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Abstract: With autonomous driving developing in a booming stage, accurate object detection in com-
plex scenarios attract wide attention to ensure the safety of autonomous driving. Millimeter wave
(mmWave) radar and vision fusion is a mainstream solution for accurate obstacle detection. This arti-
cle presents a detailed survey on mmWave radar and vision fusion based obstacle detection methods.
First, we introduce the tasks, evaluation criteria, and datasets of object detection for autonomous
driving. The process of mmWave radar and vision fusion is then divided into three parts: sensor
deployment, sensor calibration, and sensor fusion, which are reviewed comprehensively. Specifically,
we classify the fusion methods into data level, decision level, and feature level fusion methods.
In addition, we introduce three-dimensional(3D) object detection, the fusion of lidar and vision
in autonomous driving and multimodal information fusion, which are promising for the future.
Finally, we summarize this article.

Keywords: autonomous driving; radar and vision fusion; radar and camera fusion; object detection;
data level fusion; decision level fusion; feature level fusion; lidar; survey; review

1. Introduction

Main causes of traffic accidents are the complicated road conditions and a variety of
human errors. Autonomous driving technology can leave the judgment of road conditions
and human manipulation to the vehicle itself, which can improve traffic efficiency and
driving safety. In recent years, with the significant development of artificial intelligence
(AI), Internet of Things (IoT), and mobile communication, etc., autonomous driving has
developed rapidly. There is no doubt that in the foreseeable future, autonomous driving
vehicles will enter people’s daily life and become a common AI product. The earliest re-
search on autonomous driving was in the 1980s when Defense Advanced Research Projects
Agency (DARPA) organized the autonomous land vehicle (ALV) project [1]. In 2009, Google
announced the establishment of a research team to start research on autonomous driving
technology [2]. In 2013, Baidu launched research on “baidu nomancar”. In the same year,
Audi, Nissan, and other traditional automobile manufacturers began to layout autonomous
driving cars. However, until now, autonomous driving has not fully entered people’s life.
The complex traffic environment has too many uncertainties, which discourage people
from entrusting their safety to autonomous driving vehicles.

In 2014, the Society of Automotive Engineers (SAE) released j3016 standard, which
defined the standards of autonomous driving level from L0 (no driving automation) to
L5 (full driving automation) [3]. Levels L4 and L5 can completely get rid of manual
operation during driving. However, there are more challenges to guarantee the safety of
driving [4]. For safety reasons, the anti-collision function is an essential part of automated
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driving system (ADS), and the core task of the anti-collision system is obstacle detection.
Therefore, one of the challenges for high-level autonomous vehicles is accurate object
detection in complex scenarios.

Object detection is the most popular research area in the field of vision image process-
ing. In the early stage of research, due to the lack of efficient image feature representation
methods, object detection algorithms relied on the construction of manual features. Rep-
resentative traditional algorithms included histograms of oriented gradients (HOG) [5],
deformable parts model (DPM) [6], and so on. In recent years, as deep learning has devel-
oped, its great potential in object detection has been discovered. Detection algorithms based
on deep learning are divided into two types: one-stage and two-stage. The former contains
YOLO [7], SSD [8], and RetinaNet [9], and the latter contains R-CNN [10], Fast R-CNN [11],
and Faster R-CNN [12], etc. However, the current visual object detection algorithms have
hit a performance ceiling because the detection algorithms face very complicated situations
in practice. For the scenarios of autonomous driving, the obstacles include pedestrians,
cars, trucks, bicycles, and motorcycles, and obstacles within the visual range have different
scales and length-to-width ratios. In addition, there may be varying degrees of occlusion
between obstacles, and the appearance of the obstacles may be blurred because of the
extreme weather such as rainstorms, heavy snow, and fog, which result in a great reduction
in detection performance [13]. Studies have shown that CNN has poor generalization
ability for untrained distortion types [14].

Various studies have shown that a camera is not sufficient for autonomous driving
tasks. Compared with vision sensors, the detection performance of millimeter wave
(mmWave) radar is less affected by extreme weather [15,16]. In addition, the mmWave
radar not only measures the distance, but also uses the Doppler effect of the signal reflected
by the moving object to measure the velocity vector [17,18]. However, mmWave radar
cannot provide the outline information of the object, and it is difficult to distinguish
relatively stationary targets. In summary, the detection capabilities of the vision sensor
and the mmWave radar could complement each other. The detection algorithms based on
mmWave radar and vision fusion can significantly improve the perception of autonomous
vehicles and help vehicles better cope with the challenge of accurate object detection
in complex scenarios.

The process of mmWave radar and vision fusion based object detection is shown
in Figure 1. The processes of mmWave radar and vision fusion consist of three parts: sensor
selection, sensor calibration, and sensor fusion. In order to achieve the desired performance
of object detection with mmWave radar and vision fusion, the following challenges need to
be solved.

• Spatiotemporal calibration: The premise of fusion is to be in the same time and space,
which means that mmWave radar and vision information need to be calibrated.

• Information fusion: Object detection algorithms that fuse the sensing information of
different sensors to achieve the optimal performance are essential.

In order to solve the above challenges, first, it is essential to analyze the characteristics
of different sensors and select the appropriate sensor. Second, it is necessary to study the
sensor calibration, which involves the coordinate transformation between different sensors,
the filtering of invalid sensing information, and the error calibration. Last but not least, it is
necessary to study the sensing information fusion and realize the improvement of sensing
capability through the complement of different sensors, which involve the mmWave radar
and vision fusion schemes.
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Figure 1. Process of mmWave radar and vision fusion.

In recent years, there have been some surveys on object detection, but most of them
focus on visual solutions. Ref. [19] summarized the vision-based object detection solutions
and conducted a comprehensive and detailed survey for object detection algorithms before
and after the advent of deep learning. It is helpful for understanding vision-based object
detection, but its detection targets were not only vehicles and there is no relevant content
about fusion of radar and vision. Ref. [20] summarized the functions of each sensor module
in the advanced driver assistance system (ADAS), but lacks the explanation of the fusion
between radar and vision. Ref. [21] summarized the multi-sensor fusion and vehicle
communication technology for autonomous driving, involving the fusion of cameras,
mmWave radar, lidar, global positioning system (GPS), and other sensors and vehicle to
everything (V2X) technology. It focused on the classification of sensor fusion schemes,
but lacks sufficient and in-depth review on the radar and vision fusion. In this article, we
focus on the low-cost mmWave radar and vision fusion solutions. The process of mmWave
radar and vision fusion consists of sensor selection, sensor calibration, and sensor fusion,
each of which is reviewed in detail. Specifically, we classified the fusion methods into
three-level fusion schemes including data level, decision level, and feature level schemes.

As shown in Figure 2, the rest of this article is organized as follows. Section 2 intro-
duces the tasks of object detection, evaluation criteria, and the public dataset. Section 3
reviews the sensor configuration schemes of some automobile manufacturers and the
comparison of the sensors. Section 4 reviews the sensors calibration technologies. Section 5
reviews sensor fusion schemes. Section 6 analyzes the development trends of fusion of
radar and vision for autonomous driving. Finally, we summarize this article in Section 7.
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Figure 2. The organization of this article.

2. Tasks, Evaluation Criteria, and Datasets
2.1. Tasks

Object detection is of vital importance in the field of autonomous driving. In addi-
tion to target classification, the detection tasks include positioning of the existing objects
in the input image.

The goal of two-dimensional (2D) object detection is to select the detected obstacle
targets in the vision image of the vehicle with a 2D bounding box. The targets are then
classified and positioned. The positioning here refers to the positioning of the targets
in the image rather than the positioning of targets relative to the vehicle in the real world.

In three-dimensional (3D) object detection, the processes include the selection of the
detected obstacle targets in the vision image of the vehicle with a 3D bounding box and
the classification and positioning of the targets. The positioning is not only the positioning
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of the selected target in the image, but also determining the posture and position of the
objects in the real world.

2.2. Evaluation Criteria

Average precision (AP) and average recall (AR), representing accuracy and regression
in object detection, are commonly used as evaluation indices. The precision-recall (PR)
curve can be obtained by taking recall values and precision values as the horizontal and
vertical axes, respectively. The mean average precision (mAP), which represents the
consolidated results of the detection model, can be obtained by calculating the average AP
value of all classes.

Take the KITTI dataset, which is widely used in autonomous driving, as an example.
For 2D object detection, the correctness of object positioning is determined by comparing
whether the intersection over union (IoU) between the detection bounding box and the
annotated bounding box is greater than the threshold [22]. It uses the mAP model proposed
in [23] for performance evaluation. The calculation method is to set 11 equally spaced
thresholds in [0, 1]. For recall value greater than each threshold, there is a maximum
precision value, and the average value of 11 precise values is the final mAP value.

However, 3D object detection currently is more attractive in the studies of autonomous
driving. The KITTI officially stipulated that for vehicles, correct prediction requires that the
predicted 3D box overlaps the real 3D box by more than 70%, whereas for pedestrians and
bicycles, 50% overlap of the 3D bounding box is required [24]. In addition, KITTI adopted
the recommendations of the Mapillary team in [25], which proposed that 40 recall positions
could calculate the mAP more accurately than the 11 recall positions method.

2.3. Datasets

Datasets are very important for the research of object detection. This section will
briefly introduce some representative datasets for autonomous driving. Table 1 shows the
basic features of some widely used datasets.

Table 1. Autonomous driving datasets. “Y” indicates the existence of the sensing information in this
dataset and “N” indicates the absence of the sensing information in this dataset.

Dataset Release Year RGB Image Radar Lidar

Apolloscape 2018 Y N Y

KITTI 2012 Y N Y

Cityscapes 2016 Y N N

Waymo Open Dataset 2019 Y N Y

nuScense 2019 Y Y Y

2.3.1. Apolloscape

ApolloScape [26] is part of the Apollo Open Platform created by Baidu in 2017. It uses
a Reigl lidar to collect point cloud. The 3D point cloud generated by Reigl is more accurate
and denser than the point cloud generated by Velodyne. Currently, ApolloScape has
opened 147,000 frames of pixel-level semantically annotated images, including perceptual
classification and road network data, etc. These high-resolution images with pixel-by-pixel
semantic segmentation and annotation come from a 10 km distance measurement across
three cities. Moreover, each area was repeatedly scanned under different weather and
lighting conditions.

2.3.2. KITTI

The KITTI dataset [22], established by the Karlsruhe Institute of Technology in Ger-
many and the Toyota American Institute of Technology in the USA, is currently the most
commonly used autonomous driving dataset. The team used a Volkswagen car equipped
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with cameras and Velodyne lidar to drive around Karlsruhe, Germany for 6 hours to record
the traffic information. The dataset provides the raw image and accurate 3D bounding box
with class label for every sequence. The object classes include cars, vans, trucks, pedestrians,
cyclists, and trams.

2.3.3. Cityscapes

The Cityscapes dataset [27] is jointly provided by three German labs: Daimler, Max
planck institute informatik, and Technische Universität Darmstadt. It is a semantic un-
derstanding image dataset of urban street scenes. It primarily contains 5000 high-quality
pixel-level annotated images of driving scenes in an urban environment (2975 for training,
500 for validation, 1525 for test, for 19 categories in total) from over 50 cities. In addition, it
has 20,000 rough-annotated images.

2.3.4. Waymo Open Dataset

The Waymo dataset [28] is an open source project of Waymo, an autonomous driving
company under Alphabet Inc. It consists of labeled data collected by Waymo self-driving
cars under various conditions, including more than 10 million miles of autonomous driv-
ing mileage data covering 25 cities. The dataset includes lidar point clouds and vision
images. Vehicles, pedestrians, cyclists, and signs have been meticulously marked. The team
captured more than 12 million 3D annotations and 1.2 million 2D annotations.

2.3.5. nuScenes

The nuScenes dataset [29], established by nuTonomy, is the largest existing autonomous
driving dataset. It is the first dataset that is equipped with the full autonomous vehicle
sensors. This dataset not only provides camera and lidar data, but also contains radar
data, and it is currently the only dataset with radar data. Specifically, the 3D bounding box
annotation provided by nuScenes not only contains 23 classes, but also has 8 attributes
including pedestrian pose, vehicle state, etc.

3. Sensor Deployment

This section introduces the sensor deployment schemes for autonomous driving
vehicles. Through the analysis of the sensor deployment for vehicles equipped with
autonomous driving systems launched by several major automobile manufacturers, it can
be found that mmWave radar, lidar, and cameras are the main sensors for vehicles to detect
the obstacles. In the following sections, the sensor deployment schemes including sensor
configuration, sensor comparison, and selection, are reviewed in detail.

3.1. Sensor Configuration

As shown in Table 2, the overwhelming majority of automobile manufacturers have
adopted a sensor configuration scheme combining radar and cameras. In addition to Tesla,
other manufacturers have used the fusion sensing technology combining lidar, mmWave
radar, and cameras. It can be concluded that the sensing solution using the fusion of radar
and vision is the current mainstream trend in the field of obstacle detection for autonomous
driving vehicles. The reason is that the radar and the camera have complementary charac-
teristics. The specific details will be explained in Section 3.2.
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Table 2. Autonomous driving sensor solutions of some manufacturers [30–35].

Company Autonomous Driving
System Sensor Configuration

Tesla Autopilot 8 cameras, 12 ultrasonic radars,
mmWave radar

Baidu Apollo Lidar, mmWave radar, Camera

NIO Aquila Lidar, 11 cameras, 5 mmWave radars,
12 ultrasonic radars

Xpeng XPILOT 6 cameras, 2 mmWave radars,
12 ultrasonic radars

Audi Traffic Jam Pilot 6 cameras, 5 mmWave radars,
12 ultrasonic radars, Lidar

Mercedes Benz Drive Pilot 4 panoramic cameras, Lidar,
mmWave radar

3.2. Sensor Comparison

Ref. [36] investigated the advantages and disadvantages of mmWave radar, lidar,
and cameras in various applications. This article compares the characteristics of the
three sensors, as shown in Table 3. According to Table 3, three sensors have comple-
mentary advantages.

Table 3. Comparison of mmWave radar, lidar, and camera [36–40]. “1”–“6” denote the levels from
“extremely low” to “extremely high”.

Sensor Type mmWave Radar Lidar Camera

Range resolution 4 5 2

Angle resolution 4 5 6

Speed detection 5 4 3

Detection accuracy 2 5 6

Anti-interference performance 5 5 6

Requirements for weather conditions 1 4 4

Operating hours All weather All weather Depends on light conditions

Cost and processing overhead 2 4 3

3.2.1. mmWave Radar and Lidar

As a common and necessary sensor on autonomous driving vehicles, mmWave radar
has the characteristics of long range detection, low cost, and detectability of dynamic targets.
Due to these advantages, the vehicle’s sensing ability and safety have been improved [37].
Compared with lidar, the advantages of mmWave radar are mainly reflected in the aspects
of coping with severe weather and low deployment cost [36]. In addition, it has the
following advantages.

• The mmWave radar can detect obstacles within 250 m, which is of vital importance
to the security of autonomous driving, whereas the detection range of lidar is within
150 m [41].

• The mmWave radar can measure the relative velocity of the target vehicle based
on the Doppler effect with the resolution of 0.1 m/s, which is critical for vehicle
decision-making in autonomous driving [41].

Compared with mmWave radar, lidar has the following advantages [38,39].

• Lidar has relatively higher angle resolution and detection accuracy than mmWave
radar. Additionally, the mmWave radar data is sparser.

• The measurements of lidar contain semantic information and satisfy the perception
requirements of advanced autonomous driving, which mmWave radar lacks.
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• The clutter cannot be completely filtered out from mmWave radar measurements,
leading to errors in radar signal processing.

Lidar applies laser beams to complete real-time dynamic measurement, establishing
a 3D environment model, which supports the prediction of the surrounding environment
and the position and velocity of targets. Due to the characteristics of the laser, its propaga-
tion is less affected by clutter, and the ranging is non-coherent and large-scale. According
to [40], the detection range of lidar can reach more than 50 m in the longitudinal direction.
The detection circle radius in the periphery of the vehicle reaches more than 20 m. The rear
end of the vehicle reaches a detection range of more than 20 m, with high resolution of
angular and range. However, the field of view (FOV) of lidar is limited.

The price is one of the factors limiting the massive application of lidar. However,
with the development of lidar technology, its cost is showing a downward trend. The more
important factor is that lidar is highly affected by bad weather conditions. When encoun-
tering heavy fog, rain, and snow, the attenuation of the laser is greatly increased, and the
propagation distance is greatly affected, thereby reducing its performance [36].

3.2.2. Radar and Camera

Radar is the best sensor for detecting distance and radial speed. It has “all-weather”
capability, especially considering that it can still work normally at night. However, radar
cannot distinguish color and has poor capability for target classification [36]. Cameras have
good color perception and classification capabilities, and the angle resolution capability
is not weaker than that of lidar [36]. However, they are limited in estimating speed and
distance [40]. In addition, image processing relies on the powerful computing power of
the vehicular chip, whereas the information processing of mmWave radar is not required.
Making full use of radar sensing information can greatly save computing resources [36].

Comparing the characteristics of radar and cameras, it can be found that there are
many complementary features between them. Therefore, the application of radar and vision
fusion perception technology in the field of obstacle detection can effectively improve the
perception accuracy and enhance the object detection capability of autonomous vehicles.
Either mmWave radar or lidar and vision fusion are helpful. The advantages of the two
fusion schemes come from the respective advantages of mmWave radar and lidar. In future
research, the fusion of mmWave radar, lidar, and vision may have greater potential.

4. Sensor Calibration

Due to the difference in the spatial location and sampling frequency of different
sensors, the sensing information of different sensors for the same target may not match.
Hence, calibrating the sensing information of different sensors is necessary. The detection
information returned by mmWave radar is radar points, and cameras receive visual im-
ages. We selected the camera and mmWave radar data from nuScenes [29] as an example.
The data provided by this dataset have been processed by frame synchronization, so time
synchronization is not required, and Figure 3 can be obtained through spatial coordinate
transformation. The RGB value of the radar point is converted from the three physical
quantities of transverse velocity, longitudinal velocity, and distance, and the color of the
radar point represents the physical state of the object corresponding to the radar point.
Generally speaking, sensor calibration involves coordinate calibration [42–48], radar point
filtering [43,45], and error calibration [49–51].
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Figure 3. Radar points are projected on the image and rendered into different colors.

4.1. Coordinate Calibration

The purpose of coordinate calibration is to match the radar points to the objects
in the images. For coordinate calibration, the most common methods are classified into
coordinate transformation method [45,46], sensor verification method [42,44,47], and vision
based method [43,52], which are reviewed as follows.

• Coordinate transformation method: The coordinate transformation method unifies
the radar information and vision information under the same coordinate system
through matrix operations. In [46], space calibration was completed by the method of
coordinate transformation according to the spatial position coordinates of mmWave
radar and vision sensors. For the time inconsistency caused by different sensor
sampling rates, the thread synchronization method is adopted to realize the acquisition
of the image frame and mmWave radar data simultaneously. Ref. [45] used the
point alignment method based on pseudo-inverse, which obtains the coordinate
transformation matrix by using the least square method. The traditional coordinate
transformation cannot generate the accurate position of the target, which brings errors
to the final results. In [53], Wang et al. proposed a calibration experiment to project the
real coordinates into the radar detection map without special tools and radar reflection
intensity, which weakens the dependence on calibration errors.

• Sensor verification method: The sensor verification method calibrates multiple sensors
to each other with the detection information of different sensors on the same object.
In [42], the sensor verification consists of two steps. First, the target list is generated by
radar, and then the list is verified by the vision information. In [47], after the coordinate
transformation of radar, the image is first searched roughly and then compared with
the radar information. The result of the comparison divides the targets into two types:
matched target and unmatched target. In [44], Streubel et al. designed a fusion time
slot to match the objects detected by radar and vision in the same time slot.

• Vision based method: In [52], the motion stereo technology was used to achieve the
matching of radar objects and image objects. In [43], Huang et al. used adaptive
background subtraction to detect moving targets in the image, generate candidate
areas, and verify the targets by judging whether the radar points are located in the can-
didate areas.

4.2. Radar Point Filtering

The purpose of radar point filtering is to filter out noise and useless detection results
to avoid misjudgments caused by these radar points. In [45], Guo et al. proposed a method
for noise filtering and effective target extraction using intra-frame clustering and inter-
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frame tracking information. In [43], the radar points were filtered by the speed and
angular velocity information obtained by mmWave radar. The invalid radar points were
then filtered, which reduces the impact of stationary targets such as trees and bridges on
mmWave radar.

At present, in the field of autonomous driving, researchers mostly use open source
datasets for training, and the objects they want to detect are generally vehicles or pedestri-
ans. Therefore, the method of [43] can be applied to filter the radar points according to the
speed and other information to exclude non-vehicle and non-pedestrian objects.

4.3. Error Calibration

Due to errors in sensors or mathematical calculations, there may be errors in the cali-
brated radar points. Some articles have proposed methods to correct these errors. In [50],
a method based on interactive fine-tuning was proposed to make ultimate rectification to
the radar points projected on the vision image. The authors in [51] proposed an improved
extended Kalman filter (EKF) algorithm to model the measurement errors of different
sensors. In [49], the influence of various coordinates on detection results was analyzed and
discussed, and a semi-integral Cartesian coordinate representation method was proposed
to convert all information into a coordinate system that moves with the host vehicle.

With the current use of open source datasets, error calibration is not required. However,
if the dataset is self-made, radar filtering and error correction are necessary technical steps.

5. Vehicle Detection Based on Sensor Fusion

Generally speaking, there are three fusion levels for mmWave radar and vision, in-
cluding data level, decision level, and feature level. Data level fusion is the fusion of data
detected by mmWave radar and cameras, which has the minimum data loss and the highest
reliability. Decision level fusion is the fusion of the detection results of mmWave radar and
cameras. Feature level fusion requires extracting radar feature information and then fusing
it with image features. The comparison of the three fusion levels is provided in Table 4.

Table 4. Summary of the three fusion levels.

Fusion Level Advantages Disadvantages

Data level Minimum data loss and the highest reliability Dependence on the number of radar points

Decision level Making full use of sensor information Modeling the joint probability density
function of sensors is difficult

Feature level Making full use of feature information and
achieving best detection performance

Complicated computation and overhead of
radar information transformation

5.1. Data Level Fusion

Data level fusion was a mature fusion scheme and has not been the mainstream
research trend at present. However, its idea of fusing different sensor information is still
useful for reference. As shown in Table 5, data level fusion first generates the region of
interest (ROI) based on radar points [42,45,54,55]. The corresponding region of the vision
image is then extracted according to the ROI. Finally, feature extractor and classifier are used
to perform object detection on these images [45,47,53,55–61]. Some literatures use neural
networks for object detection and classification [61,62]. For data level fusion, the number of
effective radar points has a direct impact on the final detection results. If there is no radar
point in a certain part of the image, this part will be ignored. This scheme narrows the
searching space for object detection, saves computational resources, and leaves a hidden
security danger at the same time. The data level fusion process is shown in Figure 4.
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Table 5. Summary of data level fusion.

Reference Contribution

ROI generation

[42] Using radar points to increase the speed of ROI
generation.

[45] Proposing the conclusion that distance determines
the initial size of ROI.

[54] Extending ROI application to overtaking detection.

Object detection

Image preprocessing
[45,56,61]

Using histogram equalization, grayscale variance
and contrast normalization to preprocess the

image.

[53,57,61] Image segmentation preprocessing with radar
point as reference center.

Feature extraction
[55,57–59,61,63] Using features such as symmetry and shadow to

extract vehicle contours.

[56,64] Using Haar-like model for feature extraction.

Object classification

[56] Adaboost algorithm for object classification.

[47,60] SVM for object classification.

[61,62] Neural network-based classifier for object
classification.

Coordinate 

transformation

ROI
Object 

detection

Figure 4. Data level fusion.

5.1.1. ROI Generation

ROI is a selected area in the image, which is the focus of target detection. Compared
with a pure image processing scheme, the data-level fusion scheme uses radar points to
generate ROI, which can significantly improve the speed of ROI generation [42]. The size of
the initial ROI is determined by the distance between the obstacle and mmWave radar [45].
The improved front-facing vehicle detection system proposed by [54] can detect overtaking
with a high detection rate. This method focuses on the area where overtaking is about to
occur. The overtaking is determined by checking two specific characteristics of vehicle
speed and movement angle. In [55], a square with 3 meters of side length centered on the
radar point is taken as the ROI.

5.1.2. Object Detection

Because of the uncertainty of the position and size of the objects in the image, the object
detection based on vision often adopts sliding window and multi-scale strategy, which
produces a fair amount of candidate boxes, resulting in low detection efficiency. The
mmWave radar and vision fusion scheme can avoid the sliding window method, which
reduces the computational cost and improves the detection efficiency. Object detection
tasks focus on the vision image processing, and the task can be divided into three steps: im-
age preprocessing [45,53,56,57,61], image feature extraction [48,55–59,61,63,64], and object
classification [47,56,60,61].

• Image Preprocessing

In order to remove the noise in the image and enhance the feature information, so
as to facilitate the subsequent feature extraction and object classification tasks, image



Sensors 2022, 22, 2542 12 of 23

preprocessing is necessary. The methods of image preprocessing mainly include histogram
equalization, gray variance, contrast normalization, and image segmentation.

In [56], Bombini et al. conducted a series of tests on histogram equalization, grayscale
variance, and contrast normalization in order to obtain the invariance under different
illumination conditions and cameras. They concluded that contrast normalization achieved
better performance. In [45], the gradient histogram method was used to preprocess the
image, and an improved position estimation algorithm based on ROI was proposed, which
can obtain a smaller potential object region and further improve the detection efficiency.
In [61], median filtering, histogram equalization, wavelet transform, and Canny operator
were used in image preprocessing.

In [53,57,61], radar points were taken as the reference center to segment the image,
and then the object boundary was determined to improve the object detection speed.

• Feature Extraction

The purpose of feature extraction is to transform the original image features into
a group of features with obvious physical or statistical significance, which is convenient
for object detection. In the stage of image feature extraction, the available vehicle features
include symmetry and underbody shadow, etc.

In [58,59,63], symmetry was used for ROI detection and [48] utilized shadow detection
to obtain feature information, whereas in [55,65], vertical symmetry and underbody shadow
characteristics were comprehensively utilized for vehicle detection. In [55], the gradient
information of the image was used to locate the boundary effectively, and the method
based on gradient vector flow (GVF) Snake was used to describe the accurate contour
of the vehicle. As the color distribution of the object was stable during the movement,
the histogram matching method was feasible for tracking the vehicle.

In [64], Kadow et al. applied Haar-like model for feature extraction, which is a classic
feature extraction algorithm for face detection. In order to improve detection rate, mutual
information was used for Haar-like feature selection [56].

In [57], the visual selective attention mechanism and prior information on visual
consciousness during human driving was proposed to extract features and identify object
contours from segmented images. The shadow was extracted by histogram and binary
image segment, and the pedestrian edge was detected by 3 × 3 image corrosion template.

• Object Classification

In the object classification stage, Adaboost, support vector machine (SVM), and other
object classification algorithms are used to select the final box of the vehicle in the vision
image. In [56], the Adaboost algorithm is used to scan the ROI projected on the image
plane. In [47,60], SVM was used for object recognition and classification. Ref. [66] combined
ROI image and Doppler spectrum information for object classification. Ref. [61] adopted
object classification based on infrared image analysis. The authors classified the objects
into point objects and regional objects according to the object area, and used a neural
network-based classifier to classify the regional targets [61]. Ref. [62] utilized multilayer
in-place learning network (MILN) as a classifier, which demonstrated superior accuracy
in two-class classification tasks.

5.2. Decision Level Fusion

Decision level fusion is the mainstream fusion scheme at present.The process is shown
in the Table 6. The advantage of radar is longitudinal distance, and the advantage of the
vision sensor is horizontal field of view. Decision level fusion can take into account the
advantages of both aspects and make full use of sensing information. The challenge of the
decision-level fusion filtering algorithm is to model the joint probability density function of
the two kinds of detection information. This is due to the fact that the noise of the two kinds
of detection information is different. The decision level fusion mainly includes two steps:
sensing information processing [67–72] and decision fusion [65,68,73–79]. The decision
level fusion process is shown in Figure 5.
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Table 6. Summary of decision level fusion.

Reference Contribution

Sensing information
processing

Radar information [67,68] The techniques involved in radar signal processing and what physical states can
be obtained from radar information are analyzed.

Image
object detection

[68] Pedestrian detection using feature extraction combined with classifiers.

[69] Detecting objects in depth images with MeanShift algorithm.

[70] An upgraded version of [69], using MaskRCNN for target detection.

[71,72,80] Using one-stage object detection algorithm YOLO for radar vision fusion object
detection tasks.

Decision fusion

Based on Bayesian theory
[73] Proposing Bayesian programming to solve multi-sensor data fusion problems

through probabilistic reasoning

[74] A dynamic fusion method based on Bayesian network is proposed to facilitate
the addition of new sensors.

Based on Kalman filter

[75] Proposing a decision level fusion filter based on EKF framework.

[76] The proposed fusion methon can track the object simultaneously in 3D space
and 2D image plane.

[77] Functional equivalence of centralized and decentralized information fusion
schemes is demonstrated.

Based on Dempster Shafer theory [68] A decision level sensor fusion method based on Dempster-Shafer is proposed.

Based on Radar validation
[78] Using radar detection results to validate visuals.

[79] Using radar information to correct vehicle position information in real time to
achieve object tracking.

Clustering 

algorithm

Feature 

extraction

Object 

detection

Object 

detection

Fusion

Figure 5. Decision level fusion.

5.2.1. Sensing Information Processing

The processing of sensing information includes radar information and vision infor-
mation. Radar detection results generate a list of objects and contain information such as
the speed and distance of objects [67,68]. Vision information processing performs object
detection algorithm on images, which includes traditional feature extraction combined
with classifier [68,69] and convolutional neural network (CNN) [70–72].

• Radar Information

A mmWave radar and vision fusion system was proposed for autonomous driving
navigation and lane change in [67], in which the radar sensor obtains the target distance
through fast Fourier transform (FFT), obtains the angular position of the target through
digital wavefront reconstruction and beamforming, and then analyzes the target position.
In [68], the results of mmWave radar detection is a list of possible objects in the radar FOV,
and each element in the list includes the distance, azimuth angle, and relative velocity of
the detected object.

• Image Object Detection

In the visual detection of [68], a histogram was used to calculate edge information.
Gradient histogram feature extraction and Boosting based classifier were then used to detect
a pedestrian. Ref. [69] proposed an auxiliary navigation method combining mmWave radar
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and RGB depth sensor and used the MeanShift algorithm to detect objects in depth images.
Furthermore, the average depth of ROI determined the distance of the detected object.

Ref. [70] has improved the vision data processing algorithm in [69], and applied mask
R-CNN for object detection. In [71], YOLO V2 is used for vehicle detection, and the input
is an RGB image of the size 224 × 224. Preprocessing subtracts the average RGB value of
training set images from each pixel. Ref. [72] also applied YOLO V2 for vehicle detection
and proved that YOLO V2 is superior to faster R-CNN and SSD in both speed and accuracy,
which is more suitable for vehicle detection tasks. Ref. [80] applied YOLO V3 in obstacle
detection, and its weight is pre-trained in the COCO dataset.

5.2.2. Decision Fusion

The decision level fusion of vehicle detection fuses the detection results of different
sensors. The mainstream filtering algorithms apply Bayesian theory [73,74], Kalman
filtering framework [75–77], and Dempster Shafer theory [68]. In some literatures, the list
of radar detection targets was used to verify vision detection results [78,79]. In addition,
ref. [65] proposed the motion stereo algorithm to adjust and refine the final detection results.

• Fusion Methods Based on Bayesian Theory

Ref. [73] proposed a method based on Bayesian theory to solve the problem of multi-
sensor data fusion by using a probabilistic reasoning method, which is called Bayesian
programming. The traditional multi-sensor fusion algorithms are no longer applicable
when new sensors are added. The fusion algorithm is modularized and generalized in [74],
and a dynamic fusion scheme based on a Bayesian network was proposed to improve the
reusability of each fusion algorithm.

• Fusion Methods Based on Kalman Filter

Based on the EKF framework of the Lie group, a decision level fusion filter using
a special Euclidean group is proposed in [75]. Ref. [76] proposed a fusion framework
that can track the detection object simultaneously in 3D space and a 2D image plane.
An uncertainty driven mechanism similar to a Kalman filter is used to equalize the sensing
results of different qualities. In [77], the given image was first detected by radar to roughly
search the target. A trained spot detector was then used to obtain the object’s bounding box.
The information fusion method based on Kalman filter was adopted, and the functional
equivalence of centralized and decentralized information fusion schemes was proved.

• Fusion Methods Based on Dempster Shafer Theory

Ref. [68] proposed decision level fusion based on the Dempster Shafer theory, taking
the detection lists of multiple sensors as input, using one of them as a temporary evi-
dence grid and fusing it with the current evidence grid, and finally performing clustering
processing. The target was identified in the evidence grid.

• Fusion Methods Based on Radar Validation

Ref. [78] overlapped the target list generated by vision detection and radar detection
to generate a unique vehicle list. The radar data was used to verify the vision detection
results. If there was a target matching the vision detection results in the radar data, a blue
box would be marked as a strong hypothesis. Otherwise, if there was no target, it would
not be discarded: a green box would be marked as a weak hypothesis. Ref. [79] proposed a
multi-target tracking (MTT) algorithm that can correct the tracked target list in real time by
evaluating the tracking score of the radar scattering center. The stereo vision information is
used to fit the contour of the target vehicle, and the radar target matched with the target
vehicle is used to correct its position.

5.3. Feature Level Fusion

Feature level fusion is a new scheme that has emerged in recent years.The process is
shown in the Table 7. It is a common approach to use an additional radar input branch
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in feature level fusion methods [81–85]. The CNN-based objects detection model can
effectively learn image feature information. By transforming radar detection information
into image form, the detection model can learn radar and vision feature information
simultaneously, and the feature level fusion will be realized. The feature level fusion
process is shown in Figure 6.

Table 7. Summary of feature level fusion.

Reference Technology Features

Fusion framework

[81] Based on SSD framework improvement, concatenation fusion is used.

[82] A fusion framework similar to YOLO structure is proposed named RVNet.

[83] Proposing CRF-Net built on the VGG backbone network and RetinaNet,
and the radar input branch is extended.

[84] Join the radar branch based on the FCOS detection framework and embedded
SAF module.

Radar feature extraction

[85] Proposing a network named CMGGAN that can generate environmental
images.

[82,84] Using a new radar feature description method called radar sparse image,
the detected objects are presented as radar points.

[83] Stretching the radar points in the radar sparse image vertically to supplement
the height information.

Feature fusion
[81–83] The fusion method of concatenation and element-wise addition is adopted.

[84] A feature fusion block named spatial attention fusion is proposed that uses
attention mechanism.

Feature 

extraction

Feature 

extraction

Fusion
Object 

detection

Figure 6. Feature level fusion.

5.3.1. Object Detection Framework

Convolutional neural networks (CNNs) are widely applied in object detection based
on feature level fusion. At present, some algorithms have achieved the results of superior
performance, such as Faster RCNN, YOLO (V3), SSD, RetinaNet, etc.

• Detection Framework Based on CNN

Faster-RCNN [12] is a widely used detector, and its integration has been greatly
improved compared with Fast-RCNN [11]. Its main contribution is the introduction of the
regional advice network (RPN), which enables nearly costless area suggestion. The RPN can
simultaneously predict the target bounding box and categorization score for each location.

YOLO [7] is the first one-stage detector, which is the abbreviation of “You Only Look
Once”. It adopts a new detection idea: using a single neural network to complete the
detection task. It divides the vision image into multiple regions and predicts bounding box
for each region. Therefore, the detection speed has been remarkably improved. However,
its positioning accuracy is reduced compared with the two-stage detector.
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SSD [8] is another excellent one-stage detector. It eliminates the bounding box sug-
gestion and pixel or feature resampling stage and fundamentally improves the detection
speed. The detections in different scales are generated from the feature maps of different
scales, and the detections are clearly separated by aspect ratio, such that the accuracy is
significantly improved. As a one-stage detector with high detection speed, SSD also ensures
the detection accuracy close to that of two-stage detectors.

As to RetinaNet [9], the inventors discussed the reason why the accuracy of one-stage
detector is lower than that of two-stage detector, and concluded that this phenomenon is
caused by the extreme foreground background class imbalance. They proposed a new loss
function named Focal loss to reshape the standard cross entropy loss, aiming to focus more
attention on the objects that are difficult to classify during training.

• Fusion Framework Based on CNN

In [81], feature level fusion was first applied in mmWave radar and vision fusion. Its
detection network was improved on the basis of SSD [8]. The radar branch was concate-
nated after the second ResNet18 block of the vision branch.

In [82], a new sensor fusion framework called RVNet was proposed, which was similar
to YOLO [7]. The input branches contain separate radar and vision branches and the output
branches contain independent branches for small and large obstacles, respectively.

The CNN used in [83] was built on RetinaNet [9] with a VGG backbone [86], named
CameraRadarFusionNet (CRF-Net). The author expanded the network so that it can process
an additional radar input branch. Its input branches were radar feature and vision feature,
and the output results are the 2D regression of the coordinates of the objects and the
classification fraction of the objects.

In [84], the author proposed a new detection network called spatial attention fusion-
based fully convolutional one-stage network (SAF-FCOS), which was built on FCOS [87].
The radar branch was improved from ResNet-50, and the vision image branch adopted
a two-stage operation block similar to ResNet-50. In order to improve the detection accuracy,
the final object detection comprehensively utilized FCOS [87] and RetinaNet [9].

5.3.2. Radar Feature Extraction

The purpose of radar feature extraction is to transform radar information into image-
like matrix information, because radar information cannot be fused with image information
directly. Radar feature extraction mostly adopts the method of converting radar points to
the image plane to generate a radar image. The transformed radar image with multiple
channels contains all the environmental features detected by the radar. Each channel
represents a physical quantity such as distance, longitudinal speed, lateral speed, and
so on.

Ref. [85] proposed a new Conditional Multi-Generator Generative Adversarial Net-
work (CMGGAN), which takes the measured data of radar sensors to generate artificial,
camera-like environmental images, including all environmental features detected by radar
sensors. A new description method for radar features was proposed in [82], which is called
radar sparse image. Radar sparse image is a 416 × 416 three-channel image, whose size
directly corresponds to the size of the vision image. The three channels contain radar
point velocity and depth feature information. In [84], Chang et al. converted the depth,
horizontal, and vertical information at the radar point into real pixel values of different
channels. For the area without radar points, they set the pixel value to 0 and rendered
the radar image with circles centered on radar points. Based on experimental results,
the anti-noise performance of the radar image saved in the PNG format is better than that
of the jpg format. In [83], considering the lack of height information in radar detection
results, Nobis et al. stretched the projected radar points in the vertical direction in order
to better integrate them with the image. The features of radar information were stored
in the enhanced image in the form of pixel values. In addition, a ground truth noise filter
was proposed to filter the invalid radar points.
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5.3.3. Feature Fusion

The basic feature fusion methods can be classified into two kinds: concatenation and
element-wise addition. The former concatenates the radar feature matrix and the image
feature matrix into a multi-channel matrix, whereas the latter adds two matrices into one.

In [81], two fusion methods of concatenation and element-wise addition are set,
and the experimental results show that both fusion methods have improved the detection
performance. The element-wise addition method performs better on manually labeled test
sets, and the concatenation method performs better on generated test sets. Refs. [82,83] both
adopt the concatenation method. In [84], a new block named spatial attention fusion (SAF)
was proposed for sensor feature fusion. An SAF block was used to generate an attention
weight matrix to fuse radar and vision features. At the same time, [84] compared the SAF
method with three methods of element-wise addition, multiplication, and concatenation,
and the result shows that SAF has the best performance. In addition, [84] conducted
generalization experiments on faster R-CNN, and the detection performance was also
improved by the SAF model.

6. Challenges and Future Trends
6.1. Challenges

For the object detection task, the current research results have achieved superior
performance, however, most of these results are 2D object detection. In real autonomous
driving scenarios, complex traffic environments often require 3D target detection to more
accurately perceive environmental information. The performance of the current 3D object
detection network is far below the level of 2D detection. Therefore, improving the accuracy
of 3D object detection is not only a challenge in the field of autonomous driving, but also
a major challenge in the task of object detection.

Challenges still exist for the fusion of mmWave radar and vision, which is the focus of
this article. The biggest drawback of mmWave radar is the sparseness of radar features.
Compared with vision images, mmWave radar provides very little information and cannot
bring significant performance improvement. In addition, whether the feature information of
mmWave radar and vision can be further integrated and the associated mutual information
between them has been mined remains to be studied. Therefore, mmWave radar vision
fusion still has two major challenges: sparse perception information and more efficient
fusion methods, which are also the two major challenges in the field of multi-sensor fusion.

6.2. Future Trends

For the future development of object detection in the field of autonomous driving, the
authors of this article believe that there are three main trends. One of them is 3D object
detection. Improving the accuracy of 3D object detection will be a major research trend.
The remaining two trends concern radar vision fusion. On the one hand, it is necessary to
integrate new sensing information, namely, adding new sensors, such as lidar, which has
achieved superior performance in autonomous driving; on the other hand, it is necessary
to explore new ways of sensing information fusion, such as multimodal fusion.

6.2.1. 3D Object Detection in Autonomous Driving

Three-dimensional object detection can not only identify the position of the object
in the image, but can also detect the pose and other information of the object in the 3D space,
which is more in line with the requirements of autonomous driving. In addition, the current
mainstream application scenario of 3D object detection is autonomous driving, so that the
research on object detection in the field of autonomous driving in the future will focus on
3D object detection. A common method for vision-based 3D object detection is to estimate
the key points of the 3D bounding box within a 2D bounding box. Such works include SSD-
6D [88], which is an SSD-based six-dimensional pose estimation network, and Mono3D [25],
which uses semantic and instance segmentation information to score candidate boxes.
Ref. [25] also chose two-stage 3D object recognition, and its main contribution is to propose



Sensors 2022, 22, 2542 18 of 23

a disentangling transformation to separate multiple parameters that need to be trained to
improve the efficiency of training. Ref. [89] used a 3D anchor constraint box to directly
obtain a 3D constraint box by regression and the gap between the anchor constraint box, in
which a network using different convolution weights at different positions of the feature
map was used to improve the performance. There are also methods that do not require 2D
object detection first. These methods transform image features into new representations.
Ref. [90] proposed orthographic feature transform to convert the general image feature map
into a 3D voxel map, then performed normalization in the vertical dimension, converted it
to a bird’s-eye feature map and regressed the 3D parameters on the bird’s-eye view.

3D object detection based on multi-sensor fusion also adds radar input branches
and information fusion module on the basis of vision-based object detection network.
Ref. [91] used a scheme similar to feature-level fusion, first rendering the radar points into
a rectangular area through 2D detection and then performing 3D detection. In addition,
since lidar is rich in features and can reconstruct object contours, it is easier to estimate
3D bounding boxes, there are more studies on multi-sensor fusion 3D object detection
with lidar.

6.2.2. Lidar in Autonomous Driving

As the cost of lidar decreases, autonomous driving vehicles equipped with lidar
have become a trend. However, lidar is not a substitute for mmWave radar. As noted
in Section 3, mmWave radar has its own unique advantages. Lidar has higher detection
accuracy, and they complement each other’s advantages. The fusion of lidar and vision is
becoming promising in autonomous driving. The main research includes object detection,
object classification, and road segmentation.

• Object Detection

The proposed fusion method in [92] first applied a lidar point cloud to generate
suggestions for potential car positions in the image. The position of the bounding box was
then refined by mining multiple layers of information in the proposal network. Finally,
the object detection was performed by a detection network that shared part of the layers
with the proposed network. Ref. [93] proposed a fusion method similar to the data level
fusion of mmWave radar and vision. It utilized lidar instead of mmWave radar to generate
initial recommendations for the position of objects. Multi-scale features were then exploited
to realize accurate detection of objects of different sizes.

• Object Classification

Ref. [94] presented a lidar and vision fusion method for object classification that
combines Deep-CNN (DCNN) and upsampling theory. It can inherit the advantages of the
two methods and avoid the shortcomings of each method. This method up-sampled the
lidar information and converted it into depth information, which would be fused with the
vision image data and sent into the DCNN for training. The experimental results showed
that this method exhibits superior effectiveness and accuracy of object classification.

• Road Detection

Ref. [95] proposed a method to combine lidar point clouds and vision images for
road detection. First, the method of point alignment was used to project the lidar point
cloud onto the vision image. The vision image was then upsampled to obtain a set of
dense images containing spatially encoded information. Finally, they trained multiple fully
convolutional neural networks (FCN) for road detection. The proposed FCN was evaluated
on KITTI and got a MaxF score of 96.03%, which is one of the top-performing methods
so far.

6.2.3. Multimodal Information Fusion

The objects we see, the sounds we hear, and the smells we smell in the real world are
all different modal information. Combining the multimodal information of the same thing
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can help AI better understand the thing. At present, the more popular research in this field
involves the association of pictures, voices, videos, and texts, such as search engines.

Therefore, whether it is mmWave radar or lidar, its sensing information is the same
environmental information in different modes. Radar sensing information and vision
information are also information of different modalities. Considering radar vision fusion
as multimodal information fusion, there may be a better solution.

In addition, in the field of autonomous driving, the mmWave radar data provided
by the dataset are post-processed data. However, from the perspective of information
conservation, the amount of information contained in the post-processed radar data must
be lost relative to the original data. If the original radar detection data and vision images
are regarded as two different modalities of sensing information to be fused, more abundant
sensing information can be obtained.

The challenge of multimodal information fusion is how to perfectly combine the
information of different modalities and the noise they carry and how to mine the relation
information to assist the understanding of the same thing.

7. Conclusions

Object detection is one of the most important tasks for autonomous driving. In this
article, we provide an overview of mmWave radar and vision fusion for vehicle detection.
First, we introduced the tasks, evaluation criteria, and datasets of autonomous driving.
Second, we divided the mmWave radar and vision fusion process into three parts and the
fusion algorithms were classified into three levels: data level, decision level, and feature
level. Finally, 3D object detection, lidar vision fusion and multimodal information fusion,
as promising technology in the future, is reviewed.
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Abbreviations
The following abbreviations are used in this manuscript:

2D Two-dimensional
3D Three-dimensional
ACC Autonomous Cruise Control
ADAS Advanced Driver Assistance System
ADS Automated Driving System
AI Artificial Intelligence
ALV Autonomous Land Vehicle
AP Average Precision
AR Average Recall
CMGGAN Conditional Multi-Generator Generative Adversarial Network
CNNs Convolutional Neural Networks
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DARPA Defense Advanced Research Projects Agency
DCNN Deep Convolutional Neural Network
DPM Deformable Parts Model
EKF Extended Kalman Filter
FCN Fully Convolutional Neural Network
FFT Fast Fourier Transform
FOV Field of View
GPS Global Positioning System
GVF Gradient Vector Flow
HOG Histograms of Oriented Gradients
IoT Internet of Things
IoU Intersection over Union
mAP Mean Average Precision
MILN Multilayer In-place Learning Network
mmWave Millimeter Wave
MTT Multi-Target Tracking
PR Precision Recall
ROI Region of Interest
RPN Regional Advice Network
SAE Society of Automotive Engineers
SAF Spatial Attention Fusion
V2X Vehicle to Everything
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