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Abstract: The paper proposes a new set of normalization techniques for precoding/beamforming
matrices applicable to broadband multiuser multiple-input multiple-output (MIMO) satellite systems.
The proposed techniques adapt known normalization methods to account for the signal attenuation
experienced by users due to the degradation of antenna gain and free space losses towards the edge
of the coverage. We use, as an example, an array-fed reflector (AFR) antenna onboard a satellite in
geosynchronous orbit (GEO), which provides a favorable trade-off between high-directivity, reconfig-
urability, and the requirement for digital processing, but suffers from high scan losses away from
broadside due to optical aberrations when considered for global coverage applications. Three differ-
ent precoding/beamforming techniques are employed, namely zero forcing (ZF), minimum mean
squared error (MMSE), and matched filtering (MF). Low-complexity power normalization techniques
digitally applied after the beamformer are introduced that, in the absence of any atmospheric effects,
lead to iso-flux-like characteristics whilst satisfying the power constraint per feed. In comparison
with other methods reported in the literature, mainly based on iterative algorithms, the proposed
techniques consist in closed-form expressions to provide uniform signal-to-noise ratio (SNR) and
signal-to-noise plus interference ratio (SNIR) across the users without significant impact on the
payload sum rate. Numerical results are presented to comparatively demonstrate the achieved
performance in terms of total capacity and distribution of SNR and SNIR at various noise and
interference scenarios.

Keywords: multiple-input multiple-output; satellite communications; array-fed reflectors; linear
precoding; power normalization techniques

1. Introduction

The objective of increasing the throughput at a competitive price in broadband satellite
communication systems has triggered investigations of terrestrial solutions in the satellite
context. Based on the results of Dirty Paper Coding (DPC) [1], and the vast exploitation of
multiuser multiple-input multiple-output (MIMO) terrestrial systems, a promising tech-
nique consists in adopting precoding to cancel the interference, allowing more aggressive
frequency reuse schemes for the satellite forward link. The extended version of the digital
video broadcasting (DVB-S2X) standard, with its novel superframe structure, supports the
implementation of satellite-based precoding [2]. Research has addressed the application of
this technique in single feed per beam (SFPB) antennas [3–5]. Many drawbacks of such sys-
tems have been highlighted. Due to a limited payload processing capability, precoding has
to be implemented at the gateways (GWs); if the GWs are not interconnected, inter-cluster
interference arises since each GW can only process a subset of beams, limiting the benefits
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of precoding [6]. Precoding relies on the knowledge of the channel matrix; typically, users
have to estimate and report the channel state information (CSI) via a return link, which,
however, can contain errors and be outdated. Another issue is the non-linearity introduced
by the on-board high power amplifiers (HPAs) [7]; typically, HPAs need to be operated
as close as possible to the amplifier compression point to optimize power efficiency [8].
The application of precoding may change the power assigned to each antenna feed de-
pending on the channel characteristics, making the back-off requirement harder to satisfy.
Recently, the concept of massive MIMO employing active antennas is also being analyzed
for applicability in satellite communications [9,10] and, in general, in non-terrestrial net-
works (NTNs) [11]. The difficulties that have been summarized are even more challenging
for massive MIMO systems; for example, the CSI should be estimated at the receiver and
signaled back to the GW individually for each feed of the large-scale antenna array. In [12],
a pragmatic approach for exploiting massive MIMO with much lower complexity than
precoding has been introduced; CSI is estimated by modeling the antenna pattern and the
downlink channel for a fixed set of beams. The precoding/beamforming coefficients are
computed based on these fixed pointing directions. By properly scheduling the users to
be served in a time division multiplexing (TDM) scheme, it is demonstrated that such a
pragmatic solution can achieve a performance close to traditional precoding techniques. In
a similar manner, in this paper, we are interested in pragmatic applications of precoding to
satellite MIMO systems and we consider ideal, previously estimated CSI characteristics
to assess the proposed power normalization techniques in a reference scenario employing
open-loop precoding strategies.

The active antenna considered in this paper is based on an array fed reflector (AFR)
configuration with distributed amplification. Such antenna architecture provides high
directivity and flexibility at a moderate complexity and cost [13], and is the preferred
solution for next-generation software-defined satellites in geosynchronous orbit (GEO).
Despite these advantages, the optics inevitably lead to higher scan losses [14,15]. This is
particularly evident in the hybrid optics described in [16,17], with higher scan losses in the
imaging plane compared to the focusing plane. The directivity degradation at increased
pointing angles is predominantly due to spill-over losses and optical aberrations. Possible
methods to mitigate this issue are based on shaping the AFR geometry to obtain an isoflux-
like performance, and are described in patent [18]. System performances are driven by the
power flux density achieved across the service area, which is a combination of antenna gain
and payload power distribution. Thus, the correction proposed at the antenna level in [18]
could equally be considered at the payload level.

In this paper, we explore the possibility of recovering scan losses at the payload level
by computing suitable precoding/beamforming weights that will assign more power to
users located in beams with higher depointing angles, thereby equalizing the received
signal-to-noise ratio (SNR). Combined with a user scheduling protocol, the proposed
techniques consistently reduce signal-to-noise plus interference (SNIR) variability, hence
providing a similar quality of service among users. The proposed methods also consider
free space losses (FSL), that, like scan losses, are greater towards the edge of coverage.
Zero forcing (ZF), minimum mean squared error (MMSE), and matched filtering (MF) are
considered for obtaining the precoding/beamforming matrix prior to normalization. It has
to be highlighted that ZF and MMSE performance are not achievable in practice due to the
aforementioned drawbacks; however, these precoding techniques are common in MIMO
systems and they are evaluated to provide reference upper bounds. MF can be adopted in
actual satellite MIMO systems following the pragmatic approach in [12].

In [19], a power normalization after precoding, referred to as CTTC, is introduced
to satisfy the power per feed constraint and to exploit all available power at the cost of
some co-channel interference. Whilst the performance in terms of sum rate is favorable,
with this approach, the SNIR towards the edge of coverage is consistently compromised.
Here, we propose three pragmatic normalization techniques that maintain a uniform power
per feed whilst providing similar sum rates and, together, a more fair SNR and SNIR
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distribution across the full earth coverage. A first approach, in the remaining referred to as
Loss Mitigation, makes use of the known antenna characteristics, in this case the designed
AFR, to manipulate the precoding matrix. The second approach, SNR Equalization, targets
an equal received power per user. Similarly, the last approach, Strict SNR Equalization,
relaxes the power per feed constraint to provide exactly the same SNR per user; in this
case, the constraint per feed is not satisfied. However, we will show in Section 4 that the
variability of the power per feed is drastically reduced. Typically, the joint power per feed
and equal SNIR constraint is treated introducing an optimization problem that requires
iterative algorithms to be solved [20]. In [21], the general non-convex optimization problem
to maximize the minimum SNIR, max-min SNIR, under equal power per feed constraint is
expressed and is reformulated as a convex one that can be solved via iterative algorithms.
In [22,23], optimization problems targeting desired performance are investigated under
a sum power constraint. We demonstrate that by employing the proposed closed-form
techniques, with proper user scheduling, fairness can be increased without significant
additional complexity. In [24], pragmatic solutions to power normalization problems are
analyzed for various precoding techniques. However, the effect of the user scheduling
on SNIR variability has not been treated and the system assumptions refer to terrestrial
MIMO applications.

The impact of the normalization techniques on system performance, combined with
the different precoding schemes, are analyzed in terms of received SNR and SNIR per
user; it is shown that by using Sum Power and CTTC, the performance is highly correlated
with the geographical location of users and can be drastically equalized by adopting
the proposed methods. At different noise levels, the total throughput, SNR, and SNIR
variability among users are evaluated using a Monte Carlo approach. It is shown that the
iso-flux-like characteristic and a more uniform SNIR among users are obtained in all the
analyzed scenarios, while the total throughput is not compromised. The main contributions
of this work can be summarized as follows:

• Application of precoding to AFR antennas in a broadband satellite MIMO system;
• Introduction of three novel power normalization methods accounting for the signal

attenuation towards the edge of the coverage due to the considered satellite communi-
cation characteristics;

• Demonstration of reduced SNR and SNIR variability among users when combining
user scheduling with the proposed power normalization methods;

• Analysis of different power normalization methods applied to various linear precod-
ing/beamforming techniques (ZF, MMSE and MF).

The paper is organized as follows. In Section 2, the system model, user scheduling, and
precoding techniques are detailed, together with system assumptions. The normalization
methods are described in Section 3. In Section 4, the simulation results are presented, and
in Section 5, the conclusions are drawn.

2. System Model

In order to benchmark the proposed methodologies based on precoding matrix nor-
malization, we consider the forward link of a broadband satellite system operating in GEO.
The satellite is equipped with an AFR having distributed amplification (here, assumed to
be one amplifier per feed) and an On-Board Processor (OBP) to drive the beamforming
network and produce the multibeam coverage. The focus is on the downlink path of the
system. TDM is considered, such that at each time epoch, a subset of users is served,
thus adopting a full frequency reuse (FFR) scheme. We assume, for simplicity, a number
of users equal to K and one user per beam. Furthermore, all users are equipped with a
single antenna; the transmitting AFR instead possesses N feed elements, which are used
to produce the beams. The antenna geometry is an imaging configuration in which all
feeds contribute to each beam. The communication system can be modeled by introducing
a MIMO channel model. Denoting x as the K × 1 unit energy signal vector intended to
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users and U as the N × K precoding/beamforming matrix, the N × 1 vector containing the
complex signal transmitted by the N radiating elements is

y =
√

PUx, (1)

where P is the total payload RF power. The received signal vector of K elements is then

z = Hy + n =
√

PHUx + n, (2)

with H being the K× N channel matrix and n being the K× 1 Gaussian noise vector repre-
senting receiver noise. We assume, without loss of generality, that each user experiences
the same noise power.

2.1. Channel Model

The channel matrix, representing the overall complex transfer function, can be evalu-
ated by taking into account the satellite propagation characteristics. The downlink channel
operating under line-of-sight (LOS) is modeled by characterizing the transfer function of
each feed element to the desired directions and by including the propagation fading. FSL
represents an important fading effect that, like the scan loss, adds another source of gain
imbalance, reaching the maximum for users that are located near the edge of coverage.
We neglect other sources of perturbation, such as rain fading, and focus on the stationary
condition as assumed in [12].

The characterization of the total field received by the K users depends on the AFR con-
figuration and is detailed as follows. The AFR considered in this paper has been optimized
to provide full earth coverage from GEO and to possess the following characteristics: no
feed blockage, reduced size, maximization of directivity, reduced scan loss, and grating
lobes. The reflector is illuminated with an array of 511 circularly polarized feeds placed in a
hexagonal lattice. The antenna geometry is depicted in Figure 1 and the design parameters
are reported in Table 1.

F

D

Xc

x

z

d
R

Figure 1. Schematic representation of the antenna system and design parameters.

This antenna design results in a 3 dB beamwidth of 0.8 degrees, with a peak directivity
of 46.5 dB and a maximum scan loss of 2.4 dB.

An in-house tool developed in Heriot-Watt University is used to characterize the AFR
antenna [25]. This tool uses Physical Optics (PO) to obtain the far field of every feed in
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the required directions and implements acceleration methods to reduce the computational
effort [25,26]. In this paper, the far field of every feed is computed for a fixed set of points.
Next, interpolation is performed to estimate the complex copolar component in every user
direction. This method accelerates the estimation of the channel matrix, which is required
in every simulation.

Table 1. Optimized design parameters.

Symbol Parameter Value

f0 Frequency 17.7 GHz
D Reflector aperture 2 m
F Focal Length 4 m

Xc Offset height 4 m
δ Feed spacing 2.24 λ
T Feed taper −2 dB at 12 degrees
N Number of feeds 511
R Array aperture 900 mm

MG Margin array aperture 57 mm (1.5 δ)
d Defocused distance 3.37 m
M Magnification ≈1.5

Let K be the number of users to be simultaneously served in a time slot, represented
as K points in a [u, v] satellite coordinate system. The corresponding component of the far
field for the point (uk, vk) is computed for each of the N feeds. These computed values can
be disposed to form a K × N matrix E f ar = E f ar

n (θk, φk), with 1 ≤ k ≤ K and 1 ≤ n ≤ N,
where [12]:

θk =
√

u2
k + v2

k , φk = tan−1
(

vk
uk

)
. (3)

E f ar represents the transfer function from antenna feeds to users in the far field without
any channel fading. In order to include the FSL, let l f s be the vector with K elements,
representing the FSL for each user, computed as [27]:

l f s
k =

(
λ

4πdk

)2
, (4)

with λ being the wavelength and dk being the distance satellite-user. The overall channel
matrix from feeds to user can then be modeled as

H = diag
{

l f s 1
2

}
E f ar, (5)

where the diag{·} operator applied to a vector returns a square matrix having the vector
elements in the diagonal, and the square root of l f s indicates the element-wise operation.
The set of K users, defining the user distribution and, hence, the channel matrix that is used
in each Monte Carlo iteration is based on the results of [12], where it is found that separating
the users by a minimum distance, the Poisson disk radius, brings substantial benefits in
terms of system performance. While the Poisson disk distribution is impossible to achieve
in practice, a similar performance can be achieved with appropriate RRM techniques as
shown in [28]. In this paper, to avoid the need of performing an RRM optimization at each
simulation, we generated an approximate Poisson disk distribution by sampling a larger
set of points uniformly distributed in the region of interest (ROI), corresponding to the
satellite coverage region. The algorithm to perform the sampling that ensures a minimum
distance between users is detailed in [29].
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2.2. Precoding

To compute the precoding/beamforming matrix from the modeled channel matrix,
we focus on linear techniques that, even if sub-optimal, provide significant capacity im-
provement without requiring the processing complexity of non-linear techniques [30] and
constitute a practical choice for satellite systems [31]. In the following, three linear precod-
ing methods are described; the resulting N × K matrix is denoted W and the techniques
are identified by related subscript. The following precoding methods do not account for
payload power limitations, so a further step is required to obtain the precoding matrix U of
Equation (1).

ZF precoding is an effective way of canceling the interference between users. By in-
verting the channel, the received signal is forced to be as close as possible to the desired
transmitted signal x. The effect is that nulls are placed in the interference directions. If the
channel matrix is full rank, the ZF precoding weights can be obtained by [32]:

WZF = HH(HHH)−1, (6)

where HH denotes the Hermitian transpose of H. In general, it can be derived as the
Moore–Penrose pseudo inverse WZF = H+. ZF precoding allows the users to recover their
intended signals without interference from other beams. However, in [33], it was proved
that ZF can cause a major degradation of system performance, especially in scenarios with
a high number of users and noise. Another practical choice is to relax the condition of
having zero interference for all the receivers by regularizing the inverse, adding a scaled
identity matrix before inverting. The regularized inversion was introduced in [33] and can
also be obtained from Minimum Mean Square Error (MMSE) optimization problems [34,35].
The MMSE precoder is computed as

WMMSE = HH(HHH + αI)−1, (7)

where α ≥ 0 is the regularization factor. An optimization problem can be formulated based
on various criteria; in [33], the optimal factor to maximize the SNIR at the receivers was
derived as α = Kσ2/P, where σ2 is the noise variance.

The last precoding/beamforming technique considered is MF; this beamforming
technique maximizes the gain of the array towards the users, and can be interpreted as
steering the beams in the user directions [36]. However, it does not take into account any
interference mitigation. The beamforming matrix is computed as [37]:

WMF = HH . (8)

Even if it does not take into account interference or noise, it is a very low complexity
practical choice and can represent the basis for a pragmatic implementation of Massive
MIMO in the satellite context [12].

The precoding/beamforming matrix needs to be normalized to account for payload
limitations, such as total available RF power. Another important aspect is the power
variation across the feed array that can be very large when linear precoding is used,
resulting in some HPAs operating at high backoff. This reduces the efficiency of the DC to
RF power conversion and constitutes an important draw-back of precoding application [7].
In the following, we focus on power normalization criteria that assign uniform power
among antenna feeds at the expense of some co-channel interference. In [19], a matrix
normalization satisfying this requirement, named CTTC, was introduced and in [12], it was
shown to provide excellent performance compared to other normalization techniques in
various scenarios. In this paper, we also include Sum Power normalization as a benchmark,
corresponding to the simple normalization of the precoding matrix to satisfy the sum
power constraint. The normalized precoding/beamforming matrix will be denoted by U,
in accordance with Equation (1).
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Given the total satellite power, P, the effective power allocated to users and antenna
feeds can be derived from U and represented as vectors of K and N elements, respectively, as

puser = [puser
1 , puser

2 , . . . , puser
K ], p f eed =

[
p f eed

1 , p f eed
2 , . . . , p f eed

N

]
, (9)

where

puser
k = P‖uC

k ‖
2 = P

N

∑
i=1
|uik|2, (10)

p f eed
n = P‖uR

n ‖2 = P
K

∑
j=1
|unj|2, (11)

for 1 ≤ k ≤ K and 1 ≤ n ≤ N. uC
k represents the k-th column vector of matrix U, uR

n the
n-th row, and ‖ · ‖ the Euclidean norm operator. All normalization methods require that

K

∑
k=1

puser
k =

N

∑
n=1

p f eed
n ≤ P, (12)

so the total power constraint is satisfied. The power per feed constraint has the simple
form p f eed

n ≤ Pn, for each n, where Pn is the power constraint on the n-th feed; we consider
the case where each feed has the same constraint, hence Pn = P/N. The normalization
can follow different strategies that are detailed in the next section. Given a normalized
matrix U, we can express the formulation of signal-to-noise, interference-to-noise, and
signal-to-noise plus interference ratio experienced by user k as [4,12]

SNRk =
P|hR

k uC
k |

2

N0Bw
, (13)

INRk =
P ∑K

j=1,j 6=k |h
R
k uC

j |
2

N0Bw
, (14)

SNIRk =
SNRk

1 + INRk
, (15)

where N0 is the noise power density and Bw the total bandwidth. Once the SNIRk for
each user is obtained, the throughput is derived from the spectral efficiency table of the
DVB-S2X standard [31]; hence, the total throughput is

Th = Bw

K

∑
k=1

ηDVBS2X(SNIRk). (16)

In Section 4, the performance of the proposed methods will be evaluated in various
interference and noise scenarios. In order to demonstrate the reduced SNR and SNIR
variability, obtained by the precoding and matrix normalization methods in the simulated
scenarios, we will present their Cumulative Density Function (CDF) and dynamic ranges,
i.e., max (SNRk)−min (SNRk) and max (SNIRk)−min (SNIRk), respectively. The steps
to produce these results are summarized in Algorithm 1. The number of feeds (N = 511) is
fixed by the chosen antenna configuration, as well as the parameters reported in Table 1.
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Algorithm 1 Iterative evaluation of performance results.

Input: K, P, N0, Bw
1: for all Monte Carlo iterations do
2: Generate a large set (10× K) of uniformly distributed [u,v] points in the ROI.
3: Sample the uniform set to obtain the approximated Poisson distribution of K points,

as described in [29].
4: Compute the far field related to feed n and point (uk, vk) for all k = 1, . . . , K and

n = 1, . . . , N, as described in [26].
5: Compute the free space loss using Equation (4) for all k = 1, . . . , K.
6: Obtain the channel matrix H, Equation (5).
7: Compute precoding matrices WZF, WMMSE and WMF, Equations (6)–(8).
8: Compute normalized precoding matrices UZF, UMMSE and UMF for each normal-

ization method detailed in Section 3.
9: Compute puser

k , p f eed
k , SNRK, SNIRK and Th for all precoding/normalization com-

binations, Equations (10), (11), (13), (15) and (16).
10: end for
11: Compute the average of the metrics over the number of Monte Carlo iterations.
Output: average puser

k , p f eed
k , SNRk, SNIRk and Th for all precoding/normalization

combinations.

3. Power Normalization Methods

In this section, five matrix normalization methods are presented, each of them empha-
sizing some conditions. The first one, Sum Power, typically achieves the best performance
in terms of throughput and will be used as a reference. The remaining methods aim at:

• Uniform power per antenna feed;
• Total throughput not severely penalized w.r.t Sum Power;
• Reduced SNR and SNIR variation among users;
• All available RF power exploited;
• Applicability to all the discussed precoding/beamforming methods;
• Closed-form expression, low-complexity technique.

The normalization methods are divided into sub-steps; equations are presented per
row or column for notation simplicity and must be performed for all rows and columns,
i.e., for each 1 ≤ k ≤ K and 1 ≤ n ≤ N.

3.1. Sum Power

The first normalization considered is Sum Power. The complex matrix W is simply
scaled to satisfy the equality of the sum power constraint in Equation (12):

U = γW, (17)

where γ = 1/
√

trace(WWH). Note that the properties of the precoding matrix W are
not changed since we are simply scaling by a constant value. When ZF is applied as the
precoding technique, for N > K cases, the channel inversion forces the SNRk and SNIRk
to be identical for all users, while the power per user and per feed, vectors puser and p f eed,
exhibit a great variation. The SNRk and SNIRk uniformity is broken by adopting MMSE,
which introduces a regularization factor in the inversion, or by applying MF, where no
interference management takes place.

3.2. CTTC

CTTC is a normalization proposed in [19], as a variation of the Taricco method in [3],
which ensures that users get the same RF power while the power per feed constraint is
not violated; this implies that the total power is generally lower than the available RF
power while the interference is not affected. The CTTC, instead, tries to exploit the unused
power by normalizing the antenna feed power so that all array elements get the same RF
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power at the expense of some co-channel interference mitigation. The first step consists of
normalizing the power per user [38]:

ũC
k =

wC
k√

K‖wC
k ‖

, (18)

and the second step corresponds to a normalization of power per feed, i.e., all the row
vectors of the precoding matrix with

uR
n =

ũR
n√

N‖ũR
n ‖

. (19)

Note that scaling with factors 1/
√

K and 1/
√

N ensures that the constraint is satisfied
after each step. Performing the feed normalization at the last step ensures a uniform
power distribution among feeds, while the power per user can vary substantially, as well
as the SNR and SNIR, as will be shown in Section 4. This applies to all the precod-
ing/beamforming techniques previously discussed. The following three methods propose
a variation of the CTTC, aiming at simultaneously having uniform power per feed and
uniform SNR per user. The CTTC steps are reproduced in matrix form in Table 2.

Table 2. CTTC steps.

Step 1: Ũ = 1√
K

Wdiag
{

1
puser

1
, . . . , 1

puser
K

}
.

Step 2: U = 1√
N

diag
{

1
p f eed

1

, . . . , 1
p f eed

N

}
Ũ.

3.3. Loss Mitigation

Users typically experience different amounts of losses that depend on their positions;
for example, the ones that are closer to the edge of the coverage suffer up to 2.4 dB of
scan losses due to the considered antenna characteristics. This is compensated by using
ZF and Sum Power as previously observed; however, the uniform power per feed is
not satisfied and other precoding techniques do not recover the losses. Other precoding
approaches, for example based on max-min SNIR optimization [22], are possible; however,
the complexity level would be higher. The idea of this matrix normalization is to modify
the first step of CTTC in order to assign more power to users experiencing more losses due
to their locations. The first step is realized by a normalization of power per user weighted
following the relation with user radial distance losses, plotted in Figure 2,

ũC
k =

f (ρk)wC
k√

K‖wC
k ‖

, (20)

with ρk =
√

az2
k + el2

k representing the radial distance of user k, azk and elk being the
azimuth and elevation angle; f (·) is the function representing the scan losses plus the
propagation losses, as in Figure 2, in natural values. Note that f (·) has a slight asymmetry
in az due to the offset geometry of the considered antenna, but that can be ignored since it
results in negligible impact on performance. In case of higher asymmetry, the method can
be generalized characterizing the losses as a function of azimuth and elevation, f (az, el).
The second step is exactly the same as the second step of CTTC in Equation (19). Table 3
reports the steps.
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Figure 2. Scan losses plus propagation losses derived from antenna design and computed FSL as a
function of azimuth in the plane of zero elevation.

Table 3. Loss Mitigation steps.

Step 1: Ũ = 1√
K

Wdiag
{

f (ρ1)
puser

1
, . . . , f (ρK)

puser
K

}
.

Step 2: U = 1√
N

diag
{

1
p f eed

1

, . . . , 1
p f eed

N

}
Ũ.

3.4. SNR Equalization

The introduced Loss Mitigation can mitigate the losses which are simply estimated
knowing the geographic position of a user. However, it does not take into account the
user distribution and associated impact on the SNR. Heuristically, users that are very
close together will experience higher interference and, at the same time, lower SNR, since
some power is wasted in the interference direction when compared to precoded signal
transmission adopting ZF and MMSE. The SNR Equalization method also compensates
against these gain losses. It is noted that if two users are too close, a large amount of power
will be used to compensate their gains at the expense of the remaining users, lowering
the performance of the overall system. A user scheduling that ensures a homogeneous
distance between users, such as the Poisson distribution, is thus required. While CTTC
imposes equal transmitted power per user at the first step, this normalization method
forces the received power per user to be identical. The first step imposes an equal SNR, (see
Equation (13)), by

ũC
k =

wC
k

sk
, (21)

with sk = |hR
k wC

k |, the signal amplitude received by user k. The second step is identical to
the second step of CTTC, Equation (19). Table 4 indicates the steps.

Table 4. SNR Equalization steps.

Step 1: Ũ = Wdiag
{

1
s1

, . . . , 1
sK

}
.

Step 2: U = 1√
N

diag
{

1
p f eed

1

, . . . , 1
p f eed

N

}
Ũ.
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3.5. Strict SNR Equalization

Although the previous method will reduce the SNR variation across the users, the
normalization of all row vectors to 1/

√
N performed in the second step (to ensure that

all the array feeds operate at the same power level) renders Equation (21) approximate.
With the Strict SNR Equalization technique, we first impose equal power per feed and then
equal SNR per user. In this way, equal SNR across the users is achieved at the expense of
some variation in the power per feed. This technique is applied in three steps. The first
step imposes uniform power per feed:

ũR
n =

wR
n√

N‖wR
n ‖

, (22)

the second step realizes the equal SNR per user:

ūC
k =

ũC
k

s̃k
, (23)

where s̃k = |hR
k ũC

k |. The last step rescales the modified beamforming matrix to have the
total power equal to P, without further modifying matrix properties:

U =
Ū√

trace(ŪŪH)
. (24)

In Table 5, all the steps are reproduced.

Table 5. Strict SNR Equalization steps.

Step 1: Ũ = 1√
N

diag
{

1
p f eed

1

, . . . , 1
p f eed

N

}
W.

Step 2: Ū = Ũdiag
{

1
s̃1

, . . . , 1
s̃K

}
.

Step 3: U = Ū√
trace(ŪŪH)

.

4. Results

In order to evaluate the performance of the normalization techniques discussed above,
Monte Carlo simulations were performed by varying the users distribution and the re-
sults are presented in this section. We show the performance of the proposed precod-
ing/normalization techniques in typical satellite noise scenarios. The system parameters
considered are reported in Table 6.

The number of Monte Carlo iterations is set to five, since it is found to be an adequate
number of simulations for obtaining reliable results of such systems. In [28], it is claimed
that a good throughput accuracy, averaged on the number of Monte Carlo trials, is already
achieved with five iterations; a similar convergence was experimentally confirmed with our
system assumptions. As an example, the resulting throughput with 255 users adopting MF
and Loss Mitigation with only one iteration is 138.775 Gbps, with five iterations is 138.975,
and with 10 iterations is again 138.975, showing a very limited impact on performance
results when varying the number of trials.

We have selected two scenarios for presenting the results. A scenario with a limited
number of users (N/K ≈ 2), where the noise is the predominant factor, and one with more
users and, thus, more interference (N/K ≈ 3/4). We first show the reduced SNR and SNIR
variability among users and then ensure that the total throughput is not compromised in
various noise level scenarios.
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Table 6. System parameters for simulations.

Symbol Parameter Value

Ntrials Monte Carlo trials 5
f0 Frequency 17.7 GHz

Bw Bandwidth 500 MHz
P Total RF power 3 kW

G/T User terminal gain over receiver noise 17 dB/K
DR User terminal antenna diameter 0.75 m
ae f f User terminal efficiency 75%
RE Earth radius 6378 km
lat Satellite latitude 0
lon Satellite longitude 13
alt Satellite altitude 35,786 km
K Number of simultaneous active users 255–380

SNRre f Reference SNR 3–5 dB

4.1. Case N/K ≈ 2

The number of users K = 255 has been fixed, corresponding to a ratio for the number
of array feeds versus the number of users of N/K ≈ 2. These users are sampled from a
larger set of uniformly distributed users as explained in Section 2. We first present the
effect of the normalization techniques on the SNR and SNIR per user for all the discussed
precoding/beamforming methods. In a first plot, the obtained SNR, or SNIR, per user is
depicted in relation to the user position in the ROI (in azimuth and elevation angles), while
in a second plot, we show the resulting CDF for SNR and SNIR in the related section. We
also assess the techniques at different noise scenarios, controlling the receiver noise. For the
selected receiver noise level, the SNRk and SNIRk are computed for each user, k, and the
average SNR is thus SNRavg = ∑k SNRk/K. For the system parameters of Table 6, the
reference SNR is around 5 dB. We will consider SNRavg values in the range [−2, 9] dB to
test the proposed techniques in typical noise scenarios that can be experienced if different
parameters are assumed, such as lower payload power or different G/T values. Tables will
show the resulting maximum and minimum dynamic range of SNR and SNIR obtained
by the Monte Carlo simulations over the different noise levels to ensure that the iso-flux
characteristic and reduced SNIR variability remain valid.

4.2. SNR Results

Figure 3 shows how the SNR per user is affected applying the proposed methods.
As previously noted, the Sum Power normalization technique applied to ZF leads to a
uniform SNR, which is confirmed by the first plot on the top-left corner. However, when
applying CTTC to ZF, the SNR variation is highly increased (second plot on the top); the
precoding/beamforming properties of ZF are broken by the CTTC normalization steps
and this leads to enhanced performance, w.r.t Sum Power, for users near the center of
the coverage at the expense of users towards the edge. This is caused by the scan and
propagation losses that Sum Power recovers by assigning more power to the users with
higher losses. As can be appreciated from Figure 3, the proposed normalization methods
deliver a uniform service to the users, independently of their location. The resulting
SNR variation among users is highly reduced and it is almost nulled, except for the
ZF-Loss Mitigation combination. This is due to the fact that ZF manages very close
users by completely suppressing reciprocal interference, a condition that is broken by the
normalization steps.
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Figure 3. SNR (dB) per user versus position in azimuth and elevation in degrees for all discussed
precoding and normalization methods. The rows span the precoding/beamforming techniques (ZF,
MMSE, and MF), while the columns represent the normalization approaches (Sum Power, CTTC,
Loss Mitigation, SNR Equalization, and Strict SNR Equalization). K = 255.

Figure 4 confirms the enhanced SNR uniformity by presenting the CDF of the SNR
per user.
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Figure 4. CDF of the obtained SNR (dB) per user for all discussed precoding and normalization
methods. From left to right, the results for the different precoding methods (ZF, MMSE, and MF) are
plotted. K = 255.

Table 7 summarizes the SNR dynamic ranges for the considered simulated noise
scenarios, related to SNRavg values from −2 dB to 9 dB.
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Table 7. Minimum and maximum SNR dynamic ranges over all the considered noise scenarios.
K = 255.

Sum Power CTTC Loss Mitigation SNR Eq. Strict SNR Eq.

ZF min 0.0 dB 3.5 dB 1.0 dB 0.3 dB 0.0 dB
max 0.0 dB 3.5 dB 1.0 dB 0.3 dB 0.0 dB

MMSE min 2.5 dB 3.4 dB 0.3 dB 0.0 dB 0.0 dB
max 6.0 dB 3.5 dB 0.5 dB 0.2 dB 0.0 dB

MF min 7.0 dB 3.5 dB 0.3 dB 0.0 dB 0.0 dB
max 7.0 dB 3.5 dB 0.3 dB 0.0 dB 0.0 dB

The minimum and maximum of the dynamic ranges are taken over the noise levels
to synthetically show the dependence of SNR uniformity on signal-to-noise scenarios.
As expected, the SNR ranges are affected by noise levels only when considering the MMSE
precoding scheme, since SNR determines the regularization factor when computing the
MMSE matrix in Equation (7); however, the normalization techniques that impose an
equal power per feed (all except Sum Power) make this dependence on SNR ranges less
important. The difference between maximum and minimum SNR values when considering
the CTTC is around 3.5 dB. That is exactly the scan and free space loss of the considered
satellite AFR system at the edge of coverage (Figure 2); these losses can be consistently
mitigated adopting the proposed normalization techniques.

4.2.1. SNIR Results

In Figures 5 and 6, we show that the reduced SNR variation also implicates a more
uniform SNIR per user in the considered scenario. Although the SNIR per user is not
constant as in the SNR case, the dynamic range of SNIR is also significantly reduced.
This is because the interference is not playing an important role, thanks to the Poisson
distribution of users obtained with adequate user scheduling. It has to be remarked that
a Poisson distribution of users obtained by a large set of uniform distributed users is a
favorable condition that cannot be obtained in practice. Nevertheless, a scheduling method
to approach the general Mixed Integer Quadratic Programming (MIQP) optimization
problem with affordable complexity is presented in [28], thus optimally selecting the users
per slice, limiting their reciprocal interference. In Section 4.3, we examine the case with
more users, and, thus, more interference.

Figure 5 presents the SNIR distributions based on the geographical location of users.
As shown for the SNR results, ZF precoding combined to Sum Power normalization ensures
a constant SNIR per user. This is invalidated by the CTTC normalization method, which
causes an unbalanced service to users for all the precoding/beamforming techniques, due
to the favorable signal propagation characteristics near the center of the coverage. Instead,
by adopting the proposed normalization methods, the SNIR variability is greatly reduced.
This can be quantitatively deduced by looking at the CDF of the estimated SNIR per user
in Figure 6: the SNIR dynamic range is reduced by almost 3 dB with respect to CTTC
when using ZF, MMSE, or MF schemes for the investigated noise scenario. Moreover,
the three proposed techniques perform similarly when applying MMSE and MF schemes,
while there are some differences in the ZF case for Loss Mitigation with respect to SNR
Equalization and Strict SNR Equalization. This is due to the aforementioned ZF effect of
exacting nulling interference.

In Table 8, the dynamic ranges of SNIR for different noise scenarios are reported.
Obviously the dependence on the SNIR ranges on noise levels is stronger than SNR-related
results (Table 7); the advantages of the proposed techniques on SNIR variability are the
greatest for the lowest signal-to-noise levels, where SNRavg is around −2 dB, which is
where interference plays a minor role. Moreover, it is noted that the precoding scheme that
tries to completely suppress interference (ZF) results in less SNIR variability over all the
considered noise levels, while MF, combined with the proposed techniques, results in noise
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scenarios (SNRavg around 9 dB) with the highest SNIR dynamic ranges, but still lower than
CTTC maximum range.
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Figure 5. SNIR (dB) per user versus position in azimuth and elevation in degrees for all discussed
precoding and normalization methods. The rows span the precoding/beamforming techniques (ZF,
MMSE, and MF), while the columns represent the normalization approaches (Sum Power, CTTC,
Loss Mitigation, SNR Equalization, and Strict SNR Equalization). K = 255.
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Table 8. Minimum and maximum SNIR dynamic ranges over all the considered noise scenarios.
K = 255.

Sum Power CTTC Loss Mitigation SNR Eq. Strict SNR Eq.

ZF min 0.0 dB 3.4 dB 1.0 dB 0.3 dB 0.0 dB
max 0.0 dB 3.5 dB 1.2 dB 0.3 dB 0.2 dB

MMSE min 3.0 dB 3.3 dB 0.4 dB 0.3 dB 0.3 dB
max 5.8 dB 3.4 dB 1.3 dB 1.1 dB 1.1 dB

MF min 5.0 dB 3.2 dB 0.4 dB 0.3 dB 0.3 dB
max 6.7 dB 3.4 dB 2.3 dB 2.2 dB 2.2 dB

4.2.2. Throughput Results

In this section, we analyze the performance in terms of throughput, which is plotted
versus the average SNR experienced by the users, the same SNRavg values considered in
Tables 7 and 8. The total throughput is then derived from Equation (16). In Figure 7, it
is shown that all the normalization methods have a similar performance in terms of total
throughput for most of the different noise levels considered. There are a few noise scenarios
where the proposed normalization techniques perform slightly worse than CTTC (and
some slightly better), but the capacity reduction is limited to 7% in the worst case, while
in the majority of the SNRavg values, the throughput results of the proposed techniques
compared to CTTC are practically the same. While the total throughput is not compromised,
the SNR and SNIR variability experienced by users is reduced, especially at low SNRavg
values. This causes an enhanced throughput for users that are located towards the edge of
the coverage, at the expense of users around the center, resulting in a balanced service over
the complete coverage.
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Figure 7. Total throughput at various SNRavg for all the different precoding and normalization
techniques. K = 255.

4.2.3. Power per Feed Dynamic Range in Strict SNR Equalization

The CTTC, Loss Mitigation, and SNR Equalization techniques satisfy the constraint on
the power per feed, since the last step in these techniques consists of setting the power per
feed equal to P/N. On the other hand, in Sum Power, we consider a sum power constraint
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and in Strict SNR Equalization, the constraint per feed is relaxed. We report in Table 9 the
differences in dB of the power per array feed compared to the uniform power for all the
simulated scenarios of Figure 7.

Table 9. Difference of the power per feed from the reference uniform power (P/N) for all the
considered noise scenarios. Minimum and maximum values refer to the feed with the lowest and
highest power, respectively.

Sum Power CTTC Loss Mitigation SNR Eq. Strict SNR Eq.

ZF min −1.4 dB 0.0 dB 0.0 dB 0.0 dB 0.0 dB
max 1.4 dB 0.0 dB 0.0 dB 0.0 dB 0.0 dB

MMSE min −1.3 dB 0.0 dB 0.0 dB 0.0 dB −0.2 dB
max 1.3 dB 0.0 dB 0.0 dB 0.0 dB 0.2 dB

MF min −0.7 dB 0.0 dB 0.0 dB 0.0 dB −0.2 dB
max 0.4 dB 0.0 dB 0.0 dB 0.0 dB 0.1 dB

Clearly, CTTC, Loss Mitigation, and SNR Equalization have zero values, since there
is no variation of the power per feed. With Strict SNR Equalization, the variation is
consistently reduced with respect to Sum Power, while forcing exactly the same SNR among
users. However, results in terms of SNR and SNIR variability are approximately the same
compared to SNR Equalization. As it can be noted from the CDFs in Figures 4 and 6, there is
some slight difference regarding the SNR distribution, while the SNIR distribution obtained
with Strict SNR Equalization exactly matches the one obtained with SNR Equalization
for MMSE and MF. Since SNR Equalization always ensures the constant power per feed,
it is certainly preferable compared to the relaxed constraint per feed version, but it was
considered as a reference method capable of exactly imposing equal SNR per user.

4.3. Case N/K ≈ 3/4

In this section, we consider a scenario with more users in the ROI, and, thus, more
interference. Figure 8 shows the total throughput results with 380 users to be served.

As expected, ZF performance in this scenario is highly compromised, indicating that
ZF is not applicable and it will not be discussed. The improvements on the reduction
of SNIR variability when applying the proposed techniques are smaller for MMSE and
MF beamforming compared to the case with 255 users; however, as it can be seen from
Table 10, the scan and free space losses are correctly mitigated, providing the isoflux-
like characteristics, especially when applying the MF beamforming scheme. In Table 11,
it can be seen that the augmented interference makes the effect on the equalization of
SNIR performance limited, but the reduction of the SNIR unbalance is also confirmed in
this unfavorable interference scenario, especially at low signal-to-noise levels. However,
the similar throughput obtained with the proposed normalization techniques is still valid
in this scenario; it should also be noted that the average distance between users in this
case is around 0.55 degrees, which is smaller than the 3 dB beamwidth provided by the
considered AFR antenna (0.8 deg), and it does not represent a practical case but an adverse
scenario to validate the normalization methods in a high interference situation.
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Figure 8. Total throughput at various SNRavg for all the different precoding and normalization
techniques. K = 380.

Table 10. Minimum and maximum SNR dynamic ranges over all the considered noise scenarios.
K = 380.

Sum Power CTTC Loss Mitigation SNR Eq. Strict SNR Eq.

MMSE min 3.1 dB 3.4 dB 0.3 dB 0.1 dB 0.0 dB
max 5.6 dB 3.6 dB 1.4 dB 0.2 dB 0.0 dB

MF min 7.0 dB 3.5 dB 0.3 dB 0.0 dB 0.0 dB
max 7.0 dB 3.5 dB 0.3 dB 0.0 dB 0.0 dB

Table 11. Minimum and maximum SNIR dynamic ranges over all the considered noise scenarios.
K = 380.

Sum Power CTTC Loss Mitigation SNR Eq. Strict SNR Eq.

MMSE min 5.4 dB 3.5 dB 1.2 dB 1.2 dB 1.2 dB
max 6.5 dB 6.7 dB 5.2 dB 4.7 dB 4.6 dB

MF min 6.2 dB 3.5 dB 1.3 dB 1.3 dB 1.3 dB
max 7.1 dB 6.2 dB 5.4 dB 5.5 dB 5.4 dB

5. Discussion

Low complexity normalization techniques that enhance performance fairness, thus
reducing SNIR variability by providing an iso-flux-like characteristic, have been intro-
duced. Simulations show that the techniques can be applied to ZF, MMSE, and MF pre-
coding/beamforming methods, and can successfully equalize scan and free space losses
induced by the reflector antenna and propagation characteristics.

Combined with the proposed normalization techniques, the performance of ZF and
MMSE precoding, given their wide application in MIMO systems, have been assessed to
provide reference capabilities; however, such precoding schemes are considered unpractical
solutions for satellite systems based on active antennas. In fact, system complexity is highly
increased under various aspects and performance advantages are limited, as demonstrated
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in [12]; in the same paper, a pragmatic approach based on MF, namely fixed multi-beam
(MB), is presented to exploit satellite MIMO systems. The proposed normalization tech-
niques can also be applied to the MB approach, including in satellite communication
systems based on Direct Radiating Array (DRA) that can experience non-negligible scan
losses [39]. More broadly, the proposed techniques are applicable to multibeam com-
munication systems relying on line of sight links and typically in mm-wave frequencies.
In principle, the methods also apply for non-geostationary orbit (NGSO); nevertheless,
the more dynamic channel conditions make the implementation of precoding even more
challenging, and pragmatic approaches that do not require channel state information are
investigated [10].

The SNR Equalization and Strict SNR Equalization add another matrix multiplication
in the normalization process since the channel matrix is considered to equalize the received
power, while the Loss Mitigation method is only based on fixed antenna and propagation
characteristics, and, thus, adds no extra processing complexity. However, all three methods,
being based on closed-form expressions, are affordable in combination with the mentioned
pragmatic MB approach, where fixed sets of beams are considered.

The presented results confirm the equalized signal strength performance experienced
by users all over the coverage. In particular, Loss Mitigation adopted after MF provides a
good trade-off between performance and complexity: the SNR dynamic range is reduced
by more than 3 dB compared to CTTC, and almost 7 dB with respect to ZF, for all noise
scenarios (Table 7). The SNIR distribution obtained with MF-Loss Mitigation also matches
the performance when applying SNR Equalization and Strict SNR Equalization for the
considered satellite system, resulting in a reference SNR around 5 dB (Figure 6) with a
reduction of the SNIR dynamic range around 3 dB. The benefits of ZF and MMSE on SNIR
variability are only visible for higher signal-to-noise levels, in more interference-limited
scenarios evaluated (Table 8).

The analyzed effect on SNIR variability of the proposed normalization techniques in
various interference and noise scenarios greatly depends on user locations. As previously
noted, a Poisson distribution can be a favorable scenario since it maximizes the minimum
distance between users; a more realistic user distribution, while approaching the optimal
RRM solution with affordable complexity, can be obtained by applying the heuristic RRM
(H-RRM) presented in [28]. Moreover, non-uniform traffic conditions should be assessed.
The analysis of the proposed techniques, providing the iso-flux characteristic, on such sce-
narios implementing the pragmatic MB approach and the H-RRM constitutes an interesting
research direction. Another idea for future work is to combine the proposed concept with
more advanced antenna systems, including for instance reflector shaping [18].
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