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Abstract: Tremendous advances in advanced driver assistance systems (ADAS) have been possible
thanks to the emergence of deep neural networks (DNN) and Big Data (BD) technologies. Huge
volumes of data can be managed and consumed as training material to create DNN models which
feed functions such as lane keeping systems (LKS), automated emergency braking (AEB), lane change
assistance (LCA), etc. In the ADAS/AD domain, these advances are only possible thanks to the
creation and publication of large and complex datasets, which can be used by the scientific community
to benchmark and leverage research and development activities. In particular, multi-modal datasets
have the potential to feed DNN that fuse information from different sensors or input modalities,
producing optimised models that exploit modality redundancy, correlation, complementariness and
association. Creating such datasets pose a scientific and engineering challenge. The BD dimensions
to cover are volume (large datasets), variety (wide range of scenarios and context), veracity (data
labels are verified), visualization (data can be interpreted) and value (data is useful). In this paper,
we explore the requirements and technical approach to build a multi-sensor, multi-modal dataset
for video-based applications in the ADAS/AD domain. The Driver Monitoring Dataset (DMD) was
created and partially released to foster research and development on driver monitoring systems
(DMS), as it is a particular sub-case which receives less attention than exterior perception. Details on
the preparation, construction, post-processing, labelling and publication of the dataset are presented
in this paper, along with the announcement of a subsequent release of DMD material publicly
available for the community.

Keywords: ADAS; driver monitoring; multi-camera; automotive; datasets

1. Introduction

Data has become the most important asset in the development of advanced driver
assistance systems (ADAS) and autonomous driving (AD) functions. Deep learning (DL)
and other artificial intelligence (AI) methods are being employed in the development and
testing phases of many ADAS/AD functions present in modern vehicles [1]. Their non-
deterministic nature obliges the industry to shift closed-loop validation approaches into
long-term Big Data procedures, where sensor data fuels training and testing processes [2].

Large volumes of carefully crafted sensor data are needed for two main purposes:
(i) to create datasets as input for DL training mechanisms and (ii) to create ground-truth
metadata for validation of ADAS/AD functions in SiL (software-in-the-Loop) or HiL
(hardware-in-the-Loop) setups.

The more complex the information the AI or function produces, the larger and richer
the datasets needed. The evolution of open datasets in the context of automotion shows
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the trend to have multi-purpose and multi-sensor (e.g., LIDAR and cameras) datasets,
which can be used both for training and validation of functions. The production of such
datasets is no longer feasible for small companies or university groups. Compared with
small-scale datasets, a large-scale dataset implies a tremendous technical and economical
effort for designing, setting up, recording and post-processing data according to the quality
standards required by the AI frameworks and the automotive industry.

Most of the largest public datasets in the ADAS/AD domain focus on exterior per-
ception systems, ideal for building automated braking systems, lane departure warning
methods, etc. However, there is a clear lack of datasets centred on monitoring the interior of
the vehicle, i.e., the driver. Excluding SAE-L5 autonomous driving, which is still not a real-
ity, the driver is still a key figure in the driving task. Though, as automated levels increase,
there is a continuous shift in humans’ role from driver to passenger, which can occur during
driving situations, especially when automated functions get out of their defined operational
design domains (ODD). In such situations (e.g., exiting from the highway), a transition
between automated and manual driving modes must happen respecting safety regulation
and principles. In that sense, driver monitoring systems (DMS) have gained focus in the
industry. Commercial vehicles have incorporated some sort of driver attention systems
since 2006 [3–5], analysing driving patterns and behaviour. However, camera-based DMS
has emerged as the most unobtrusive technology that enables gathering information about
the physiological state of the driver: fatigue, behaviour and distraction, without interfering
with the driving task itself or implying a decrease in comfort.

Building AI-based DMS has, therefore, become a relevant topic for the automotive
industry and scientific communities. Despite having similarities with exterior perception
systems, DMS’ subject of analysis is humans in the interior of a small cabin performing
driving tasks along with other actions (talking to passengers and interacting with car
controls or other devices). The aim of DMS is to produce data that assesses the ability of
the driver to perform the driving tasks and to monitor the driver’s state at all times. As a
consequence, DMS data is complex (fatigue and distraction related), heterogeneous (facial
features and actions), human centred (individuals may show different behaviour patterns)
and mostly centred in camera sensors.

Datasets for DMS need to satisfy several requirements:

• Large amounts of data for training and validation of DL methods.
• Realistic data of relevant situations (e.g., safety related such as drowsy drivers, talking

on the phone, etc.).
• Spatio-temporal labels, including visual features (e.g., face landmarks) but also actions

as frame intervals with a semantic load.
• Captured data need to represent physiological states for fatigue, behaviour and dis-

traction, and thus several cameras might be needed to monitor the face, hands and
body of the driver.

The preparation of a DMS dataset that meets these requirements imposes a number of
important challenges, most of them from a technical perspective but also economical and
organisational :

• Preparation of multiple environments (real car and simulator for simulation of non-
safe driving behaviours or physiological states).

• Creation of complex annotation or metadata schemes to host heterogeneous labelling data.
• Organisation of recording sessions and management of volunteers.
• Data preparation: recording, transferring and compressing large volumes of raw data.
• Data processing: synchronization, alignment, calibration, labelling, etc.
• Privacy and ethical aspects (GDPR compliance).
• Dissemination aspects, including website preparation, management of updates,

GitHub repositories, user manuals, samples, etc.

In this paper, we overview the challenges faced to build a multi-camera and multi-
modal large-scale dataset for DMS. The manuscript describes the approach to solve the
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technical and organisational issues that appear during the design and construction of DMS.
The main contributions of this work are:

• Definition of a multi-sensor set-up architecture (multi-modal and multi-camera) for
capturing large-scale video footage in the context of driving monitoring.

• Organisational approach to manage human volunteers and recording sessions: envi-
ronments, scripting, recording, privacy and ethical aspects, etc.

• Orchestration of data preparation and data processing stages considering the DMS
requirements: storage, containers, transmission, compression, synchronization, align-
ment, calibration and labelling.

• Taxonomy of driver monitoring labels for multi-level dataset annotation.

The reported work can serve as a reference approach to create other multi-camera
and multi-modal large datasets for interior or exterior monitoring applications in the
automotive domain. This methodology was applied to build the recently published DMD
(driver monitoring dataset) in the context of the activities initiated during the execution of
the European project VI-DAS. The results of the work include the creation of recording and
labelling tools, the implementation of new methods to synchronize and align streams and
the construction and publication of the DMD, one of the largest open datasets designed to
develop DMS.

The paper is organised as follows: Section 2 overviews other works on large-scale
dataset creation. In Section 3, the design of the dataset and architectural principles of
the recording set-up are presented, while Section 4 describes the post-processing steps.
Discussion around the challenges faced and proposed solutions is presented in Section 5.

2. Driver Monitoring Methods and Datasets
2.1. Datasets in the Automotive Sector

The main objective of the DMD is to gather a diverse collection of image data of the
interior of the vehicle based on the most relevant features to observe inside the cabin. The
target is to provide driver monitoring practitioners with a semantically rich dataset that
allows the design and generation of DL-based algorithms for driving monitoring.

The revolution of DL methodologies [6] has made indispensable the availability of
large volumes of high-quality data to train network models. To extract all the potential of
DL techniques for computer vision tasks, the available data need to have a diverse collec-
tion of annotations aimed at tackling different tasks. By using these annotated datasets and
a variety of state-of-the-art DL methods [7–11], a DL neural network can then be used and
fine-tuned for the particular application in the driving context. Many generic datasets have
been proposed: ImageNet [12], MS Coco [13] and PASCAL [14,15]. All of these datasets
consist mainly of a collection of images containing instances of different objects with their
corresponding label to address the object detection task in scene understanding. The appli-
cation of these datasets is limited to generic object detection and semantic segmentation
tasks, where the object can appear in a wide range of scenarios.

Although these datasets can be the starting point for training object detection models,
the adaptation to the automotive domain results in limited and not robust DL models.
Hence, additional effort is required to adapt and fine-tune the models by using domain-
specific data. In addition, such types of datasets only provide information from one type of
sensor: an image camera. Having only one modality of input data may limit the robustness
of autonomous systems in complex scenarios.

In order to adapt the DL models and provide multi-modal data in the context of
automated driving, there has been an intense development and effort to design, build and
make available large-scale datasets to sense the exterior of the vehicle. Both industry and
academia have published diverse collections of data that combine RGB images, IR images,
LiDAR point clouds and high precision GPU/IMU inertial navigation data. Some of the
first to appear and most relevant datasets for exterior perception include: KITTI [16,17],
WAYMO [18], Cityscapes [19], nuScenes [20] and Lyft Level5 [21].
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The experience gathered to produce these massive datasets for exterior sensing has
resulted in some common practices in terms of the type of data and sensors used for
recording the sessions. Based on some shared processing tasks such as: object detection
(pedestrian, vehicles, obstacles, etc.), segmentation (free space and instances), 3D sensing or
localization and positioning; these datasets have defined the path to produce a large-scale
dataset for analysing the exterior of the car. However, the level of maturity in the generation
of databases focused on driver monitoring has not been reached yet, even though there have
been some efforts to produce datasets aimed to cover specific tasks of driving monitoring.

2.2. Driver Monitoring Systems and Data Requirements

The driver’s behaviour involves different body and face activities. Ensuring normal
driver behaviour is critical to avoid any human error that could eventually produce traffic
accidents with the consequent harm of driver and passengers. Therefore, to prevent vehicle
accidents, systems are built to monitor the drivers and assess their arousal and distraction
level. Among driver behaviour conditions, drowsiness and distraction are the two most
relevant subjects of study when designing DMS [22]. According to the type of input
data provided by the measurement sensor, systems designed to analyse and assess driver
behaviour can be broadly divided into two categories: visual features based and non-visual
features based.

Techniques based on non-visual features obtain the input data from sensors, which
can either be intrusively attached to the driver’s body [23] or require the extraction of car
parameters [24]. Within this group, techniques are also divided into two categories: driver
physiological features analysis and vehicle parameter analysis.

Physiological features are often a good indicator of early signs of fatigue or distraction.
Sensors to measure physiological features of the driver extract signals from the person’s
heart, brain, eyes or skin. Changes in physiological signals such as electroencephalography
(EEG) [25], electrocardiogram (ECG) [26], electro-oculography (EOG) [27] and surface
electromyogram (sEMG) [24] can be an accurate method to detect driver state. Physiological
features are a direct measure of fatigue, however, their application in real driver fatigue
and distraction detection systems is limited due to intrusive characteristics of the sensors
used and critical issues to eliminate noise and artefacts, which are inevitable in real-world
driving conditions.

Moreover, it is well known that fatigue and distraction reduce the driver’s ability to
perform. Therefore, other researchers have studied parameters obtained from the vehicle
sensors to analyse the driver’s state. The deviation in features such as lane crossing [28]
and steering wheel angle [29] are indicators of deteriorating driving ability. Other strong
indicators of abnormal driver behaviour also include unusual activities such as pressure
changes on brake and accelerator [30], load distribution on the driver’s seat [31] and vehicle
speed [32]. In general, there is limited research available exploiting this technique. Vehicle
signals for driver inattention assessment are easily affected by driving habit, driving skill,
vehicle speed, vehicle type and road conditions. Therefore, a robust DMS solution based
only on vehicular signals is not yet feasible.

Techniques using visual features usually rely on the use of camera sensors pointing
to the driver to obtain input data. Image processing techniques enable monitoring of
these activities through a camera capturing the most relevant parts of the driver. Image-
based DMS should address two primary tasks: analysing the sequence of images for
extracting important indicators and evaluating the temporal evolution of driver state using
such indicators.
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Recent DMS has focused on evaluating different driver states using visual-based
camera sensors. RGB or visible spectrum cameras, depth cameras or infrared cameras are
the three main types of sensors used in vision-based DMS. Among the different methods
and systems found in the literature, RGB cameras are the most applied in research DMS [33].
The reason is that visible spectrum cameras are affordable and their integration in modern
systems is easy to implement. However, due to illumination limitations in real driving
conditions, NIR external illumination and IR camera sensors are preferred since the use
of DMS can be extended to low-light conditions [34,35]. Other works have integrated
depth sensors to provide additional data to the DMS algorithms and better predict driver
state [36]. Besides visual data, some efforts have been conducted to incorporate other
modalities such as audio using microphones attached to the person to estimate stress and
emotions in drivers [37]. The outcome of many of the currently available DMS methods are
pushing forward to fuse several modalities and data streams to develop a robust method to
infer driver state [38,39].

2.3. Datasets for Application of Driver Monitoring Systems

Most of the work to generate visual datasets was devoted to sensing and capturing
the exterior of the vehicle. Although there are several initiatives that provide vision-based
datasets for DMS, the lack of consolidated datasets has motivated our efforts to contribute
with the creation of the DMD; in Figure 1, there are example images of some activities
included in this dataset. Driver monitoring requires the interpretation of the driver’s
features regarding the attention and arousal state, the direction of gaze [40], head pose [41],
the position of the hands [42], blink dynamics[43], facial expressions [44], body posture [45]
and drowsiness state [46]. The currently available datasets tackle these DMS dimensions
individually and do not provide a general description of different driver conditions.

Figure 1. Examples of activities performed in the DMD.

In Table 1, a list and description of the most relevant open datasets found at the
moment are presented. The analysed datasets present data of the driver focused on specific
parts of the body such as the face [47], hands [42,48] or upper body [49]. The sensors’ types
are primarily RGB cameras and depth sensors. The metadata labels available in these
datasets are varied and include geometrical features such as bounding boxes, landmarks,
masks and features such as temporal actions. Moreover, the scenarios used to record the
data differ between real vehicles and in-lab simulators. Most of the datasets only include
one camera to perform the recordings. The recent dataset in [50] provides visual data from
different points of view using several cameras. However, their target is the analysis of
driver actions during autonomous car functions.

Based on the limitations of the currently available in-cabin driving monitoring datasets,
the limited size of these datasets and the increasingly new challenges and requirements
of DMS, the DMD project has built a preparation methodology to collect different sources
of drivers’ behaviour data and deploy the required metadata annotations to be used by
different driving monitoring sensing systems.
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Table 1. Comparison of public vision-based driver monitoring datasets.

Dataset Year Drivers a Views b Size c GT d Streams Scenarios Usage

CVRR-Hands [48] 2013 8 (1/7) 1 7 k Hands,
Actions

RGB
Depth Car Normal driving,

Distraction

DrivFace [47] 2016 4 (2/2) 1 0.6 k Face/Head RGB Car Normal driving,
Head pose

DROZY [51] 2016 14 (11/3) 1 7 h Face/Head
Physiological IR Laboratory Drowsiness

NTHU-DDD [52] 2017 36 (18/18) 1 210 k Actions RGB
IR Simulator Normal driving,

Drowsiness

Pandora [49] 2017 22 (10/12) 1 250 k Face/Head,
Body

RGB
Depth Simulator Head/Body pose

DriveAHead [53] 2017 20 (4/16) 1 10.5 h Face/Head,
Objects

Depth
IR Car Normal driving,

Head/Body pose

UTA-RLDD [46] 2019 60 (9/51) 1 30 h Subjective KSS
labels RGB Laboratory Drowsiness

DD-Pose [38] 2019 24 (6/21) 2 6 h Face/Head,
Objects

RGB e

Depth f

IR f
Car Normal driving,

Head/Body pose

AUC-DD [54] 2019 44 (15/29) 1 144 k Actions RGB Car Normal driving,
Distraction

Drive&Act [50] 2019 15 (4/11) 6 12 h
Hands/Body,

Actions,
Objects

RGB e

Depth e

IR
Car Autonomous driving,

Distraction

DMD (ours) 2021 37 (10/27) 3 41 h

Face/Head,
Eyes/Gaze,

Hands/Body,
Actions,
Objects

RGB
Depth

IR

Car,
Simulator

Normal driving,
Distraction,
Drowsiness

a Number of drivers (female/male); b Simultaneous camera views of the scene; c h: hours of video, k: image
number; d Ground-truth data; e only for side view; f only for face view.

3. Dataset Definition and Creation

The preparation of a large-scale dataset for DMS involves different organisational
and implementation stages, which require careful planning and execution. During the
preparation of the DMD, three stages were defined. The first stage involved the preparation
of the resources needed and planning the execution of the recordings. During the second
stage, the actual recordings with the volunteers were performed. The third stage consisted
of post-processing the recorded material, data extraction in compressed and manageable
formats, solving syncing and alignment issues between video streams and annotation of
the defined classes and labels.

In Figure 2 the complete process for the creation of the DMD is depicted, showing the
three main stages for creating the dataset and the sub-actions for each stage. The relation
between the tasks and the timeline required to complete all the required actions is also
represented. Some of these steps can be performed in parallel to reduce the time spent in
the creation of the dataset.
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Figure 2. General overview of the DMD creation process.

3.1. Metadata Taxonomy Definition

Planning the creation of a computer vision dataset requires having in mind the target
type of annotations to be exported. A rich and varied set of labels makes the dataset more
usable for different scenarios and problems, especially when the task to be solved can
be decomposed as a set of small jobs.In particular, the implementation of DMS usually
involves the combination of task-specific algorithms with the final objective of exporting a
set of features to describe the actual state of the driver [55].

The required target metadata for the DMD was defined based on the analysis of the
most relevant characteristics found in the state-of-the-art methods for DMS. Specifically,
the DMD wants to cover three main pillars of DMS: drivers’ distraction detection, fatigue
estimation and gaze estimation. The recordings and the annotation planning are oriented
to support these methods; however, due to the DMD’s richness and variety of data, other
uses of the dataset may appear in future studies.

Previous works have analysed driver distraction from still images, with techniques
such as body pose estimation, which requires body landmarks and body position annota-
tions [33]. Besides geometrical metadata, our goal was to perform the analysis including
the temporal dimension; this involves recording moving sequences and providing temporal
annotations. The head/face-centred analysis, for driver fatigue estimation for instance,
typically focus on quantitative measures such as PERCLOS, eyes aperture, etc., which are
calculated based on face landmarks. This implies the annotation of these spatial landmarks
with the intention of also carrying out a temporal analysis.

To better distribute the dataset annotation tasks, we have defined three metadata
groups: scenario, geometrical and temporal data. These groups allowed us to design the
recording protocols and annotation guidelines, reducing ambiguity and boosting the value
of the recorded material. The proposed taxonomy of features in the DMD is presented in
Figure 3. This taxonomy is flexible and allows the inclusion of other labels within each
category. Moreover, it is possible to increase the level of detail of the presented label tree.
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Session
Metadata

Scenario

Subject

uid string

age number

gender string

glasses bool

experience string
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weather string
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action enum
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Face
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Gaze gaze region enum

head pose enum

Image Features oclusion enum

Figure 3. Metadata label taxonomy for the DMD.
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3.1.1. Scenario Metadata

The process of creating a vision-based dataset requires checking not only the availabil-
ity of a diverse set of visual labels, but also other information that describe the capturing
conditions of the data. For the creation of the DMD, we have taken into account this context
information to complement the other visual labels, which are valuable for the development
of robust DMS. Within this group, we have included information related to the driver
(age, gender, use of glasses, driving experience, etc.), capture context (weather, timestamp-
ISO8601 and capturing set-up), recording metadata (total number of frames, duration of
session) and camera parameters (model, calibration and synchronization parameters). This
scenario information is required to further analyse the correlation of some driver behaviour
performance based on personal characteristics.

3.1.2. Geometrical Features

For any computer vision dataset, geometrical labels are the core part of the dataset.
Therefore, the DMD was designed to produce a diverse set of geometrical characteristics of
the driver and the car interiors. The geometrical annotations considered within the creation
of the DMD depict the visible characteristics of the scene related to the driver’s behaviour
while driving.

The regions of interest where DMS typically focus are the face and body of the driver,
mainly because it is possible to infer the actual state of the driver in terms of fatigue and
distraction. For instance, fatigue is generally observed from eye activity, such as analysing
the blinking cadence and frequency and computing some statistics that highly correlate with
drowsiness and fatigue. To collect these types of features, we used a multi-sensor camera
set-up for capturing the DMD and collecting information on the driver from different
perspectives.

Geometrical features are usually represented as a set of values that encloses some
spatial region. These features can be: (i) points such as image landmarks; (ii) bounding
boxes to delimit a rectangular area such as the face or body of the driver; (iii) pixel masks
to delimit a region of the images taking into account the object’s contour.

3.1.3. Temporal Features

A temporal label describes a sequence or action through time. It assigns a semantic
value, e.g., a name or type of action, to a time interval of a recorded video, indicating when
the action begins and ends. A temporal annotation job starts with the definition of the
semantic values or labels and the level of detail to be handled in the final annotations. For
example, a general annotation should have one label that describes the entire sequence,
such as ‘texting’; at a higher level of detail, this label can be derived into two, ‘texting left’
and ‘texting right’, differentiating the hand with which the person is texting.

Labels can be created and organised hierarchically (according to level of detail) and be
logically related. In this way, it can be associated that, when the person is performing the
‘texting left’ action, which is sending a text message with the left hand, the person cannot
be performing the ‘texting right’ action, that is, sending a message with the right hand.
This analysis is important to consider the context in which the annotation task is performed
to establish these logical relationships.

There are not only mutually exclusive labels which can not coexist in the same time
interval. A sequence can be described by several labels simultaneously. To make this
possible, they can be organised by levels. A level of annotation is composed of one label or
a group of labels that are mutually exclusive.

Suppose the case of a person sending a text message and discriminating the hand with
which he/she is holding the mobile phone; furthermore, you want to describe where the
driver is directing his/her gaze while performing this action, either at the mobile phone
or somewhere else. For this case, there should be two levels of annotation, the first one is
to know how the person is performing the action of texting and the second level to know
if the person is looking at the mobile phone or not. Those two levels of annotations have
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mutually exclusive labels since the person is either using the right or left hand to text and
because his/her gaze is either directed at the phone or somewhere else, none can occur at
the same time.

Using this logical and hierarchical organisation by levels, we created the annotations
of the DMD. As presented in Table 2, we show an example of 7 levels of annotation
for distraction detection purposes. All levels are mutually exclusive or encompass only
one label.

It is crucial to be as descriptive as possible to avoid misinterpretations by the annota-
tors. To begin with, the label text or name should be clear and specific: it must represent
the sequence correctly and be different from other labels. It is also recommended to write a
complete definition of each label, indicating when the sequence it represents should begin
and end.

Table 2. Subset of Annotation levels for distraction detection in the DMD.

Level Labels

Camera Occlusion
- Face camera
- Body camera
- Hands camera

Gaze on Road - Looking road
- Not looking road

Talking - Talking

Hands Using Wheel
- Both
- Only right
- Only left - None

Hand on Gear - Hand on gear

Objects in Scene
- Cellphone
- Hair comb
- Bottle

Driver Actions

- Safe drive
- Texting right
- Texting left
- Phone call right
- Phone call left
- Radio
- Drinking
- Reach side
- Hair and Makeup
- Talking to passenger
- Reach backseat
- Change gear
- Standstill/Waiting
- Unclassified

3.2. Scripted Protocols

There are several approaches to perform a driver monitoring task. This dataset focuses
on three particular aspects: distraction, drowsiness and gaze direction. Therefore, the DMD
planning included the capture of specific material of drivers in distracting situations, with
signs of drowsiness and staring at different regions inside the car.

Driver behaviour is very complex and is conditioned to certain circumstances. To
intentionally capture those behaviours, it is ideal to recreate the trigger situations to have
data as realistic as possible. However, to collect realistic situations of the interesting driver
behaviour, it is required to collect many hours of video and filter the relevant parts of the
scene. In addition, sometimes some situations are very difficult to collect from naturalistic
recordings, such as sleepy drivers, since these edge situations will put the driver’s safety at
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risk. Therefore, for situations where it is hard to collect data, the behaviour should be acted
in the most natural way possible.

In order to avoid these limitations and for the sake of optimizing recording sessions,
we propose the definition of a series of protocols that guide through the process of recording
the desired driver behaviour. Despite the importance of spontaneity in the act of driving,
the activities, times, conditions and states of the driver must be planned to meet the
objective of content to be captured.

The recording of these protocols were scheduled at different days and times in the
day so that there would be variation in lighting and weather conditions. In addition, the
volunteer drivers were recorded several times, so different clothing were used during the
recordings. A total of 150 sessions were planned and executed for this round of recordings.
From this, a total of 87 were recorded in the morning and 63 were recorded in the afternoon
time slot.

Each protocol contains a detailed instruction list of how to perform each experiment
(recording session). This is ideal to maintain uniformity among experiments and ensure
completeness and quality of content. Consequently, there are different protocols: one per
each aspect of the driver’s analysis and per recording location (car or simulator). The
general structure of a protocol has the following stages:

• Participant welcoming: Check which participant is programmed, call him/her and
welcome him/her. A description of the context of the experiment must be explained
to the participants, along with the legal privacy terms and a brief description of their
function: perform the indicated activities in the most natural way while driving (real
or acting) and if required with a certain state (drowsy or attentive).

• Rehearsal and technology check: A quick practice of the activities to perform is
necessary, both to verify that the participant has understood the activities to perform
and that the recording equipment (cameras, microphones, etc.) is working correctly.

• Recording activities to perform: The actual recording is carried out following a
predefined list of actions to be performed or acted by the driver, specifying the time
(seconds) that each activity should last, approximately. The person in charge of
carrying out the experiment is the person who controls these times and indicates to
the participant what action and when to perform it.

• Final check: It is proposed to conduct a quick check of the recorded material to verify
that the recording session went well and prepare everything for the next participant.

3.2.1. Distraction Protocol

The objective of this scripted protocol is to capture a person performing several
activities related to the concept of distraction while driving. The list of proposed activities
is presented in Table 3. When the driver is not distracted and is focused on the road or when
the subject is not performing any of the activities related to distraction, it is considered ‘safe
driving’.

Table 3. Actions performed in the distraction protocol.

Car Stopped Car Driving Simulator Driving

Safe driving Safe driving Safe driving
Reach object backseat Operating the radio Brush the hair
Reach object side Drinking Phone call—right hand
Brush the hair Talk to passenger Phone call—left hand
Phone call—right hand Texting—right hand
Phone call—left hand Texting—left hand
Texting—right hand Drinking
Texting—left hand

Texting, phone call, hair and makeup and reaching behind are activities that are consid-
ered dangerous and illegal to perform while actually driving. This limitation motivates our
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use of a driving simulator that allows recording those activities while driving without the
mentioned risks. For keeping the environment of an actual car, these dangerous activities
were also captured with the car stopped. However, some activities such as operating
the radio, talking to the passenger and reaching behind are not possible to record in the
simulator because of its limitations of space and lack of adjacent real car elements.

The distraction protocol was then adapted into two parts: one exclusively for the
activities included in the simulator recordings and another for those performed in the car.
This last one was also divided into two sections: one for the activities executed with the car
moving and one with the car stopped.

The estimated time to carry out one complete recording session of the distraction
protocol in the car is 28 min per person, considering that first the protocol with the car
moving is performed, followed by the one with the car stopped. For the simulator, a
separate session is scheduled and it takes 20 min to complete its distraction protocol.

The footage approximate mean length in the simulator is 9 min per recording, 4 min
for the stopped-car sessions and 8 min with the car moving.

3.2.2. Drowsiness Protocol

In contrast with the distraction activities, drowsiness sessions, as shown in Table 4,
are more complicated to achieve naturally, mainly because a state of drowsiness cannot be
induced immediately; it has to be acted. Subjects were asked to show signs of drowsiness
such as yawning, nodding and having micro-sleeps; although they are let free to perform
the activities as they prefer to not affect the naturalistic behaviour of the action, it highly
depends on the imitation abilities of the driver for these to seem natural. At the beginning,
the participant is asked to drive normally, this can be manifested by an alert disposition for
driving, checking the rear mirrors, firmly holding the steering wheel, etc. Then, the partic-
ipant imitates sleepy driving, which is characterized by a tired position of the head and
body, a certain lack of attention to the surroundings, short eyelid aperture and occasional
nodding. It was indicated to the driver when to perform the signs of drowsiness. He/she
maintained this sleepy driving behaviour throughout the recording until its completion.

Table 4. Actions performed in the drowsiness protocol.

Car Stopped and Simulator Driving

Drive normally
Sleepy driving

Yawn without hand
Yawn with hand

Micro-sleep

It took approximately 10 min for every execution of the drowsiness protocol, and the
length of the resulting recordings is about 3 min per session and setup.

3.2.3. Gaze and Hands Protocol

In this protocol, 9 regions of gaze direction were established. These are zones inside
the car where the driver frequently looks while driving and which are wide enough to
be considered a region. These same regions were also calculated in the simulator. The
simulator’s screens position and rotation are arranged to fit a realistic car cabin in terms
of perspective. This produces the feeling of being in a vehicle and allows maintaining the
same regions to detect gaze direction. The participant was asked to stare at each of the
regions for 5 s when indicated.

In addition, for this protocol, we also established an analysis of the driver’s hand
position. The objective of defining a set of actions is to gather a diverse collection of
hand positions while using the steering wheel. During the sessions performed using this
protocol, the driver adopts one position for a few seconds and then changes to the next
when indicated. To add variation, the hands were captured in two situations: standing still
and moving as if the participant was driving.
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A representation of the gaze regions and the list of hand actions is depicted in Table 5.
It took about 7 min for every execution of the gaze protocol, and the length of the resulting
recordings is around 3 min.

Table 5. Actions performed in the gaze–hands protocol.

Car–Simulator–Driving

Gaze Zones Hand Actions

Steering Wheel

Front

Front Right

Infotainment

Right

Mirror

Left

Mirror

Left

Center

Mirror

Right

Both hands on (not moving)

Right hand on (not moving)

Left hand on (not moving)

Both hands off (not moving)

Both hands on (moving)

Right hand on (moving)

Left hand on (moving)

3.3. Multi-Sensor Setup Architecture

The selection of the sensor architecture is one of the main pillars for a successful
generation of a CV dataset. These sensors should provide enough data quality to collect the
desired information in the form of images. For the case of the DMD, a set of requirements
in terms of sensor capabilities were identified that fulfil the overall objectives of creating a
dataset for DMS applications. The following requirements were identified:

• Camera-based sensors: Data extracted from the sensors primarily relies on a visible
feature inside the vehicle and driver.

• Multi-modal camera sensors: For a diverse and richer collection of data, the different
modalities include RGB images, IR images and depth data.

• Multi-camera arrange setup: To capture several characteristics of the driver, multiple
views of the inside of the vehicle are required.

• Synchronized images: Data from the different cameras and multi-modal streams are
timestamped, synchronized and aligned.

Depth sensing has become one additional source of data to improve the accuracy
of computer vision tasks. Three depth-sensing modalities are the most relevant: stereo
sensors (both active and passive), structured light, and time of flight (ToF). Attending to the
defined requirements, we have analysed three main characteristics of sensor performance
in order to select the camera used for recording the DMD: range, resolution and reliability.

Range is perhaps the most important parameter. In driving monitoring, the cameras
shall have a capture range where body parts such as faces, hands and limbs are accurately
sensed. Since the person will be inside the car cabin, this limits the range to less than 2 m.
Depth sensors have ranges that start at around 0.5–1 m from the sensor and extend to
3–6 m at best. Here, stereo sensors can provide a good trade-off between range and its
camera baseline.

Regarding resolution, it depends on the range as well as the nature of the optics used
by the sensor. Structured light sensors and active stereo sensors’ resolution are limited by
the density of the pattern that they project and the resolution of the IR camera. In the DMD,
the resolution of the camera sensors is selected to be high enough to capture the smaller
parts of the driver’s body (i.e., the eyes and mouth).

In third place, sensors’ reliability depend on the inherent limitations of each sensor’s
modality. Stereo sensors, for instance, need sufficient ambient light in the visible spectrum
to work properly. Conversely, infrared-based sensors such as structured light and ToF
suffer when exposed to too much ambient light, making them not appropriate for exterior
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applications. Active stereo sensors with infrared pattern projectors offer the best of both
worlds, increasing sensor reliability over a number of environments and lighting conditions.

To build the DMD we chose the Intel® RealSense™ as they provide a good trade-off be-
tween hardware cost, power consumption and form factor. Models D415 and D435 matched
the active stereo sensors requirements for the three modalities (RGB, IR and Depth).

We placed three cameras to record the driver’s face, body and hands. The location of
the cameras is shown in Figure 4. The selection of the camera model was conducted based
on the field of view (FOV) of the available cameras, without compromising the minimum
range for depth sensing.

Figure 4. DMD camera setup and recording environments.

Other in-cabin multi-sensor monitoring architectures published have either focused on
single-camera set-ups to monitor the driver or the passengers [56]. While other works have
increased the number of cameras for inside sensing to include body sensing cameras [57] or
depth information from one view [50], to the best of our knowledge no other works have
presented 3 cameras (with 3 modes: RGB, IR and Depth) each of them to monitor different
aspects of the driver (body, face and hands).

In Table 6, the most relevant characteristics of cameras D415 and D435 are shown.
Model D435 was used to capture the body of the driver due to its larger FOV and D415
was used for face and hands sensing due to its lower price tag.

Table 6. Specifications of Intel® RealSense™ cameras used to generate the DMD.

D415 D435

Use Environment Indoor/Outdoor Indoor/Outdoor

Depth FOV (H × V) 65◦ × 40◦ 85◦ × 58◦

Depth Resolution Up to 1280 × 720 Up to 1280 × 720

Depth Frame Rate Up to 90 FPS Up to 90 FPS

RGB FOV (H × V) 69◦ × 42◦ 69◦ × 42◦

RGB Resolution Up to 1920 × 1080 Up to 1920 × 1080

RGB Frame Rate 30 FPS 30 FPS

Min. Depth Distance at Max Resolution ∼45 cm ∼28 cm

Ideal Range 0.5 m to 3 m 0.3 m to 3 m

To extend the completeness of the DMD, a microphone Samson Stage XPD1 was
attached to the driver to record usual sounds during the performed activities. The audio
information of the microphone was recorded for future utilization, as a complementary
data stream that can help to distinguish actions that may be difficult to label or detect
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using only image information. For instance, “talking” or “talking to passenger” are actions
labelled in the DMD whose start and end time instants could not be easily determined by
only looking at the images. For the moment, the audio information is not being labelled
because of lack of resources. Extending vision-based datasets with other modalities is
beneficial for the multi-modal study of the detection tasks, allowing practitioners from
different areas of expertise, besides computer vision, to explore the relationship between
visual features and other data modalities.

In addition, two twin recording scenarios were considered: a real car and a driving
simulator, as shown in Figure 4. A driver monitoring dataset should be collected in real
driving conditions with a real car. However, there are some activities to be recorded which
may put at risk the driver’s safety which cannot be performed in a moving car on the
roads, such as using a cellphone or driving with a high level of sleepiness. For those cases,
the methodology presented in this work defines alternatives that mimic real conditions.
Those cases were captured using a stopped car and the driving simulator. The purpose of
the driving simulator is to immerse the driver in a close-to-real driving experience. The
position of the cameras was placed at the same distance from the driver seat in both the
real car and the driving simulator.

3.4. Participants Selection

The success of a feature-rich visual dataset highly depends on the variety of characters
that appear in the recordings, especially when human participants are the subjects of
the analysis. To have a diverse collection of driving monitoring videos, the participants
should meet different requirements: diverse ethnics, ages, driving experience and visual
characteristics. As shown in Figure 5, for the recording of the first stage of the DMD,
37 driver volunteers participated. This group offers variability in gender: 73% men and
27% women. The age distribution of the participants was kept homogeneous in the range
of 21 to 50 years of age. In addition, 10 participants regularly use glasses when driving.
These participants were selected to assure novice and expert drivers were included in the
recordings. Each participant signed a GDPR informed consent, which allows the dataset to
be publicly available for research purposes.

22-47
21-38

73%

27%

age

age

37
Par�cipants 10

wearing glasses
with "Everyday"

driving frequency

59%
+3 years of

driving
experience

89%

Figure 5. Participants information.

No dataset is perfect (a look at any major dataset may throw non 50–50% balance in
many dimensions, e.g., Waymo, Apollo, Mapillary-Vistas, and any of the driver monitoring
datasets referenced in Table 1). It is very difficult to reach equilibrium in all aspects, specially
when datasets are as complex as the DMD. Context, illumination, variety of actions and
subjects may easily scale up the combinations exponentially. This is actually an industrial
problem manufacturers and AI practitioners are facing nowadays. We have performed
our best considering the limited resources we had to hire additional subjects, and thus
had to use volunteers from our institution. However, in our opinion, the balance we have
obtained, despite not being perfect, reaches sufficient representativeness to research and
build applications with the DMD.

Participants were grouped into 6 groups of 5 individuals and 1 group of 7. Each
participant was asked what time of the day they could participate in the recordings: in
the morning, in the afternoon, or both. Knowing the availability of the participants, they
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were organised by groups depending on the recording sessions they could attend. Then, a
double participation schedule was assigned to 3 groups of volunteers whose availability
was “all day”. All the protocols were recorded twice for these participants. Meaning that
the same person did the same activity with morning and afternoon lighting, not on the
same day, contributing to variations in clothing. In the DMD, the material of 15 people
meets this condition.

Taking into account all these considerations and the estimated times of each protocol,
the daily planning of the recordings program was sent to each group with specific dates and
times. This is how the participants were organised, making the logistics of the recordings
easier in general.

3.5. Recording Sessions

Once the preparation stage is completed, the recording sessions can take place. One
common problem faced in real cars is the reduced bandwidth support for data transmission
due to the limitations in the on-board PC hardware. To overcome this common case in
automotive applications, we used a dedicated recording computer capable of supporting
intense work and movements in the car. This computer was equipped with 3 dedicated
USB 3.0 ports to support the connection interfaces of Intel RealSense cameras. The PC
Hardware specifications for the recordings are:

• CPU: Intel i9 7940X series X 4.30 GHz
• RAM: 64 GB
• HD: 2 × SSD 1 TB M2
• GPU: 2 × NVIDIA GeForceTM RTX 2080Ti 11 GB GDDR6 PCIe 3.0

The selected cameras allow the user to configure different parameters to improve the
capture quality of the data. For any dataset acquisition task, the dataset designers should
pay special attention to the parameters which affect the image quality. When building
datasets where multiple cameras are present, different factors affect the performance and
the allowed configuration. Intel RealSense cameras can operate in multiple modes for frame
resolution and FPS, but these parameters are limited by the bandwidth supported by the
connection interface and recording PC. In general terms, the camera’s parameter selection
should try to maximize the frame resolution and FPS for all the cameras. Having larger
images helps to capture smaller body part regions with more detail, and having larger FPS
enables better video quality in fast-moving scenes. For the DMD, more importance was
given to the frame resolution, since the driving actions does not imply fast movements
(except for blinking).

The frame resolution and FPS were selected attending the recommended allowed
data bandwidth of USB 3.0 connections. The USB 3.0 “SuperSpeed” interface of the Intel
RealSense cameras supports 5 Gbps. However, considering the encoding overhead, the
raw data throughput is 4 Gbps. The USB specification considers it reasonable to achieve
3.2 Gbps. This could be an optimistic upper limit. As the USB protocol can support several
devices connected to the same port; another analysis [58] showed that a device that requires
over 30% of the bus bandwidth should be considered to be used separately from other
devices in a single USB port. So, in general, Intel RealSense manufacturers recommend not
to go further than 0.3 × 4 Gbps = 1200 Mbps to ensure robust continuous streaming.

Then, as shown in Table 7 the camera configuration that is closest to this recommended
bandwidth and maximizes the frame resolution is for images of 1280 × 720 pixels and 30 FPS
in all three modalities. The three selected cameras were plugged into three independent
USB controllers to have the maximum bandwidth possible.

Moreover, image adjustments were made to improve the image quality of the recorded
images. The selected cameras allow the definition of dedicated regions of interest (ROI)
to perform auto exposure adjustment. This step was required to obtain well-lit images of
the body of the driver. Then, for each camera, a ROI around the driver’s body parts was
configured. The ROI corresponds to the face, body and hands for each camera.
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Table 7. Camera recording parameters and required bandwidths. The selected specifications for the
DMD is marked in bold.

RGB
W × H × FPS

(24 bits)

Depth
W × H × FPS

(16 bits)

IR
W × H × FPS

(8 bits)

Bandwidth
1 Camera
(Mbps)

Bandwidth
3 Cameras

(Mbps)

1920 × 1080 × 30 1280 × 720 × 30 1280 × 720 × 30 2157 6470

1280 × 720 × 30 1280 × 720 × 30 1280 × 720 × 30 1327 3981

848 × 480 × 30 848 × 480 × 30 848 × 480 × 30 586 1758

848 × 480 × 60 848 × 480 × 60 848 × 480 × 60 1172 3517

640 × 480 × 30 640 × 480 × 30 640 × 480 × 30 442 1327

640 × 480 × 60 640 × 480 × 60 640 × 480 × 60 885 2654

640 × 360 × 90 640 × 480 × 90 640 × 480 × 90 1161 3484

In addition, an important characteristic of multi-modal datasets is the requirement
of having synchronized data streams. During the recording sessions, the three-camera
streams were recorded using ROS bag format (http://wiki.ros.org/Bags/Format, accessed
on 22 March 2022). The advantage of using the rosbag format is the possibility to store the
three modalities of the camera in one file, including additional metadata such as camera
properties and timestamps. With the timestamps, it is possible to obtain synchronized
multi-modal streams. However, rosbag files also add some overhead to the output, which
increases the final size of the file and potentially impacts the recording bandwidth. The
selected camera stream’s configuration has a bandwidth of 1327 Mbps, which is almost
10 GB per minute of recording per camera. In order to reduce the final size of the rosbag
per camera, we applied the lossless compression data algorithm LZ4, which reduces the
final size of the videos to approximately 6 GB per minute.

During the recording sessions, after each group session (morning or afternoon) was
completed, the recorded files were transferred to centralized network-attached storage
(NAS). Although the recording PC was equipped with 2 TB SSD hard drives, the generated
data volume of the cameras (ref. Table 7) easily fills the HD. This process was conducted
during the break times between recording sessions to avoid processing overhead on the PC.

The total weight of the material obtained in raw is about 26 TB. The material distribu-
tion in relation with how it was captured (the recording scripts presented in Section 3.2) is
shown in Figure 6. There are 203 videos that follow the distraction recording protocol pre-
senting drivers performing activities related to distraction, 53 showing signs of drowsiness
and 97 videos in which gaze direction and hands position can be analysed.

2.9TB5.5TB17.8TB

Distrac�on Gaze Drowsiness

203
Videos

97
Videos

53
Videos

Total

353
Videos

26.2TB

Figure 6. DMD material weight in raw and video count.

4. Dataset Post-Processing

After the recording session was completed, all the recorded material was located in a
centralized NAS. This raw data was kept as backup for future post-processing actions. As
the DMD was intended to tackle the lack of data for different driver monitoring tasks, it
was crucial to store the material with the highest quality possible since these tasks could
require different compression qualities. However, to facilitate the consumption of the
visual material by annotation tools and DL training algorithms, a post-processing stage

http://wiki.ros.org/Bags/Format
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was implemented to export, calibrate and synchronize the multi-camera streams. The
images and videos were created using the FFMPEG library (https://www.ffmpeg.org/,
accessed on 22 March 2022).

4.1. Stream Compression

Raw data is in rosbag format (.bag) to annotate, work with the material and visualize
it, it was necessary to extract the data from the rosbag. For this, a Python script with ROS
library was developed.

• RGB and IR: The images are extracted and saved in PNG format with a size of
1280 × 720 pixels. After having the total number of images per stream extracted, they
are encoded in a video with libx264 encoder and saved in MP4 format with a bit
rate of 15,000 kbps and a frame rate of 29.98 FPS for hands and face camera videos
and 29.76 FPS for body camera video. These frame rates were the ones stored by the
cameras during the recordings.

• Depth: Depth data contains information of distance (in millimetres), indicating how
far the object is from the camera, or the driver in this case, in every pixel. Therefore,
this information can be extracted as an image where each pixel contains a distance
value instead of a colour value. This image is in 16UC1 format, which allows each
pixel to have a 16-bit value in one channel. This pixel format is equivalent to gray16le.
To save as an image and preserve this pixel format, depth frames were saved in TIFF
format (.tif). After exporting all images, the videos were encoded with FFV1 codec and
saved in AVI format. The FFV1 codec is lossless and supports gray16le pixel format
(images in 16UC1).
The resulting video does not have a visualization purpose; the images are not rec-
ognizable with conventional video players, they contain distance information. This
effort was made to make the distribution task simpler, since the IR and RGB are also
distributed in video format.

• Metadata: Inside the rosbag, there was also information about the recordings that
were extracted and saved in the annotation file. This data is considered in the an-
notations list as scenario metadata (subject, context, video and camera information),
shown in Figure 3.

4.2. Multi-Sensor Stream Synchronization

When hardware synchronization is not possible, capturing with multiple cameras
produces a small time shift (a few frames) in different streams. In this case, it happened that
the 3 cameras operated asynchronously, hence, they did not start recording at the same instant;
most of the time, the first camera to switch on and start recording was the face camera, then
the body camera and finally the hands camera. Therefore, there is a frameshift between videos
in every recording. Manually correcting this shift in every video per recording would require
much effort and time. As a solution for this, we created an automatic method to identify
those shifts by extracting the “movement” signals of each camera, calculating the absolute
difference between consecutive frames from regions of interest of the image. The shifts are
given when analysing the correlation of the signals of the corresponding videos.

The intuition behind this is that the movements of the driver have the same pattern
independent of the capture perspective.By understanding the normalised absolute differ-
ence of the images of two consecutive frames as “movement”, with the analysis of all the
frames, we can get signals of “movement” per video. These signals must correlate since
they belong to the same moving person.

To be able to make these comparisons between the 3 cameras (face, body and hands
perspectives), some regions of interest (ROI’s) must be established, as shown in Figure 7a.
The body camera and face camera are related by the driver’s face, since this is the part
of the driver visible from these two perspectives; the hand camera and body camera are
related by the driver’s hands. To find the shifts, these ROIs were taken into account to

https://www.ffmpeg.org/
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produce signals that could better correlate with each other. There is a signal per ROI and
they are correlated depending on their relationship with each other.

It was found that better results were achieved in the correlation result if the signals
were passed through a bandpass filter to reduce the signal amplitude. The goal is to get the
most overlapping possible between the 2 signals. Some peaks or densities at the bottom of
the signal could harm this calculation for the most overlapping rate. To filter the signals, the
standard deviation σ was calculated and the band-pass filter was applied from max(x, σ)
to min(x, 3σ) of the signals’ amplitude. Moreover, the signal was cut 1/6 from the starting
and ending sides. This process is shown in Figure 7b.

(a)

(b)

Figure 7. Process for multi-sensor stream synchronization: (a) Region of interest and signal extraction,
(b) Processing of temporal signal and correlation calculation. Blue signal is computed from face and
hands ROI in face and body camera, respectively. Red signal is computed from face and hands ROI
in body and hands camera, respectively.

Then, the frameshift number is defined by the minimum length of the videos minus
the point where the highest correlation was reached minus 1. Once the shifts between
videos were identified, an additional mosaic video with the 3 streams synchronized was
created per recording session. This mosaic video is used in the next phase of the dataset
preparation, for semi-automatic label annotation.

4.3. Semi-Automatic Labelling

The generation of a visual-based dataset implies careful planning of a concatenation
of several steps to finally obtain a collection of visual data and metadata annotations.
The recording process, especially when a large amount of data is collected such as in
the DMD, has to be performed correctly to make the process of annotating the results
easier. That is why we have focused on the definition of the whole framework process of
creating a large set of data. In this process, an important part is the generation of metadata
annotations. Annotating a large dataset is not an easy task, especially when the projected
annotations include multiple dimensions of a computer vision problem, such as in DMS. To
annotate the DMD, we applied semi-automatic labelling [59] methodology aimed to reduce
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annotation times. The process consists of the generation of a first set of labels based on weak
models. Then, a human-in-the-loop approach is included to provide manual annotations
and recursively improve the label’s quality.

For the temporal annotations of the DMD, a tool was developed to make annotation
tasks easier and faster to complete (TaTo, Temporal Annotation Tool, version V1 [60]); it is
Python-based and allows the visualization of frame-by-frame annotations by colours on a
timeline, which makes this process more intuitive. The output metadata was structured
using OpenLABEL annotation format [61].

For this work, we extended this tool (TaTo V2) and added some semi-automatic labelling
principles with new strategies to create some annotations automatically and improve
labelling time:

• Pre-annotations predicted by model: We only performed manual annotation for the
driver actions of a few samples of the DMD with TaTo. These were then prepared
to become training material. Then, we trained a model using transfer learning from
a Mobilenet [8] originally trained with ImageNet [12]. The predictions were taken
as pre-annotations and the annotator’s job was to correct and continue annotating
instead of starting from zero.

• Logical relations among levels of annotations: There exist some logical relations
between levels of annotations that, taken into account, could save time in the labelling
process. For example, if the driver is sending a message with their left hand, this
should be annotated in the driver_actions level as “texting-left”, but this action also
could imply that the person is only using his/her right hand to drive (since he/she is
using the left hand to text). Therefore, in the hands_using_wheel level, there should be
the “only right” label. Other relations are the talking-related labels as “phonecall-left”
in the driver_actions level and “talking” in the talking level. In TaTo, we implemented
this function of applying logical annotations; once the annotations from the driver
action level were completed, by pressing the “x” key, these logical annotations were
propagated to the rest of the levels. This way, the annotator did not have to start
annotating from zero.

The TaTo tool, in its second version, offers the advantages of pre-annotations described
above. To know the impact of pre-annotations, we measured the time of annotation spent
on videos from different recording sessions with both versions of the tool (V1 does not offer
pre-annotations). We obtained the times shown in Table 8. Comparing the annotation time
per video of each version of the tool, we achieved a decrease in the annotation time with a
mean of 66% improvement.

Table 8. Comparison of annotation times using v1 and v2 of TaTo.

Session TaTo Version # Videos Total Time
(h:min:s)

Time/Video
(h:min:s) Improvement

s1 V1 4 13:02:00 3:25:00 56.10%V2 1 1:30:00 1:30:00

s2 V1 3 16:10:00 5:36:00 63.69%V2 2 4:04:00 2:02:00

s3 V1 2 2:20:00 1:10:00 81.43%V2 3 0:41:00 0:13:00

s4 V1 2 19:45:00 8:22:00 63.55%V2 3 9:10:00 3:03:00

With this, it is shown that semi-automatic annotation strategies can bring advantages
over a traditional annotation process. This demonstrates the importance of including
semi-automatic strategies during the dataset creation process.
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5. Discussion
5.1. Sample Utilization of the DMD: Action Recognition

Distraction detection is one use case of the DMD. The first approach of distraction
detection was made in [62], where the DMD material was annotated with some distraction-
related labels that led to the definition of a training dataset called dBehaviourMD. Other
iteration in the annotation process resulted in the creation of labels destined for distraction
detection that were used in the research of [60]. Recently, thanks to the metadata method-
ology and sensor configuration defined in this work, we have built a more descriptive
and detailed annotation criterion that can support distraction detection through action
recognition algorithms. The annotations defined for this specific task are temporal, and the
labels, organised by levels, are presented in Table 2.

The label organisation by levels of annotation allows making a multi-label annotation
of the video, offering a better description of the scene in one frame. As a result, this
temporal distraction-related part of the DMD has the class distribution, per annotation
level, presented in Figure 8.
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The total frame count of this dataset is 1,837,041 frames, which is about 1021 min of
video. The percentages of the labels presented in the table are the percentages of frames
annotated with that label within its level of annotation, not with respect to the total amount
of frames. For example, for the frames annotated with the “gaze on road” level criteria
(frames where the face camera is available), in 84% of them the person is looking at the
road and in 16% is not looking at the road.

This part of the DMD is now published on the DMD website (https://dmd.vicomtech.org/,
accessed on 24 March 2022) and is free to download under the specified terms of utilization.
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The total frame count of this dataset is 1,837,041 frames, which is about 1021 min of
video. The percentages of the labels presented in the table are the percentages of frames
annotated with that label within its level of annotation, not with respect to the total amount
of frames. For example, for the frames annotated with the “gaze on road” level criteria
(frames where the face camera is available), in 84% of them the person is looking at the
road and in 16% is not looking at the road.

This part of the DMD is now published on the DMD website (https://dmd.vicomtech.org/,
accessed on 22 March 2022) and is free to download under the specified terms of utilization.

5.2. Ongoing and Future Work

The construction and preparation of the DMD is part of a live project to build a robust
and rich driver monitoring dataset that evolves as the technologies improve [55]. Since
there are not many datasets dedicated to driver monitoring, and due to our intention to
contribute to the scientific community, the DMD is planned to be published on its website
for free to download under non-commercial use agreement. At this point, about 80% of the
material related to distractions of the DMD is public, the other 20% will remain unpublished
for future benchmarking exercises.

A procedure has been developed to allow the user of the DMD to access it easily. The
steps for the download process are shown in Figure 9. On the website, there is a download
form where the users enter their contact details. This form is sent to a mailing service
platform where this information is stored. For each record added, the storage service trigger
is activated to give access to the registered email user to the DMD. Once access is given to
the storage service, an email is sent to the user notifying them that they can now obtain the
dataset. By this time, 418 users have requested the dataset through the website form.

01

02

03

04

05

User �lls
DMD 

download
form

Share
DMD trough

storage
service

provider

Notify
user

Register 
user in
mailing
sevice

provider User can
download
the DMD

Figure 9. Procedure to distribute the DMD.

An adequate structure to share the dataset was also defined. The material is distributed
mainly by groups; the same groups in which the recordings were organised. Then, it
is organised in folders by subject to finally group the material by recording sessions.
Regarding the nomenclature, each video has in its filename information about the group to
which it belongs (A, B, C, etc.), the subject (1, 2, 3 and . . .), the session (s1, s2, s3 or s4), the
timestamp when it was recorded, the information channel (RGB, depth and IR) and the
camera (body, face, hands and mosaic) or annotation (ann_distraction). This structure is
represented in Figure 10.

As described above, the planned annotations to the DMD is a long and varied list. The
objective is to continue progressing in the annotation of the DMD and, in this way, expand
the possible uses of the dataset. In turn, the DMD is conceived as a project open to the
community so that it can take advantage of it. That is why we continue publishing both
material and tools that are developed for the processing and annotation of this dataset.

https://dmd.vicomtech.org/
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Figure 10. DMD file structure.

6. Conclusions

Visual data is one of the most important assets to build robust and complete machine
vision systems. The process of generating a vision-based dataset is not a trivial and
easy task and requires careful planning and execution to avoid redundant work and
provide the material that meets the volume, variety and quality requirements of computer
vision systems.

In this paper, we presented the full process to build from scratch a multi-modal and
multi-sensor computer vision dataset for the application in driving monitoring. We have
demonstrated that a previous phase of analysis of the DMS algorithm requirements is
needed to define the expected taxonomy of events that are later annotated. In the presented
framework, we show it is possible to define several capture protocols that cover the required
annotation taxonomy. In addition, based on the recording planning, the selection of the
used sensors was specified. For the DMD, the required sensors include several RGB and
depth cameras.

Since the DMD was targeted to collect a high amount of driving data, this paper
presents the challenges of the post-processing phase, where the raw data was prepared
and formatted for consumption by annotation tools and DL training algorithms. To the
best of our knowledge, the DMD is the largest and richest public dataset for developing
multi-modal video-based driver monitoring systems.

Author Contributions: Conceptualization, J.D.O., M.N. and L.S.; Funding acquisition, O.O.; Investi-
gation, J.D.O. and P.N.C.; Methodology, J.D.O. and P.N.C.; Project administration, M.N.; Software,
J.D.O. and P.N.C.; Supervision, M.N. and L.S.; Visualization, P.N.C.; Writing—original draft, J.D.O.
and P.N.C.; Writing—review & editing, M.N. and L.S. All authors have read and agreed to the
published version of the manuscript.



Sensors 2022, 22, 2554 24 of 26

Funding: This work has been partially supported by project VI-DAS funded by the European Union’s
H2020 research and innovation programme (grant agreement 690772), and project PID2020-115132RB
(SARAOS) funded by MCIN/AEI/10.13039/501100011033 of the Spanish Government.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
creation of the driving monitoring dataset.

Data Availability Statement: The data generated in this study are openly available in https://dmd.
vicomtech.org (accessed on 22 March 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CV computer vision
DMS driver monitoring system
DMD driver monitoring dataset
DL deep learning

References
1. Wang, W.; Liu, C.; Zhao, D. How much data are enough? A statistical approach with case study on longitudinal driving behavior.

IEEE Trans. Intell. Veh. 2017, 2, 85–98. [CrossRef]
2. Terzi, R.; Sagiroglu, S.; Demirezen, M.U. Big Data Perspective for Driver/Driving Behavior. IEEE Intell. Transp. Syst. Mag. 2020,

12, 20–35. [CrossRef]
3. Saab. Saab Driver Attention Warning System; The Saab Network: Brussels, Belgium, 2007.
4. Toyota Motor Corporation. Toyota Enhances Pre-Crash Safety System with Eye Monitor; Toyota Motor Corporation: Aichi, Japan, 2008.
5. Volvo Car Group. Volvo Cars Conducts Research into Driver Sensors in Order to Create Cars That Get to Know Their Drivers; Volvo Car

Group: Gothenburg, Sweden, 2014.
6. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
7. Kuutti, S.; Bowden, R.; Jin, Y.; Barber, P.; Fallah, S. A Survey of Deep Learning Applications to Autonomous Vehicle Control.

IEEE Trans. Intell. Transp. Syst. 2021, 22, 712–733. [CrossRef]
8. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.
9. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]
10. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [CrossRef]
11. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Lecture Notes

in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Proceedings of the
European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; Springer: Berlin/Heidelberg, Germany,
Volume 9905 LNCS, pp. 21–37. [CrossRef]

12. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Li, F.-F. ImageNet: A large-scale hierarchical image database. In Proceedings of the
Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [CrossRef]

13. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common objects in
context. In Proceedings of the Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; pp. 740–755. [CrossRef]

14. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The PASCAL visual object classes (VOC) challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

15. Everingham, M.; Eslami, S.M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes Challenge:
A Retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [CrossRef]

16. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In Proceedings of the
Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 3354–3361. [CrossRef]

17. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

18. Sun, P.; Kretzschmar, H.; Dotiwalla, X.; Chouard, A.; Patnaik, V.; Tsui, P.; Guo, J.; Zhou, Y.; Chai, Y.; Caine, B.; et al. Scalability
in perception for autonomous driving: Waymo open dataset. In Proceedings of the Computer Vision and Pattern Recognition
(CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 2443–2451. [CrossRef]

https://dmd.vicomtech.org
https://dmd.vicomtech.org
http://doi.org/10.1109/TIV.2017.2720459
http://dx.doi.org/10.1109/MITS.2018.2879220
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1109/TITS.2019.2962338
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1109/ cvprw.2009.5206848
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1007/s11263-014-0733-5
http://dx.doi.org/10.1109/CVPR.2012.6248074
http://dx.doi.org/10.1177/0278364913491297
http://dx.doi.org/10.1109/CVPR42600.2020.00252


Sensors 2022, 22, 2554 25 of 26

19. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes
Dataset for Semantic Urban Scene Understanding. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Las
Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223. [CrossRef]

20. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. Nuscenes: A
multimodal dataset for autonomous driving. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Seattle,
WA, USA, 13–19 June 2020; pp. 11618–11628. [CrossRef]

21. Kesten, R.; Usman, M.; Houston, J.; Pandya, T.; Nad-hamuni, K.; Ferreira, A.; Yuan, M.; Low, B.; Jain, A.; On-druska, P.; et al. Lyft
level 5 Perception Dataset 2020. 2019. Available online: https://level-5.global/data/ (accessed on 22 March 2022).

22. Regan, M.A.; Strayer, D.L. Towards an understanding of driver inattention: Taxonomy and theory. In Annals of Advances in
Automotive Medicine; Association for the Advancement of Automotive Medicine: Chicago, IL, USA, 2014; Volume 58, pp. 5–14.

23. Chowdhury, A.; Shankaran, R.; Kavakli, M.; Haque, M.M. Sensor Applications and Physiological Features in Drivers’ Drowsiness
Detection: A Review. IEEE Sensors J. 2018, 18, 3055–3067. [CrossRef]

24. Sikander, G.; Anwar, S. Driver Fatigue Detection Systems: A Review. IEEE Trans. Intell. Transp. Syst. 2019, 20, 2339–2352.
[CrossRef]

25. Jacobé de Naurois, C.; Bourdin, C.; Stratulat, A.; Diaz, E.; Vercher, J.L. Detection and prediction of driver drowsiness using
artificial neural network models. Accid. Anal. Prev. 2019, 126, 95–104. [CrossRef] [PubMed]

26. Sahayadhas, A.; Sundaraj, K.; Murugappan, M. Detecting driver drowsiness based on sensors: A review. Sensors 2012,
12, 16937–16953. [CrossRef] [PubMed]

27. Ebrahim, P.; Stolzmann, W.; Yang, B. Eye movement detection for assessing driver drowsiness by electrooculography. In
Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2013, Manchester, UK, 13–16
October 2013; pp. 4142–4148. [CrossRef]

28. El Basiouni El Masri, A.; Artail, H.; Akkary, H. Toward self-policing: Detecting drunk driving behaviors through sampling CAN
bus data. In Proceedings of the International Conference on Electrical and Computing Technologies and Applications, ICECTA,
Ras Al Khaimah, United Arab Emirates, 21–23 November 2017; pp. 1–5. [CrossRef]

29. Shirazi, M.M.; Rad, A.B. Detection of intoxicated drivers using online system identification of steering behavior. IEEE Trans.
Intell. Transp. Syst. 2014, 15, 1738–1747. [CrossRef]

30. Liang, Y.; Reyes, M.L.; Lee, J.D. Real-time detection of driver cognitive distraction using support vector machines. IEEE Trans.
Intell. Transp. Syst. 2007, 8, 340–350. [CrossRef]

31. Miyajima, C.; Takeda, K. Driver-Behavior Modeling Using On-Road Driving Data: A new application for behavior signal
processing. IEEE Signal Process. Mag. 2016, 33, 14–21. [CrossRef]

32. Kaplan, S.; Guvensan, M.A.; Yavuz, A.G.; Karalurt, Y. Driver Behavior Analysis for Safe Driving: A Survey. IEEE Trans. Intell.
Transp. Syst. 2015, 16, 3017–3032. [CrossRef]

33. Halin, A.; Verly, J.G.; Van Droogenbroeck, M. Survey and synthesis of state of the art in driver monitoring. Sensors 2021, 21, 5558.
[CrossRef]

34. Moslemi, N.; Soryani, M.; Azmi, R. Computer vision-based recognition of driver distraction: A review. In Concurrency and
Computation: Practice and Experience; Wiley: Hoboken, NJ, USA, 2021; pp. 1–25. [CrossRef]

35. Deo, N.; Trivedi, M.M. Looking at the Driver/Rider in Autonomous Vehicles to Predict Take-Over Readiness. IEEE Trans. Intell.
Veh. 2019, 5, 41–52. [CrossRef]

36. Borghi, G.; Fabbri, M.; Vezzani, R.; Calderara, S.; Cucchiara, R. Face-from-Depth for Head Pose Estimation on Depth Images.
IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 596–609. [CrossRef]

37. Gavrilescu, M.; Vizireanu, N. Feedforward neural network-based architecture for predicting emotions from speech. Data 2019, 4,
101. [CrossRef]

38. Roth, M.; Gavrila, D.M. DD-pose—A large-scale driver head pose benchmark. In Proceedings of the IEEE Intelligent Vehicles
Symposium, Paris, France, 9–12 June 2019; Volume 2019, pp. 927–934. [CrossRef]

39. Ohn-Bar, E.; Trivedi, M.M. Looking at Humans in the Age of Self-Driving and Highly Automated Vehicles. IEEE Trans. Intell. Veh.
2016, 1, 90–104. [CrossRef]

40. Vora, S.; Rangesh, A.; Trivedi, M.M. On generalizing driver gaze zone estimation using convolutional neural networks. In
Proceedings of the IEEE Intelligent Vehicles Symposium, Los Angeles, CA, USA, 11–14 June 2017; pp. 849–854. [CrossRef]

41. Fridman, L.; Lee, J.; Reimer, B.; Victor, T. Owl and Lizard: Patterns of Head Pose and Eye Pose in Driver Gaze Classification. IET
Comput. Vis. 2016, 10, 1–9. [CrossRef]

42. Yuen, K.; Trivedi, M.M. Looking at Hands in Autonomous Vehicles: A ConvNet Approach Using Part Affinity Fields. IEEE Trans.
Intell. Veh. 2019, 5, 361–371. [CrossRef]

43. Ortega, J.D.; Cañas, P.; Nieto, M.; Otaegui, O.; Salgado, L. Open your eyes : Eyelid aperture estimation in Driver Monitoring
Systems. In SMARTGREENS 2020, VEHITS 2020. Communications in Computer and Information Science; Springer: Berlin/Heidelberg,
Germany, 2021; Volume 1475. [CrossRef]

44. Jabon, M.; Bailenson, J.; Pontikakis, E.; Takayama, L.; Nass, C. Facial-expression analysis for predicting unsafe driving behavior.
IEEE Pervasive Comput. 2011, 10, 84–95. [CrossRef]

45. Martin, M.; Popp, J.; Anneken, M.; Voit, M.; Stiefelhagen, R. Body Pose and Context Information for Driver Secondary Task
Detection. IEEE Intell. Veh. Symp. Proc. 2018, 2018, 2015–2021. [CrossRef]

http://dx.doi.org/10.1109/CVPR.2016.350
http://dx.doi.org/10.1109/CVPR42600.2020.01164
https://level-5.global/data/
http://dx.doi.org/10.1109/JSEN.2018.2807245
http://dx.doi.org/10.1109/TITS.2018.2868499
http://dx.doi.org/10.1016/j.aap.2017.11.038
http://www.ncbi.nlm.nih.gov/pubmed/29203032
http://dx.doi.org/10.3390/s121216937
http://www.ncbi.nlm.nih.gov/pubmed/23223151
http://dx.doi.org/10.1109/SMC.2013.706
http://dx.doi.org/10.1109/ICECTA.2017.8252037
http://dx.doi.org/10.1109/TITS.2014.2307891
http://dx.doi.org/10.1109/TITS.2007.895298
http://dx.doi.org/10.1109/MSP.2016.2602377
http://dx.doi.org/10.1109/TITS.2015.2462084
http://dx.doi.org/10.3390/s21165558
http://dx.doi.org/10.1002/cpe.6475
http://dx.doi.org/10.1109/TIV.2019.2955364
http://dx.doi.org/10.1109/TPAMI.2018.2885472
http://dx.doi.org/10.3390/data4030101
http://dx.doi.org/10.1109/IVS.2019.8814103
http://dx.doi.org/10.1109/TIV.2016.2571067
http://dx.doi.org/10.1109/IVS.2017.7995822
http://dx.doi.org/10.1049/iet-cvi.2015.0296
http://dx.doi.org/10.1109/TIV.2019.2955369
http://dx.doi.org/10.1007/978-3-030-89170-1_9
http://dx.doi.org/10.1109/MPRV.2010.46
http://dx.doi.org/10.1109/IVS.2018.8500523


Sensors 2022, 22, 2554 26 of 26

46. Ghoddoosian, R.; Galib, M.; Athitsos, V. A Realistic Dataset and Baseline Temporal Model for Early Drowsiness Detection. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–20 June 2019.

47. Diaz-Chito, K.; Hernández-Sabaté, A.; López, A.M. A Reduced Feature Set for Driver Head Pose Estimation. Appl. Soft Comput.
2016, 45, 98–107. [CrossRef]

48. Ohn-Bar, E.; Trivedi, M.M. The power is in your hands: 3d analysis of hand gestures in naturalistic video. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Portland, OR, USA, 23–28 June
2013; pp. 912–917. [CrossRef]

49. Borghi, G.; Venturelli, M.; Vezzani, R.; Cucchiara, R. POSEidon: Face-from-Depth for driver pose estimation. In Proceedings of the
30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HA, USA, 21–26 July 2017; Volume 2017,
pp. 5494–5503. [CrossRef]

50. Martin, M.; Roitberg, A.; Haurilet, M.; Horne, M.; Reiss, S.; Voit, M.; Stiefelhagen, R. Drive & Act: A Multi-modal Dataset for
Fine-Grained Driver Behavior Recognition in Autonomous Vehicles. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 2801–2810.

51. Massoz, Q.; Langohr, T.; Francois, C.; Verly, J.G. The ULg multimodality drowsiness database (called DROZY) and examples of
use. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision, WACV 2016, Lake Placid, NY, USA,
7–10 March 2016. [CrossRef]

52. Weng, C.H.; Lai, Y.H.; Lai, S.H. Driver Drowsiness Detection via a Hierarchical Temporal Deep Belief Network. In Proceedings
of the Computer Vision—ACCV 2016 Workshops. Lecture Notes in Computer Science, Taipei, Taiwan, 20–24 November 2016;
Volume 10118. [CrossRef]

53. Schwarz, A.; Haurilet, M.; Martinez, M.; Stiefelhagen, R. DriveAHead—A Large-Scale Driver Head Pose Dataset. In Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HA, USA, 21–26
July 2017; Volume 2017, pp. 1165–1174. [CrossRef]

54. Eraqi, H.M.; Abouelnaga, Y.; Saad, M.H.; Moustafa, M.N. Driver distraction identification with an ensemble of convolutional
neural networks. J. Adv. Transp. 2019, 2019, 4125865. [CrossRef]

55. Ortega, J.D.; Nieto, M.; Cañas, P.; Otaegui, O.; Salgado, L. A real-time software framework for driver monitoring systems:
Software architecture and use cases. In Real-Time Image Processing and Deep Learning 2021; International Society for Optics and
Photonics, SPIE: Bellingham, WA, USA, 2021; Volume 11736, p. 13. [CrossRef]

56. Trivedi, M.M.; Gandhi, T.; McCall, J. Looking-in and looking-out of a vehicle: Computer-vision-based enhanced vehicle safety.
IEEE Trans. Intell. Transp. Syst. 2007, 8, 108–120. [CrossRef]

57. Fridman, L.; Ding, L.; Seaman, S.; Mehler, A.; Sipperley, A.; Pettinato, A.; Seppelt, B.D.; Angell, L.; Mehler, B.; Reimer, B.; et al.
MIT Advanced Vehicle Technology Study: Large-Scale Naturalistic Driving Study of Driver Behavior and Interaction With
Automation. IEEE Access 2019, 7, 102021–102038. [CrossRef]

58. Garney, J. An Analysis of Throughput Characteristics of Universial Serial Bus. Technical Report. 1996. Available online:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.163.7407 (accessed on 3 February 2022).

59. Sánchez-Carballido, S.; Senderos, O.; Nieto, M.; Otaegui, O. Semi-Automatic Cloud-Native Video Annotation for Autonomous
Driving. Appl. Sci. 2020, 10, 4301. [CrossRef]

60. Cañas, P.; Ortega, J.; Nieto, M.; Otaegui, O. Detection of Distraction-related Actions on DMD: An Image and a Video-based
Approach Comparison. In Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications—Volume 5: VISAPP, Online Conference, 8–10 February 2021; pp. 458–465. [CrossRef]

61. Nieto, M.; Senderos, O.; Otaegui, O. Boosting AI applications: Labeling format for complex datasets. SoftwareX 2021, 13, 100653.
[CrossRef]

62. Ortega, J.D.; Kose, N.; Cañas, P.; Chao, M.A.; Unnervik, A.; Nieto, M.; Otaegui, O.; Salgado, L. DMD: A Large-Scale Multi-
modal Driver Monitoring Dataset for Attention and Alertness Analysis. In ECCV Workshops, Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Bartoli, A., Fusiello, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2020; Volume 12538, pp. 387–405. [CrossRef]

http://dx.doi.org/10.1016/j.asoc.2016.04.027
http://dx.doi.org/10.1109/CVPRW.2013.134
http://dx.doi.org/10.1109/CVPR.2017.583
http://dx.doi.org/10.1109/WACV.2016.7477715
http://dx.doi.org/10.1007/978-3-319-54526-4
http://dx.doi.org/10.1109/CVPRW.2017.155
http://dx.doi.org/10.1155/2019/4125865
http://dx.doi.org/10.1117/12.2588712
http://dx.doi.org/10.1109/TITS.2006.889442
http://dx.doi.org/10.1109/ACCESS.2019.2926040
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.163.7407
http://dx.doi.org/10.3390/app10124301
http://dx.doi.org/10.5220/0010244504580465
http://dx.doi.org/10.1016/j.softx.2020.100653
http://dx.doi.org/10.1007/978-3-030-66823-5_23

	Introduction
	Driver Monitoring Methods and Datasets
	Datasets in the Automotive Sector
	Driver Monitoring Systems and Data Requirements
	Datasets for Application of Driver Monitoring Systems

	Dataset Definition and Creation
	Metadata Taxonomy Definition
	Scenario Metadata
	Geometrical Features
	Temporal Features

	Scripted Protocols
	Distraction Protocol
	Drowsiness Protocol
	Gaze and Hands Protocol

	Multi-Sensor Setup Architecture
	Participants Selection
	Recording Sessions

	Dataset Post-Processing
	Stream Compression
	Multi-Sensor Stream Synchronization
	Semi-Automatic Labelling

	Discussion
	Sample Utilization of the DMD: Action Recognition
	Ongoing and Future Work

	Conclusions
	References

