
status. Security assessment must have the ability to obtain security information of complex
systems dynamically.

New cyberattacks for which its forms and types tend to be unknown are hard to
be detected [18]. Due to the limited resources of devices and networks in ICS [19,20], it
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is hard to obtain security information of assessments directly by detecting attacks [21].
Cyberattacks make ICS more undependable and unsafe when using the Internet [22].
Scholars generally evaluate system security through the consequences of information
attacks [23]. Consequence refers to the property losses caused by an information attack.
For example, Muhammad Adil et al. identified a jamming attack channel by detecting
different transmission frequencies and Round Trip Time (RTT) of transmitting a signal from
multi-channel in WSNs transmission media [24].

There are three methods of assessment based on consequences of attacks [20,25]:
qualitative assessment, quantitative assessment [26], and the combination of them. There
are many qualitative evaluation methods, such as attack trees and fuzzy calculations.
These methods are coarse-grained assessments of system parameters. For example, Xu
Hui et al. used attack trees to identify various attacks for security management of SDN [27].
However, they could not provide a quantitative value to evaluate the consequences of the
attack. The quantitative evaluation methods can assess the impacts of information attacks.
Wenli Shang et al. provided a security assessment method based on an attack tree model
with fuzzy set theory and probability risk assessment technology [28]. Jingjing Hu et al.
proposed a multi-dimensional network security risk assessment framework [29], including
two stages: risk identification and risk calculation. They used HMM to assess the network
security risk in the risk calculation stage. The HMM assessment method can effectively
reflect and quantify the security risks of the physical network system. However, they did
not assign the weight to the result in the risk value calculation, as the network servers
and nodes have different importance. We should weigh different parts of ICS in ICS due
to its heterogeneity. Nary Subramanian et al. proposed a quantitative method of NFR
(non-functional requirements) safety assessment for the infrastructure system of oil pipeline
systems [30]. This method can solve the integrated assessment of functional safety and
security. However, it cannot calculate the assessed value of the security. Aziz A. et al. used
ontology knowledge to analyze the causal relationship between events [31], established
corresponding probability models, and identified the consequences of abnormalities. This
method can quantitatively assess the consequences of the system’s attacks. However, the
probability established by this method was stationary, while the system risk is changing. It
is challenging to apply dynamic evaluations.

Currently, the most commonly used security assessment method is a combination
of qualitative and quantitative information [32,33]. One is the analytic hierarchy process,
which is a multi-level weight decision analysis method. Jun Chen applied the analytical
hierarchy process for industrial control system evaluation [34]. Moreover, it can effectively
evaluate industrial control risks. However, it cannot dynamically assess the system of ICS
due to unknown attacks and threats that follow ICS. Some pieces of research had brought
focus onto the necessity of a framework for the evaluation of IoT device security [35,36].
The above research methods are not dynamic and cannot meet this assessment requirement.

We propose a practical security assessment framework, a three-stage dynamic assess-
ment framework for ICS based on a method of W-HMM. The main contributions of this
work are as follows:

i. The proposed method combines a qualitative and quantitative assessment of ICS
security dynamically by using a W-HMM model. The method can infer the system’s
risk value, which can be used as a system risk reference in a timely and intuitive
manner through the explicit consequences of the attack on the device.

ii. The assessment of the industrial robot control system (IRCS) is used as an exam-
ple to illustrate the use of the method and compared with two typical security
assessment methods.

The article is structured as follows. In the next section, we introduce the static recog-
nition of DAF-ICSS. Dynamic monitoring is described in Section 3. Section 4 shows the
assessment. Section 5 explains the framework of DAF-ICSS. Section 6 uses an IRCS as an ex-
ample to verify DAF-ICSS. We discuss the results in Section 7. Finally, Section 8 summarizes
the work of this paper.
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2. Static Recognition
2.1. Basic Value

The ICS is a part of the company’s fixed assets, and its security will affect the value
of the company’s fixed assets. We use the analytic hierarchy process to evaluate the basic
value of ICS. The basic value, Bv, is used to assess the economic value of ICS. The basic
value is divided into three layers: target layer, factor layer, and index layer, shown in
Figure 1.

The target layer obtains Bv. The factor layer decomposes the basic value of the ICS
into two critical factors: asset value and asset status. Asset value represents the economic
value of the ICS, and asset status reflects the state and the environment. The index layer
decomposes the factors into the fine-grained index. The asset value includes three values:
self-value Sv, indirect value Av, and accident value Ac. Self-value refers to the asset value
of the ICS. Indirect value is the indirect economic loss of the enterprise caused by ICS
failure without injury. accident value represents the estimated financial loss of an injury
accident caused by ICS attacks. It is obtained from accident probability f1 and accident
loss g.

Ac = f1 × g (1)

Asset status is divided into three states: self-state h, network state Ns, and work
environment Es, as shown in Table 1. The self-state reflects the performance and stability of
the system, thereby affecting asset value. The latter two reflect the harshness of the system’s
external environment and affect the system’s vulnerability value. Network state refers to
the value determined by the network bandwidth, traffic, and peak value. The working
environment is the value determined by temperature, humidity, and electromagnetic
interference. The smaller the valuation, the lower the risk. The basic value is calculated
as follows.

Bv = Sv × h + Av + Ac (2)

Table 1. Quantitative table of asset status.

State Description Valuation

Self-state
h

No-fault, available 0.25

Fault-fixed, warning 0.5

Fault but not affecting the main function, dangerous 0.8

Network state
Ns

Network bandwidth utilization ≤ 50%, steady flow 0.5

Network bandwidth utilization ≤ 80%, flow fluctuation 1

Network bandwidth utilization ≥ 80%, flow fluctuates greatly 1.5

Work environment
Es

Temperature normal, Humidity drying, Weak
electromagnetic interference 0.5

One item is out of rating 0.8

Figure 1. The basic value decomposition diagram.
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2.2. Vulnerability

The vulnerability Vv of ICS refers to the system’s weakness that attackers can ab-
stract [37]. When the vulnerability of an ICS is attacked, a basic attack path model should
be shown in Figure 2. The attack is achieved through three steps: network path connec-
tion, data manipulation, and breaking through protection. The first step ensures that the
attacker can connect to ICS through the network. The second step is that the attacker sends
malicious attack instructions when the attacker could imitate external communication data
of ICS. The third step hides or floods attack instructions so that the instructions can pass
through the protection. The attack instructions could steal, change, or delete the system’s
data. Moreover, the attack may cause the system’s faults.

Figure 2. The processes of the attack path model.

The vulnerability of ICS can be illustrated from three factors depending on the three
steps of the attack path model. The three factors are availability Aa, data weakness Sr,
and safety protection Sw. Availability means the degree that ICS can achieve specific
operations through the network when random attacks are launched. Data weakness
evaluates the possibility of communication data being attacked. Security protection is the
system’s ability to prevent information attacks. These three factors respectively assess the
vulnerability of the three steps of the attack model. Figure 3 shows the hierarchy diagram
of vulnerabilities of ICS.

Aa = l ×m× r (3)

Sr = log2(2v + 2u + 2w) (4)

Sw = Cp × Sp × Fr (5)

The availability is divided into three indexes to measure the difficulty of attackers
connecting to the system: Vector l, complexity m, and authentication r. l is used to measure
the network distance between the attacker and ICS. Before an attacker can connect to the
system, he must transfer instructions through network nodes such as routing equipment.
The more nodes are, the more inefficiently the instructions connect. m describes the level of
attack method that an attacker can achieve. When the attacker is connected to the system,
r will be an index to stop the connection. The description and corresponding valuation,
which are given by experts of cybersecurity, are shown in Table 2.
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Figure 3. Hierarchy diagram of the vulnerability of ICS.

Table 2. The valuation of availability.

Description Valuation

Vector l

Remote 0.85
Neighbor 0.62

Local 0.55
Port physical connection 0.2

Complexity m
Primary 0.71

Secondary 0.61
Senior 0.35

Authentication r
Repeatedly 0.45

Single 0.56
None 0.704

The data weakness is divided into three indexes: confidentiality u, integrity w, and us-
ability v, as shown in Table 3.

Table 3. Data weakness valuation value.

Description Valuation

Usability v

Process parameters viewing commands 0.2
System parameters viewing commands 0.3

All parameters viewing commands 0.4
Process parameters editing commands 0.6
System parameters editing commands 0.8

All parameters editing commands 1

Integrity w
Syntax verification audit 0.7

Pre and post content verification audit 0.5
Hazard verification audit 0.3

Confidentiality u
Encryption 0.3

Unencrypted, nonstandard 0.5
Unencrypted, standard 0.9

Safety protection Sw includes three indexes: code patch Cp, normal protective measure
Fr, and emergency protective measure Sp, shown in Table 4. Code patch reflects the extent
of the patches covering system vulnerabilities. Normal protective measure refers to the
ability to protect the system against information attacks under normal operating conditions.
The emergency protective measure is the capability to handle emergencies when in danger.
The vulnerability value Vv is shown as follows.

Vv = Ns × (2× Aa + Sr + Sw)/3 (6)
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Table 4. Safety protection value.

Description Valuation

Code patch Cp

All 0.1
Part 0.4

None 0.7

Normal protective
measure Fr

More than two 0.2
One or two 0.6

None 0.9

Emergency protective
measure Sp

Soft response (without damaging the
equipment under the premise of safety) 0.3

Hard reaction (equipment May be
damaged when ensuring safety) 0.5

None 0.8

3. Dynamic Monitoring
3.1. W-HMM Establishment

The HMM model can be used to build a dynamic evaluation model. Describing
the stochastic process of generating explicit state sequences from hidden state sequences,
HMM is a probability model related to time series. Each hidden state generates an explicit
state. The security status of ICS is mostly unobservable. All the operations and the
faults caused by the attack are recorded in the system’s log. The security is related to the
fault with a certain observation probability. The probability of mutual transition between
security states is the occurrence probability. By using the occurrence probability of the
security state, the current system risk probability can be calculated to monitor the system’s
risk dynamically.

However, HMM cannot distinguish the magnitude of the danger caused by different
states. This paper proposes a W-HMM (weight HMM) method. W-HMM is the optimization
method of HMM and weighs the results calculated by HMM. The value of weight is
estimated based on the magnitude of the danger. The aim is to improve the accuracy of
the evaluation when calculating the risk value. In W-HMM, we optimize the calculation of
HMM results by weighing the security state. The W-HMM model is proposed, shown in
Figure 4.

Figure 4. The W-HMM model.

We construct a mapping relation of the Markov process with parameters. The se-
curity state can be categorized into secure S1, monitored S2, attacked S3, and captured
S4 states. S2 indicates that the system is scanned or spied by an attacker. In this state,
the bandwidth resources are occupied, and parameters will be stolen. In the attacked state,
the attacker sends malicious data, but the system has not been captured. In the captured
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state, the system is captured by the attacker to execute the attacker’s instructions. In this
state, the system may crash or perform dangerous operations. According to the severity of
the fault, system faults are classified into normal O1, error O2, mild alarm O3, and warning
O4; moderate alarm O5; and serious alarm O6, as shown in Figure 5 and Table 5.

Figure 5. The analysis diagram of security and system fault.

Table 5. Example of system faults.

System Faults Identifier Example

Normal O1 /

Error O2
Program syntax error,

user password error, etc.

Mild alarm O3
The planning path may exceed

The limit of the system, etc.

Warning O4
System acceleration approaching the

setting threshold, etc.

Moderate alarm O5
Speed exceeds the threshold during running,

then alarm and stop running, etc.

Serious alarm O6
The system detects motor overcurrent,

then alarm and emergency stop, etc.

3.2. Calculating Occurrence Probability of Security by W-HMM

The specific steps are as follows.

1. Constructing State and Model

The explicit state set O and the hidden state set S are, respectively, shown as follows.

O = Oj(1 ≤ j ≤ 6) (7)

S = Si(1 ≤ i ≤ 4) (8)

The development relationships between hidden states is related by aim(1 ≤ i, m ≤ 4).
aim is the probability of transition from state Si at time t to state Sm at time t + 1.

The hidden state is represented by the explicit state. bij(1 ≤ i ≤ 4, 1 ≤ j ≤ 6) is called
the explicit state probability matrix, and shows the relationship between hidden and explicit
state. bij is the probability of transition from the state Si at time t to state Oj at the time
t + 1.

The state transition probability matrix A and the explicit state probability matrix B
can be written as follows.

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 (9)

aim = P(xt+1 = Sm | xt = Si), 1 ≤ m ≤ 4, 1 ≤ i ≤ 4

B =


b11 b12 b13 b14 b15 b16
b21 b22 b23 b24 b25 b26
b31 b32 b33 b34 b35 b36
b41 b42 b43 b44 b45 b46

 (10)
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bij = P
(

xt+1 = Oj | xt = Si
)
, 1 ≤ j ≤ 6, 1 ≤ i ≤ 4

The W-HMM of the ICS can be described as λ, among which π represents the proba-
bility of the initial state, which is shown as follows.

λ = (A, B, π)

where π = P(xi = Si), 1 ≤ i ≤ 4 (11)

2. Algorithm of Baum–Welch

Markov model correction algorithms based on state sequences are classified into su-
pervised and unsupervised learning algorithms [38]. A supervised learning algorithm
records a large amount of state data to estimate the parameters. However, it is time con-
suming, costly, and causes difficulty in evaluating parameters dynamically. Unsupervised
learning algorithms identify model parameters based on training samples and are suit-
able for calculating the parameters of W-HMM of ICS. To accurately describe the system
and adapt to system changes, the W-HMM model is trained and updated iteratively with
the Baum–Welch algorithm [39]. It is possible to obtain (see Appendix A) Equation (12),
which represents the W-HMM model after n + 1 iterations. When adding new sample data,
the current Markov parameters are taken as the initial parameters, and Baum–Welch itera-
tive calculations are carried out to obtain the latest parameters. The occurrence probability
of security risks is extracted from the state transition probability matrix of parameters.

λn+1 =
(

An+1, Bn+1, πn+1
)

(12)

4. Assessment
Field experts of ICS obtained the state weight values that affect the risk value of ICS,

shown in Table 6. The risk value describes the loss caused by an attack on the company. It
is equal to the product of the failure probability and consequence of the attack. The security
risk value can be determined as follows.

SV = Es × Bv × eVv×{
L1 ×

n=4

∑
n=2

(
πn+1(i)× bi2

)
+ · · ·+ L5 ×

n=4

∑
n=2

(
πn+1(i)× bi6

)} (13)

From Equation (13), L1, L2, L3, L4, and L5 are the weight values of the five states in
the observation states (O2, O3, O4, O5, and O6). Since some model parameters change with
time, they are classified according to the measurement of their period, demonstrated in
Table 7.

Table 6. State weight value.

Weight

L1 0.5
L2 1
L3 2
L4 2.5
L5 4

Table 7. Type of parameters.

Type Identifier Description

Constant

L1 − L5

It only needs to be collected once
and can be used for a long time

Vv

Ac

Av
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Table 7. Cont.

Type Identifier Description

Stage constant
Es

Regular collection and
evaluation are requiredSv

h

Real-time volume
SV

Real-time acquisition and calculationπ

B

5. Framework of DFA-ICSS

Illustrated in Figure 6, the DAF-ICSS framework is composed of static identification,
dynamic monitoring, and evaluation. The framework can evaluate the security of ICS
qualitatively and quantitatively. In this section, we will briefly summarize the procedure of
the assessment.

Figure 6. Security evaluation framework of DAF-ICSS.

During data collection, there are two stages. One is static identification, which identi-
fies the value and vulnerability of each part of the evaluation system. The analytic hierarchy
process enumerates the factors that affect the value and the vulnerability of the system.
The result of static identification is represented by a severity value, which is obtained by
multiplying the value and vulnerability of the system.

The other is dynamic monitoring, which calculates the system’s security risk proba-
bility. Moreover, the calculation is based on W-HMM. Its result predicts the possibility of
system security risks.

The system security state is unobservable. W-HMM is introduced for dynamic mon-
itoring to establish the connection between the observable states and the unobservable
security state. This method calculates the risk probability according to the observation state
and updates the risk probability in the next new observation state. W-HMM can quantify
and weigh the risk probability based on different application scenarios and models.

In the assessment stage, we obtain the system risk value by multiplying the severity
value and the risk probability. We develop a risk map. The map determines the risk level by
the risk value’s boundary. The boundary is set by the risk tolerance of the system, shown
in Figure 7. The system is safe when the risk value is in the green area. If it is in the yellow
area, the system is at risk. The evaluation system will immediately issue an alarm if it
reaches the red zone. Its purpose is to locate risk levels according to the calculated risk
value quickly. The corresponding protection strategy can be chosen rapidly according to
the level and risk value.
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Figure 7. Risk map.

6. Experiments and Results
6.1. Experimental Setup

An attack test platform is built to verify the feasibility and effectiveness of the evalua-
tion method proposed in this paper, shown in Figure 8.

Figure 8. The topography of the system.

The platform comprises three computers and a robot that are connected through a
gigabit router. The robot, which is ER3, is produced by Effort. The controller of the robot is
Robox produced by Robox SPA.

The computers play as the remote terminal, the evaluation terminal, and the attack
terminal. The remote terminal sends instructions and programs. The attack terminal attacks
the control system. Meanwhile, the evaluation terminal records the robot’s status data and
evaluates the system.

6.2. Experimental Data Collection and Calculation

• Step 1: Static identification

The company’s asset data and data evaluated by asset management are shown in
Table 8. Table 9 displays the vector and complexity in availability. When the robot connects
to the PC, the robot does not perform authentications or check the content of the communi-
cation. As a result, the authentication score is 0.704. Most system security measures are
warnings. The valuation of data weakness can be found in Table 9. Most system faults are
alarming. When a serious failure occurs, the system will stop running. The score of the
emergency protective measure is 0.5.

• Step 2: Dynamic monitoring

The initial parameters of the model are obtained by collecting and sorting empirical
data. The initial parameters A0, B0, and π0 are obtained by empirical estimation. We used
two types of DOS attacks during the experiment in the two periods. In the first period,
the hacker uses ping flooding random attacks. In the second period, the hacker uses UDP
attacks to attack the vulnerable spots of the system. In the experiment, the attacked ports
are random, and the attack frequency is once every 10 min.
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• Step 3: Assessment

The failure of the industrial control system caused by the attack is probabilistic. We
divide the experiment into two stages. Each attack stage lasts a week, and the robot control
system status is collected once an hour during the working time every day. We record
the status of the control system with three different methods: DAF-ICSS, expert [40] and
HMM [41]. The data obtained by these methods are shown in Table 10. We obtain the
average value of each stage evaluation from the on-site enterprise expert group.

Table 8. Basic value datasheet of the robot unit.

Property Name Identifier Valuation Remarks

Self-value Sv Controller, sensors and accessories, etc. / CNY 40,000 Collection of financial information
Indirect value Av Labor, equipment, product lost, etc, / CNY 160,000

Accident value Ac
Accident probability f1 0.01 Statistics

Accident loss g CNY 1,000,000

Asset status
Self-state h 0.25 Query the above

related assessment
form after evaluation

Network state Ns 1.5

Work environment Es 0.8

Table 9. Control system information sheet.

Property Name Identifier Valuation Remarks

Availability
Aa

Vector l 0.55

Complexity m 0.61

Authentication r 0.704 Check the
evaluation form

according to
the information

Data weakness
Sr

Usability v 0.5

Integrity w 0.7

Confidentiality u 0.5

Safety
protection Sw

Code patch Cp 0.7

Normal protective measure Fr 0.9

Emergency protective measure Sp 0.5

Table 10. The data of the observation sequence.

Stage 1

Day Observation sequence Expert (CNY 104) HMM (CNY 104) DAF-ICSS (CNY 104)

Day 1 O1, O1, O1, O1, O1, O2, O1, O4 1.75649 1.7498

Day 2 O1, O1, O1, O3, O1, O3, O2, O4 2.17419 2.51482

Day 3 O1, O3, O1, O2, O1, O4, O1, O5 2.27618 2.79187

Day 4 O1, O1, O1, O2, O1, O5, O1, O5 1.60 2.0854 2.72481

Day 5 O1, O1, O1, O1, O2, O3, O2, O6 2.04967 2.66117

Day 6 O1, O2, O1, O3, O1, O6, O2, O4 2.13676 2.86088

Day 7 O2, O1, O3, O1, O4, O4, O5, O6 2.2158 2.92729
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Table 10. Cont.

Stage 2

Day 1 O1, O5, O2, O6, O2, O4, O4, O5 2.23394 4.0062

Day 2 O1, O1, O2, O3, O3, O4, O4, O5 2.24704 3.17175

Day 3 O2, O1, O2, O3, O3, O2, O2, O5 2.4923 3.23129

Day 4 O1, O2, O2, O1, O3, O1, O2, O6 2.10 2.47547 3.08055

Day 5 O1, O3, O2, O1, O3, O5, O2, O4 2.52337 3.1867

Day 6 O2, O2, O3, O2, O3, O4, O3, O4 2.72174 3.32432

Day 7 O1, O2, O1, O3, O3, O5, O3, O6 2.68091 3.28233

A0 =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



=


0.53 0.26 0.16 0.05
0.36 0.50 0.08 0.06
0.11 0.21 0.52 0.16
0.03 0.07 0.18 0.72


(14)

B0 =


b11 b12 b13 b14 b15 b16
b21 b22 b23 b24 b25 b26
b31 b32 b33 b34 b35 b36
b41 b42 b43 b44 b45 b46



=


0.72 0.11 0.08 0.04 0.03 0.02
0.60 0.14 0.11 0.10 0.03 0.02
0.03 0.01 0.06 0.3 0.2 0.4
0.07 0.05 0.09 0.3 0.13 0.36


(15)

π0 = (0.7, 0.1, 0.1, 0.1) (16)

Figure 9 shows that the risk value evaluated by experts is close to the other algorithms
at the beginning of stage 1. It means that every assessment method is accurate at the
beginning. After the beginning stage, the expert’s assessment remains the same at each stage
and cannot dynamically evaluate the system’s security. HMM and DAF-ICSS assessment
methods can dynamically assess the security of the system.

At the beginning of stage 2 in the assessment, we open the UDP port of the system,
which results in a severe alarm state. However, the HMM assessment method draws
an insensitive rise in Figure 9. Because the HMM method assigns no risk weight to a
variety of system security states, DAF-ICSS can sensitively reflect the changes of system
risk by weighing the evaluation elements and establishing a dynamic evaluation model.
When the system is attacked by a UDP flood, the risk value assessed by DAF-ICSS exceeds
CNY 40,000. The values given by other evaluation methods do not exceed CNY 40,000.
DAF-ICSS assessment is more accurate than HMM.



Sensors 2022, 22, 2593 13 of 16
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Figure 9. The result of the experiment.

Then, the evaluation system issues an alarm and closes the UDP port to lower the
risk’s value. The experiment confirms the effectiveness and timeliness of DAF-ICSS.

ICS may expose different vulnerabilities during running. For example, the operator
opens the remote service port by mistake, which could lead to system vulnerability. We
should focus on the dynamic changes in risk value. When the risk value suddenly increases,
the system is probably experiencing a security risk.

The proposed framework of DAF-ICSS is more sensitive than other methods [42,43],
which could provide a dynamical risk value. Table 11 lists the comparision of some security
assessment methods in performance.

Table 11. The comparison of some security assessment methods in performance.

Method Qualitative or Quantitative Accuracy Static or Dynamic Evaluate Unknown Attacks

Expert Qualitative High accuracy Static Y

Fault tree Qualitative Medium
accuracy Static N

Bayesian network Quantitative Medium
accuracy Static N

HMM Combination Medium
accuracy Dynamic Y

DAF-ICSS Combination High accuracy Dynamic Y

7. Disscusion

In addition to industrial robots, the proposed method can also be used for other
industrial control systems. Some parameters in the method need to be evaluated based
on a specific application scenario. For example, the work environment will be changed
according to different scenarios. If we obtain a more accurate risk value, the sequence
and state can be increased to enhance the quality of DAF-ICSS. It will also increase the
computational burden of the system.

The security assessment combines the qualitative method, which uses a risk map to
determine the system’s security, and the quantitative method, which uses a risk value to
measure security value. Because the assessment relies on observations of ICS anomaly
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alarms, the risk value may be inaccurate when the alarms do not accurately match the
system’s state. In the future, it can be overcome to some extent.

8. Conclusions

Security assessment is the critical part of the system’s security. We propose a security
assessment method for ICS. We divide the security assessment of ICS into three steps: static
recognition, dynamic monitoring, and assessment. A hierarchical system is provided for
evaluating security risks. To obtain the system’s risk level, the assessment method based on
W-HMM calculates the industrial security risk value. It can be updated online for optimized
estimation results and determine the degree of influence with different parameters in the
factory. DAF-ICSS enables operators to find out a change of risk with high precision and
efficiency. It also can be used to conduct cause analysis and security impact analysis.

However, this assessment method still has room for improvement, such as exploring
methods for selecting more reasonable weights, etc. In addition, there is a well-known
problem in industrial systems: The already designed secure architecture that does not
sacrifice functionality has difficulty in providing a coordination of security and safety. In the
future, we could focus on assessing multiple industrial control systems and fundamental
understanding between safety and security based on dynamic security assessments so that
dedicated modeling constructs and metrics can be proposed.
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Appendix A

The probability of the hidden state, Si, at time, t, is expressed in Equation (A1).
The probabilities of the hidden states that is Si at time t and Sm at time t + 1 are defined in
Equation (A2). The Baum–Welch algorithm is used to calculate the model parameters for n
times, as shown in Equations (A3)–(A5). The condition for terminating iteration is that the
absolute values of an+1

ij − an
ij, bn+1

ij − bn
ij or πn+1

i − πn
i are within a tolerance criterion.

γt(i) = P(xt = Si | λ), 1 ≤ i ≤ 4 (A1)

ξt(i, m) = P(xt = Si, xt+1 = Sm | λ),

1 6 i, m ≤ 4 (A2)

an+1
im =

∑T−1
t=1 ξt(i, m)

sumT−1
t=1 γt(i)

,

(T is the length o f Markov ) (A3)

bn+1
ij =

∑T−1
t=1,Oj

γt(i)

∑T
t=1 γt(i)

(A4)
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πn+1
i = γ1(i) (A5)
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