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Abstract: Dehydration in the human body arises due to inadequate replenishment of fluids. An ap-
propriate level of hydration is essential for optimal functioning of the human body, and complications
ranging from mild discomfort to, in severe cases, death, could result from a neglected imbalance in
fluid levels. Regular and accurate monitoring of hydration status can provide meaningful information
for people operating in stressful environmental conditions, such as athletes, military professionals
and the elderly. In this study, we propose a non-invasive hydration monitoring technique employing
non-ionizing electromagnetic power in the microwave band to estimate the changes in the water
content of the whole body. Specifically, we investigate changes in the attenuation coefficient in the
frequency range 2–3.5 GHz between a pair of planar antennas positioned across a participant’s arm
during various states of hydration. Twenty healthy young adults (10M, 10F) underwent controlled
hypohydration and euhydration control bouts. The attenuation coefficient was compared among
trials and used to predict changes in body mass. Volunteers lost 1.50± 0.44% and 0.49± 0.54%
body mass during hypohydration and euhydration, respectively. The microwave transmission-based
attenuation coefficient (2–3.5 GHz) was accurate in predicting changes in hydration status. The corre-
sponding regression analysis demonstrates that building separate estimation models for dehydration
and rehydration phases offer better predictive performance (88%) relative to a common model for
both the phases (76%).

Keywords: hydration monitoring; non-invasive; microwave transmission; regression analysis; hypo-
hydration and euhydration

1. Introduction

Accurate monitoring of whole-body hydration is important for many categories of
end-users, including the elderly, athletes, the military, and industrial workers, operating in
stressful environmental conditions [1]. Thirst provides a source of feedback to individuals;
however, this bodily sensation can be less pronounced or completely absent. It may also be
a delayed indicator of hydration level, even when fully unimpaired since the body cannot
accurately assess if fluid homeostasis has been restored until minutes after ingestion [2].
Hence, it is difficult for individuals to assess their hydration status at lower levels with
perceptions of thirst alone. As little as a 1% decrease in bodyweight due to fluid loss
can result in impaired cognitive function, increased anxiety levels, and fatigue during
physical activity [3]. In athletes, it is well established that a decrease in total body water
even by a meager amount of 5% or less leads to a 6–48% decline in physical work capacity,
thereby adversely influencing their exercise performance. Importantly, multiple studies
have shown that as little as 1% decrease in body mass, a surrogate for changes in total
body water, is associated with at 6% decrease in exercise performance [4,5]. In athletic
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populations, including American football, rowing, soccer, and basketball, training and
competition has been shown to elicit a similar 1–2% decrease in body mass, highlighting
the critical need to evaluate hydration status during normal athletic activities. However, to
date, there remains a paucity of options to evaluate hydration status quickly and accurately
in these and other populations at risk of dehydration.

Some prior studies have investigated electromagnetic sensing methods for monitoring
skin hydration. One of the early works employs a terahertz (THz) time-domain spec-
troscopy technique to determine reflectance, which in turn characterizes the variation in
water content [6]. This work is motivated by the strong correlation between THz radiation
and water content. Schiavoni et al. have proposed the use of a time-domain reflectometry
system relying on measures of dielectric permittivity and electrical conductivity variations
of the skin to examine the hydration status [7]. This is based on the idea that changes
in metabolic activity and composition of the skin lead to modifications in its electrical
properties. Another study by Rizwan et al. introduces Galvanic Skin Response (GSR)
as a surrogate measure of hydration levels [8]. The hydration status is distinguished as
hydrated vs. dehydrated in various body postures such as sitting and standing. However,
all these studies consider hydration assessment at the skin and, thus, do not provide an
assessment of whole-body hydration changes, which is the focus of the present study.

As recently reviewed by Garrett et al., there are few reliable and accurate methods for
non-invasive measurement of whole-body water content [9]. The adverse effects of both
mild and severe dehydration could be mitigated, or possibly avoided, in these vulnerable
groups with a robust, non-invasive system that can rapidly detect a 2% or smaller change
in body weight due to fluid imbalances. When detected early, mild dehydration can easily
be treated by administering food and drink to the affected individual. Overhydration could
also be prevented with this system by providing an estimate of how much fluid must be
replaced to attain the ideal hydration window. The ability to accurately monitor hydration
status in real-time would ensure the optimal performance and well-being of people that are
susceptible to frequent bouts of dehydration, whether it is due to the environment, disease,
or an inability to communicate (such as infants).

In this context, early dehydration monitoring systems must be able to detect a <2%
change in whole-body water content, as this is a threshold at which observable reductions in
performance have been observed. The electrical properties of several tissues are dominated
by the properties of water, given that water constitutes ∼60–70% of many tissue types.
Thus, detecting changes in electrical properties of tissues, or parameters related to these
properties, have been proposed as an indirect method for tracking changes in hydration.
Moran et al. used a pair of 916 MHz antennas positioned on either side of the subject’s arm
to measure the magnitude of the electromagnetic attenuation coefficient [10]. Changes in
the attenuation coefficient were measured in subjects prior to and after conducting 30 min
exercise in heat stress and were shown to be predictive of weight loss, attributed to water
loss. Garrett et al. investigated a similar approach using a broadband pair of antennas
but extended the technique to include the complex valued attenuation coefficient [9,11].
They further proposed a parametric model for estimating the permittivity of the effective
medium between the antennas and investigated the relationship between this parameter
and hydration changes following exercise in college athletes. A limitation of the prior
studies is the lack of euhydration controls and the results are not disaggregated by sex.

Several recent studies have exploited data-driven and statistical machine learning-
based methods for estimation of hydration status. The relationship between hydration and
cardiovascular responses to orthostatic changes is leveraged to assess hydration status by
framing the task as a binary classification problem [12]. Alvaraz et al. employ Support
Vector Machines (SVM) and k-means to implement a three-stage dehydration protocol for
athletes using electrocardiograph signals [13]. Variable frequency complex demodulation
is used to track changes in amplitudes of Photoplethysmographic (PPG) signals and detect
dehydration by SVM with a radial basis function kernel [14]. However, the predictive
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performance of the aforementioned methodologies for <2% acute changes in hydration is
not encouraging enough to be deployed for field applications.

Here, we report a study on investigating changes in the attenuation coefficient be-
tween a pair of planar antennas positioned across a subject’s arm during various states
of hydration. Changes in the electromagnetic attenuation coefficient in the frequency
range 2–3.5 GHz were analyzed to assess their potential for predicting changes in body
weight over 30 min periods during periods of heat stress (hypohydration), rest (control
euhydration), or recovery following heat stress (rehydration). Data were gathered from
20 subjects (10 male, 10 female) ranging 23 ± 4 years in age. A hydration assessment
was formulated as a regression problem with percentage change in body weight as the
target and features derived from attenuation coefficient in the frequency range 2–3.5 GHz
as predictors. The results were then disaggregated by sex. As detailed in the following
sections, this work illustrates the technical feasibility of a microwave transmission-based
technique, and accompanying data analysis approaches, to predict <2% acute changes
in body hydration. In summary, the capability of predicting <2% acute changes in body
hydration with customized data-driven models for males and females during dehydration
and rehydration phases address the key limitations of the current state-of-the-art.

2. Materials and Methods

We performed an initial set of experiments using agar phantom gels made with
varying water content. The primary goals of conducting these pilot experiments included:
(i) to test the hypothesis that changes in gel water content could be captured using the
proposed electromagnetic measurements, i.e., attenuation coefficient between a pair of
planar antennas; (ii) to identify the frequency bands in electromagnetic measurements that
possess discriminatory power to represent changes in water content. Consequently, the
study was extended to human participants as per the protocol illustrated in Section 2.2.

2.1. Experiment 1—Gel Studies

In order to test the hypothesis that changes in gel water content can be captured using
the proposed electromagnetic measurements, five agar gels were formed. The reference
gel was made with approximately 3 g agar (Becton, Dickinson and Company, Franklin
Lakes, NJ, USA), 34.5 g sugar, 0.375 g of NaCl, and 112 mL distilled water. While keeping
the rest of the ingredients constant, the water content was varied to make four more
gels with 106, 110, 115, and 118 ml water (−5%, −2%, +2%, and +5% compared to the
reference gel, respectively). These gels were allowed to set and were subsequently tested for
their dielectric properties and electromagnetic measurements. The complex-value relative
permittivity of the gels was measured using a Keysight 85070E dielectric probe kit (Keysight
Technologies, Inc., Santa Rosa, CA, USA) [15]. Electromagnetic transmission coefficient
(S21) was measured between a pair of 2.4 GHz circular-polarized patch antennas [16] placed
around 7 cm apart, with the gel sample positioned in between the antennas. The measured
quantity is S21 magnitudes and the corresponding setup is shown in Figure 1. Five agar
gels with varying water content are shown in Figure 1a. The measurement of dielectric and
electromagnetic properties are illustrated in Figure 1b,c, respectively.

The frequency bands possessing discriminatory power were selected based on two-
sample t-tests for several frequency bands across data from all the gel samples with varying
water content (i.e.,±5% and±2%). The null hypotheses for these tests is that measurements
corresponding to a particular frequency band in the reference gel and the gels with varying
water content belong to independent random samples from normal distributions with
equal means. These tests were carried out individually for all the four gels: ±5% and
±2%. Consequently, four bands possessing the highest discriminatory power were selected
and the corresponding p-values are shown in Table 1. The selected frequency bands are:
2.0–2.7 GHz (F1); 2.7–3.4 GHz (F2); 2.44–2.47 GHz (F3); and 2.2–2.4 GHz (F4).
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Figure 1. Setup for the gel studies: (a) five agar gels with varying water content, (b) close-up
image of the antennas, (c) measurement of dielectric properties, and (d) capturing of electromag-
netic measurements.

It can be seen in Table 1 that p-values are less than 0.05 for all the gels across all
frequency bands, indicating a statistically significant difference in electromagnetic measure-
ments corresponding to selected frequency bands between the test gels and the reference
gel. Thus, the selected frequency bands possess discriminatory power to represent changes
in water content.

Table 1. p-values of two-sample t-tests for selection of frequency bands having discriminatory power
in gel studies.

Frequency Bands
Water Content

−5% −2% +2% +5%

F1 (2.0–2.7 GHz) 1.89× 10−2 2.47× 10−6 4.10× 10−6 4.24× 10−4

F2 (2.7–3.4 GHz) 3.73× 10−4 2.36× 10−7 1.06× 10−6 6.10× 10−3

F3 (2.44–2.47 GHz) 4.37× 10−12 8.86× 10−8 2.25× 10−7 1.11× 10−6

F4 (2.2–2.4 GHz) 3.46× 10−2 1.20× 10−3 3.97× 10−8 8.15× 10−5

The dielectric properties of the gels are reported as complex-valued relative permittiv-
ity, ε∗r shown in Equation (1). Here, ε′r and ε′′r represent the real and imaginary parts of the
complex-valued relative permittivity ε∗r .

ε∗r = ε′r − jε′′r (1)
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The complex-valued relative permittivity of the reference gel was 63.36− j16.95 at
2.45 GHz. The percentage changes in values of ε′r and ε′′r are reported over the band
of 2.4–2.5 GHz and are summarized in Table 2. The corresponding plots for dielectric
properties and electromagnetic transmission coefficient (S21) measurements are shown in
Figures 2 and 3, respectively. It can be seen that the changes in the mean of S21 magnitudes
(with respect to the reference gel) in all the four frequency bands increase with increasing
water content, ranging roughly between −1.5% and +3%. This validates our hypothesis
that short term changes in body weight attributed to water loss/gain can be captured using
the proposed electromagnetic measurements. As the next step, we extended this study to
human participants as detailed in the forthcoming subsection.

Table 2. Percentage changes in dielectric properties and electromagnetic transmission coefficient
(S21) measurements of agar phantom gels with respect to the reference gel.

Water Content Change Relative to Reference gel

−5% −2% +2% +5%

Measures

ε′r −1.62% −0.78% 0.18% 1.50%

ε′′r 4.31% 2.25% −2.18% −3.23%

S21-F1 −0.95% −0.65% 0.68% 2.99%

S21-F2 −1.12% −0.54% 0.68% 2.62%

S21-F3 −1.24% −0.38% 0.63% 2.53%

S21-F4 −1.28% −0.40% 0.61% 2.59%

Figure 2. Plot of changes in dielectric properties of agar phantom gels with increasing water content.
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Figure 3. Plot of changes in electromagnetic transmission coefficient (S21) measurements of agar
phantom gels with increasing water content.

2.2. Experiment 2—Extension to Human Participants

Twenty recreationally active participants, men (n = 10) and women (n = 10) (age
23± 4 years (mean ± SD); height 172.6± 8.5 cm; mass 72.0± 15.7 kg), volunteered to
participate in the current investigation. Inclusion criteria included meeting the Ameri-
can College of Sports Medicine’s current aerobic physical activity guidelines (>150 min
per week of moderate physical activity or >75 min of vigorous physical activity), with
experience exercising in a warm environment. In addition, participants could have no
history of heat-related illness. Participants were excluded based on a prior diagnosis of
cardiovascular disease or traditional cardiovascular risk factors, including hypertension,
current smoker, hyperlipidemia and elevated cholesterol, diabetes, or metabolic syndrome.
Participants were also excluded if they had sickle cell anemia, a history of heat-related
illness or currently had risk factors for heat-related illness, including preceding viral in-
fection, dehydration, fatigue, lack of sleep, or poor physical fitness, were currently taking
antihistamines, anti-nausea, and pseudoephedrine. All experimental procedures and meth-
ods were approved by the Institutional Review Board of Kansas State University and
conformed to the standards set forth by the Declaration of Helsinki. Prior to data collection,
all participants gave verbal and written informed consent.

2.2.1. Protocol

A randomized cross-over study design that was utilized consisted of two experimental
visits spaced at least 7 days apart. All trials were performed at approximately the same time
of day. Prior to each visit, participants consumed 3L of water 24 h prior to the experiment
with a 2 h fast. On the day of each experimental visit, the participant provided a urine
sample, and all measurements were performed. The experimental trial consisted of either
an exercise-heat stress to induce hypohydration corresponding to a body water deficit of
<3% of body mass loss or a euhydration control, as described in Figure 4. The exercise-heat
stress trial consisted of intermittent cycle exercise consisting of 30-min cycles consisting
of a 15-min moderate intensity intermittent treadmill or stationary bicycle exercise period
at 50–70% of age-predicted maximal heart rate and a 15-min measurement period, with a
total of 4 exercise-rest periods performed. The exercise room temperature was maintained
between 26 and 32 °C and 40 and 80% relative humidity. Immediately following the
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exercise-heat stress, a rehydration protocol was performed and consisted of participants
sitting in a temperate room (∼20 °C) and consuming 1 L of sodium/electrolyte beverage
(potassium, 139 mg; sodium, 444 mg; total carbohydrates, 61 g) over 60 min followed by a
final measurement period (RHY). Euhydration control was aimed at maintaining a constant
hydration status and consisted of four 15-min resting seated periods interspersed with
15-min measurement periods.

Figure 4. Timeline of events in each treatment condition. Fluid balance measurements (FBM): nude
body weight, urine specific gravity, hematocrit and S21 measurement; * Period 3 FBM: urine specific
gravity was not assessed. BL: baseline.

At the baseline and each measurement period, fluid balance was determined via
nude body weight, urine specific gravity, and hematocrit. Nude body weight (NBW; kg)
was assessed using a digital platform scale (Health o meter Professional; Model 349KLX)
(coefficient of variation = 0.06%). Instructions were to remove clothes, remove any access
sweat with a given a towel, and step onto the scale. Total nude body mass and total body
water loss were considered equivalent (1 mL = 1g) after correction for respiratory water
loss [17,18]. Urine specific gravity was determined from urine samples. Participants were
given a sterile urine container and given instructions on how to provide a mid-stream urine
sample. ∼1 mL of sample was analyzed with a digital palette refractometer (Atago Co., Ltd.,
Tokyo, Japan) [19]. The refractometer was calibrated before each analysis, and absolute
USG change from baseline (USGBL) to end of exercise (USGi) was used for analyses.
Hematocrit (HCT) was determined from a blood sample obtained via a finger stick. Briefly,
the finger was sterilized with isopropyl alcohol pad, allowed to air dry, and punctured
with a safety lancet. To promote bleeding, hands were warmed with a heating pad prior to
puncture or light pressure was applied just below the puncture site. Blood was collected
in heparinized capillary tubes (I.D., 1.1–1.2 mm; length, 75 mm; wall, 0.2± 0.02 mm) and
promptly centrifuged for 5 minutes. After separation, HCT was calculated as the length
of the RBC layer (mm)/total length of the sample (mm). HCT was analyzed as percent
plasma volume change from baseline, calculated as shown in Equation (2).

HCT =
100

100− HCTi

(HCTi − HCTBL)100
HCTBL

(2)

The transmission coefficient across the subject’s wrist was taken with a S21 measure-
ment using the Keysight FieldFox N9923A portable vector network analyzer (Keysight
Technologies, Inc., Santa Rosa, CA, USA) [20]. The analyzer is connected to two microstrip
patch antennas optimized for operation at 2.4 GHz and placed around 7 cm apart. Figure 5
depicts the full setup with the forearm placement used for an S21 measurement. The
frequency range was set between 1 and 4 GHz on the network analyzer, and calibration
was performed each time before operating to ensure a consistent baseline. An adjustable
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wooden backboard was used as a reference for arm placement, and a camera mounted on a
tripod was placed over the antennas to capture an image of each measurement for reference
in case some data were found to be inconsistent. An S21 measurement was taken four times
during each trial: “Baseline”, “After Period 3”, “After Period 4”, and “After Rehydration”.
The subjects were asked to place their left wrist between the antennas with their elbow
centered, and the antennas were situated to have a few millimeters of clearance between
the conductor and the skin. Once the subject’s arm was in position, an overhead photo
was taken of the arm and the S21 data were collected. The photos were taken to backtrack
any inconsistencies in data corresponding to arm position for specific participants during
statistical analyses steps. The S21 measurement was repeated three times back-to-back for
each period to ensure consistency in the data, especially with the possibility of movement
artifacts, resulting in twelve total measurement files per experiment.

Figure 5. Experimental setup used to obtain S21 measurements from the participant.

2.2.2. Statistical Analyses of Hydration Indicators

The first step is to identify the parameter that characterizes hydration in the human
body. During the experiments, three potential parameters, namely, body weight (w), Plasma
Volume (PV) and Urine Specific Gravity (USG), were measured at regular intervals as
described in Section 2.2.1. This was achieved by performing two-sample t-tests for all the
candidate parameters across the set of measurements obtained from “exercise” and “control”
trials. The test decision values and p-values for the null hypothesis that measurements
in “exercise” and “control” groups belong to independent random samples from normal
distributions with equal means were evaluated for all three parameters at instances “After
Period 3”, “After Period 4”, and “After Rehydration”. The alternate hypothesis in these
tests is that the measurements in “exercise” and “control” conditions belong to populations
with unequal means. The two-sample t-tests were performed using the Statistics toolbox
in MATLAB. In this article, the problem of predicting small changes (up to ∼2% of body
weight) in body hydration using non-invasive approaches was modeled as a regression
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problem. The percentage change in value of the parameter characterizing hydration is
used as a target variable and the mean of S21 magnitudes of the selected frequency bands
in electromagnetic data are used as predictors. A sample plot of S21 magnitudes for one
participant during different instances is shown in Figure 6.

Figure 6. Sample plot of S21 magnitudes for one participant during different instances.

The first two frequency bands are selected to be the wider ones between 2.0–2.7 GHz
and 2.7–3.4 GHz. These are the regions where noise is relatively low (unlike the region
1.0–1.75 GHz), and there is a visual difference between the plots corresponding to different
time instances. The third frequency band is a narrow band (2.44–2.47 GHz) centered around
the tuning frequency of the antenna. The last frequency band is selected as 2.2–2.4 GHz,
i.e., the region in which the values of S21 magnitudes reach their corresponding peaks.
These frequency bands are the same as the ones selected via conducting two-sample t-tests
for gel studies (Table 1). The discriminatory power of these bands for the study of human
participants was again verified using similar t-tests for the measurement times “After
Period 3”, “After Period 4”, and “After Rehydration”. The corresponding p-values are
summarized in Table 3. It can be seen in Table 3 that p-values are less than 0.05 for all the
measurement times across all frequency bands, indicating a statistically significant differ-
ence in electromagnetic measurements corresponding to selected frequency bands between
these measurement times and the “baseline” measurement. The means of S21 magnitudes
in these four frequency bands are used as predictor variables for the regression problem.

Table 3. The p-values of two-sample t-tests for selection of frequency bands having discriminatory
power in human participant studies.

Frequency
Bands

Measurement Period

After Period 3 After Period 4 After Rehydration

F1 1.67× 10−8 1.00× 10−3 9.69× 10−9

F2 1.40× 10−3 4.40× 10−4 8.68× 10−6

F3 5.00× 10−9 5.70× 10−3 2.34× 10−10

F4 2.20× 10−3 2.70× 10−3 9.74× 10−7

The regression models are built using three different techniques, namely, Linear
Regression (LR), Decision Tree Regression (DTR), and Support Vector Regression (SVR), and



Sensors 2022, 22, 2536 10 of 18

these are compared to identify the one which best fits the data, based on their mean squared
error (MSE) and R-squared values. These regression techniques are chosen considering their
well-recognized advantages. The LR models are easy to implement, and the corresponding
linear equations are fairly easy to understand and interpret [21]. DTR is a non-parametric
method having no assumptions about model structure, is easier to implement and does
not require much pre-processing efforts [22]. SVR is a kernel-based technique allowing to
work with arbitrary large feature space and offers good generalization performance [23].
Moreover, these methods have been extensively used in many bioengineering applications
including classification of cardiac diseases [24], cardiac abnormalities [25], diagnosis of
diabetes [26], detection of Alzheimer’s disease [27], classification of metabolic diseases [28],
and COVID-19 diagnosis [29].

Prior to building regression models, the correlation analysis was performed for each
pair of target and predictor variables to investigate the strength of linear relationship be-
tween them. The calculations corresponding to percentage changes in w, PV and USG at
an instant t, given by ∆wt, ∆PVt and ∆USGt, are performed as shown in Equations (3)–(5),
respectively. Here, wre f , HCTre f and USGre f are the corresponding reference measure-
ments taken before starting any protocol, and wt, PVt and USGt are the corresponding
measurements at time t.

∆wt =
wt − wre f

wre f
× 100 (3)

∆PVt =
100

100− HCTre f
×

(HCTre f − HCTt)100
HCTt

(4)

∆USGt =
USGre f −USGt

USGre f
× 100 (5)

3. Results
3.1. Hydration Indicators

In order to identify the parameter that best characterizes hydration in the human
body, two-sample t-tests were conducted for all the candidate parameters across the set of
measurements obtained from “exercise” and “control” trials. The corresponding results are
tabulated in Table 4. A plot showing a summary of variations in percentage changes in body
weight over different time intervals for the participants during both “exercise” and “control”
treatments is presented in Figure 7. The correlation analysis is performed between each
pair of target and predictor variables to investigate the strength of the linear relationship
between them. In this analysis, there is only one target variable, i.e., ∆wt. The correlation
coefficients corresponding to different predictor variables during all measurement times
are tabulated in Table 5. The correlation plots for selected cases are presented in Figure 8.
Here, the measurements during “After Exercise” includes a combination of measurements
captured during “After Period 3” and “After Period 4” periods.
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Table 4. Test decisions and p-values of two-sample t-tests for the selection of the parameter that best
characterizes hydration in human body (a test decision value of 0 indicates a failure to reject the null
hypothesis at 95% confidence level and a value of 1 indicates rejection of the null hypothesis at 95%
confidence level).

Sr. No. Parameter

Measurement Time

After Period 3 After Period 4 After Rehydration

Test
Decision p-Value Test

Decision p-Value Test
Decision p-Value

1
Percentage change in
Body Weight (∆wt)

1 1.06× 10−9 1 4.48× 10−6 1 9.33× 10−4

2
Percentage change in
Plasma Volume (∆PVt)

0 4.10× 10−1 0 1.90× 10−1 1 9.50× 10−3

3
Percentage change in
Urine Specific Gravity (∆USGt)

NA NA 0 1.30× 10−1 1 3.14× 10−4

Figure 7. Summary of variations in percentage changes in body weight over different time intervals
for the participants.

Table 5. Correlation coefficients corresponding to different predictor variables during all measure-
ment times. ∆Fxt denotes the percentage change in the mean of S21 magnitudes corresponding to
frequency band x at measurement time t, as compared to baseline. ∆Fxt is calculated as shown in
Equation (6).

Sr. No. Predictor
Variable

Measurement Time

After Period 3 After Period 4 After Exercise After Rehydration

1 ∆F1t −0.26 −0.07 −0.17 0.12
2 ∆F2t −0.11 −0.06 −0.04 0.21
3 ∆F3t −0.30 −0.09 −0.17 −0.02
4 ∆F4t −0.24 −0.14 −0.20 0.08
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Figure 8. Correlation plots for selected cases. Percentage changes in (a): body weight vs. mean of S21
magnitudes in frequency band 1 during the measurement time "After Period 3"; (b): body weight vs.
mean of S21 magnitudes in frequency band 2 during the measurement time "After Rehydration"; (c):
body weight vs. mean of S21 magnitudes in frequency band 3 during the measurement time "After
Exercise"; (d): body weight vs. mean of S21 magnitudes in frequency band 4 during the measurement
time "After Period 3".

3.2. Hydration Prediction Models

We perform two types of analyses in this work: (i) general analysis (considering
male and female participants together) and (ii): sex-specific analysis. For the general
analysis, we consider two cases: (1) building separate regression models for dehydration
and rehydration phases; and (2) a common model for both dehydration and rehydration
phases. Here, the instance “Dehydration Phase” includes the measurements at the end
of exercise phase, i.e., combines the measurements captured during “After Period 3” and
“After Period 4”. In both these cases, regression analysis is performed by building two sets
of models—one using ∆F1t, ∆F2t, ∆F3t, and ∆F4t as predictors and another using ∆PVt
and ∆USGt as predictors. The resulting values of MSE, ordinary R-squared, adjusted
R-squared, and predictive performance for cases 1 and 2 are indicated in Tables 6 and 7,
respectively. The regression models with ∆F1t, ∆F2t, ∆F3t, and ∆F4t as predictors are
considered for sex-specific analysis as their performance was observed to be better than
those built using ∆PVt and ∆USGt as predictors. We consider two different cases for sex-
specific analysis: (1) using the models originally trained on the entire data (both male and
female participants); and (2) training separate models using data from male and female
participants. All the performance metrics, including MSE, ordinary R-squared, adjusted
R-squared, and predictive performance are computed similar to that in the general analysis.
The results for cases 1 and 2 are presented in Tables 8 and 9, respectively.
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Table 6. Results for general analysis—Case 1: building separate regression models for dehydration
and rehydration phases (RM-I: regression models built using ∆F1t, ∆F2t, ∆F3t, and ∆F4t as predictors;
RM-II: regression models built using ∆PVt and ∆USGt as predictors).

Sr. No. Regression
Method Metric

Phase

Dehydration Rehydration

RM-I RM-II RM-I RM-II

1 Linear Regression
(LR)

MSE 0.26 0.33 0.21 0.28

Ordinary R2 0.22 0.13 0.37 0.16

Adjusted R2 0.18 0.11 0.32 0.15

Predictive
Performance 58.55% 46.38% 22.10% 21.56%

2 Decision Tree
Regression (DTR)

MSE 0.14 0.21 0.15 0.19

Ordinary R2 0.52 0.44 0.49 0.41

Adjusted R2 0.49 0.43 0.35 0.35

Predictive
Performance 69.31% 57.21% 39.13% 28.63%

3 Support Vector
Regression (SVR)

MSE 0.04 0.11 0.03 0.06

Ordinary R2 0.83 0.71 0.85 0.78

Adjusted R2 0.82 0.67 0.83 0.75

Predictive
Performance 88.55% 78.47% 87.30% 75.39%

Table 7. Results for general analysis – Case 2: building a common model for both dehydration and
rehydration phases (RM-I: regression models built using ∆F1t, ∆F2t, ∆F3t, and ∆F4t as predictors;
RM-II: regression models built using ∆PVt and ∆USGt as predictors).

Sr. No. Regression
Method Metric Model Specification

RM-I RM-II

1 Linear Regression
(LR)

MSE 0.32 0.38

Ordinary R2 0.19 0.13

Adjusted R2 0.16 0.11

Predictive
Performance 34.26% 26.87%

2 Decision Tree
Regression (DTR)

MSE 0.17 0.24

Ordinary R2 0.53 0.39

Adjusted R2 0.51 0.35

Predictive
Performance 56.99% 45.33%

3 Support Vector
Regression (SVR)

MSE 0.10 0.12

Ordinary R2 0.73 0.61

Adjusted R2 0.72 0.58

Predictive
Performance 76.32% 70.14%
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Table 8. Results for sex-specific analysis—Case 1: using the models originally trained on the entire
data (both male and female participants).

Sr. No. Regression
Method Metric

Phase

Dehydration Rehydration

Male Female Male Female

1 Linear Regression
(LR)

MSE 0.26 0.26 0.19 0.20

Ordinary R2 0.18 0.15 0.47 0.15

Adjusted R2 0.08 0.07 0.32 0.09

Predictive
Performance 65.52% 50.96% 41.56% 32.47%

2 Decision Tree
Regression (DTR)

MSE 0.13 0.16 0.25 0.11

Ordinary R2 0.51 0.47 0.29 0.44

Adjusted R2 0.44 0.41 0.19 0.33

Predictive
Performance 77.76% 58.73% 34.10% 42.24%

3 Support Vector
Regression (SVR)

MSE 0.06 0.03 0.03 0.02

Ordinary R2 0.75 0.87 0.82 0.85

Adjusted R2 0.72 0.86 0.77 0.82

Predictive
Performance 88.02% 88.74% 85.34% 89.89%

Table 9. Results for sex-specific analysis—Case 2: training separate models using data from male and
female participants.

Sr. No. Regression
Method Metric

Phase

Dehydration Rehydration

Male Female Male Female

1 Linear Regression
(LR)

MSE 0.12 0.18 0.17 0.13

Ordinary R2 0.64 0.44 0.52 0.50

Adjusted R2 0.59 0.38 0.38 0.39

Predictive
Performance 81.35% 59.24% 48.91% 34.67%

2 Decision Tree
Regression (DTR)

MSE 0.15 0.18 0.35 0.17

Ordinary R2 0.40 0.40 0.18 0.18

Adjusted R2 0.33 0.35 0.08 0.09

Predictive
Performance 76.62% 55.70% 11.97% 17.50%

3 Support Vector
Regression (SVR)

MSE 0.03 0.04 0.03 0.03

Ordinary R2 0.88 0.86 0.87 0.88

Adjusted R2 0.86 0.85 0.83 0.86

Predictive
Performance 91.78% 90.57% 87.28% 90.02%

4. Discussion

The parameter that best characterizes hydration in the human body is identified from
Table 4. From Table 4, it can be seen that the test decision values corresponding to ∆wt
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are 1 and the p-values are less than 0.05 for all the measurement times. This indicates
that the difference in measurements from “exercise” and “control” groups is statistically
significant. On the other hand, the test decision values corresponding to ∆PVt and ∆USGt
are 0 for some of the measurement times, indicating that the difference in measurements
from “exercise” and “control” groups is statistically not significant during all the time
intervals. Thus, the parameter wt is chosen to be representative of hydration in the human
body and is treated as target variable in the regression analysis demonstrated in this article.

The variations in percentage changes in body weight over different time intervals
for the participants during both “exercise” and “control” treatments are demonstrated in
Figure 7. It can be observed that the body weight decreases slightly up to “After Period 4”,
when the participant is subjected to physical stress and it increases again during the process
of rehydration, when the participant is directed to consume a pre-defined amount of water.
Moreover, the extent of change in body weight is higher for the “exercise” treatment, as
compared to that for the “control”. This is intuitive in that the participant encounters a
higher degree of physical load during the “exercise” phase.

The next step is to perform a correlation analysis between each pair of targets (i.e.,
∆wt) and predictor variables in order to investigate the strength of the linear relationship
between them. From Table 5 and Figure 8, it can be seen that none of the combinations
of target and predictor variables exhibits a strong linear relationship individually. This
suggests the need to perform regression analysis by using multiple predictor variables and
explore other methods of building regression models, in addition to the linear regression
approach. Here, the percentage change in the mean of S21 magnitudes corresponding
to different frequency bands is calculated as shown in Equation (6). Here, Fxre f is the
reference measurements for frequency band x taken before starting any protocol and Fxt is
the corresponding measurement at time t.

∆Fxt =
Fxt − Fxre f

Fxre f
× 100 (6)

In general analysis (considering male and female participants together), we build
two sets of models—one using ∆F1t, ∆F2t, ∆F3t, and ∆F4t as predictors and another using
∆PVt and ∆USGt as predictors. These models are built for two different cases: (1) separate
regression models for dehydration and rehydration phases; and (2) common model for
both dehydration and rehydration phases. The performance is evaluated using the metrics:
MSE, ordinary R-squared, adjusted R-squared, and predictive performance. The adjusted
R-squared statistic is computed as it helps to mitigate the overfitting issue in ordinary
R-squared values by penalizing additional independent variables added to the model. The
predictive performance values are calculated using Equation (7). Here, Ai and Pi are actual
and predicted values, respectively, and n is the total number of observations.

Predictive Performance = 100− 100
n

n

∑
i=1

∣∣∣∣ Ai − Pi
Ai

∣∣∣∣ (7)

The results for cases 1 and 2 of the general analysis are tabulated in Tables 6 and 7,
respectively. Firstly, it is established that ∆wt (representative of hydration in the human
body) can be predicted using measurements obtained from the proposed electromagnetic
assessment technique. Secondly, it is observed that the regression models built using data
obtained from the proposed electromagnetic assessment technique as predictors provide
a better fit than those built using PV and USG as predictors. The best performance is
exhibited by regression models built using the SVR technique. Additionally, it can be
seen that training separate models for dehydration and rehydration phases gives better
predictive performance (up to 89%) and better fits (adjusted R2 value of 0.82) as compared
to having a common model trained using the entire data (up to 77% and adjusted R2 value
of 0.72).
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We build the regression models with ∆F1t, ∆F2t, ∆F3t, and ∆F4t as predictors for
sex-specific analysis as their performance was observed to be better than those built using
∆PVt and ∆USGt as predictors. The models are built and their performance is analyzed
for two different cases: (1) using the models originally trained on the entire data (both
male and female participants); and (2) training separate models using data from male and
female participants. The corresponding results are presented in Tables 8 and 9, respectively.
These results indicate that training separate models using data from male and female
participants provides better predictive performance (up to 92%) as compared to using a
common model across both genders (up to 89%). Finally, it is observed that the models
in the dehydration phase provide a better predictive performance as compared to those
in the rehydration phase. The sample plots of true response vs. predicted response and
residuals for predictions with SVR for male participants in the sex-specific Analysis—Case
2 are shown in Figure 9.

Figure 9. Sample plots of true response vs. predicted response and residuals for predictions with
SVR for male participants in sex-specific Analysis—Case 2.

5. Conclusions

In this work, we have proposed a non-invasive hydration monitoring technique em-
ploying non-ionizing electromagnetic power in the microwave band to estimate the changes
in whole-body water content. Specifically, we investigate changes in the attenuation co-
efficient in the frequency range 2–3.5 GHz between a pair of planar antennas positioned
across a participant’s arm during various states of hydration. Initially, we hypothesize that
the changes in water content can be captured using the proposed electromagnetic mea-
surements, i.e., attenuation coefficient between a pair of planar antennas. We performed
initial studies with five agar phantom gels of different water content made in laboratory.
After validating our hypothesis using experiments with agar gels, we extended the study
to human participants. Firstly, we establish that body weight is an accurate representation
of the hydration status as compared to other measures such as PV and USG. Secondly, we
formulate a regression problem with a percentage change in body weight as target and
electromagnetic measurements as predictors. The corresponding data analysis demon-
strates the ability to predict <2% acute changes in whole-body hydration. It is observed
that building separate estimation models for dehydration and rehydration phases provide
better predictive performance (88%) as opposed to having a common model for both the
phases (76%).



Sensors 2022, 22, 2536 17 of 18

Author Contributions: Conceptualization, C.A. (Carl Ade), B.N. and P.P.; methodology, D.A., P.R.,
Z.W., B.B., C.A. (Cross Allen), J.D. and F.C.; software, D.A. and P.R.; validation, D.A., P.R., Z.W., F.C.
and B.B.; formal analysis, D.A., P.R. and Z.W.; data curation, Z.W., P.R. and D.A.; writing—original
draft preparation, D.A., P.R. and Z.W.; writing—review and editing, C.A. (Carl Ade), B.N., P.P.
and D.A.; visualization, D.A.; supervision, C.A. (Carl Ade), B.N. and P.P.; project administration,
C.A. (Carl Ade), B.N. and P.P.; funding acquisition, C.A. (Carl Ade), B.N. and P.P. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received funding from Paul L. Spainhour Professorship, Michelle Munson—
Serman Simu Keystone Research Scholar funds, ECE undergraduate research funds—Kansas
State University.

Institutional Review Board Statement: All experimental procedures and methods were approved
by the Institutional Review Board of Kansas State University (protocol number 9840) and conformed
to the standards set forth by the Declaration of Helsinki.

Informed Consent Statement: All the participants gave verbal and written consent prior to data collection.

Data Availability Statement: Data are available from the authors on a reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

THz Terahertz
GSR Galvanic Skin Response
SVM Support Vector Machines
PPG Photoplethysmographic
FBM Fluid Balance Measurements
BL Baseline
NBW Nude Body Weight
USG Urine Specific Gravity
HCT Hematocrit
PV Plasma Volume
LR Linear Regression
DTR Decision Tree Regression
SVR Support Vector Regression
MSE Mean Squared Error

References
1. Subudhi, A.; Askew, E.; Luetkemeier, M. Dehydration. Reference Module in Biomedical Sciences Encyclopedia of Human Nutrition,

3rd ed.; Elsevier: 2013; pp. 1–9. [CrossRef]
2. Garrett, D.C.; Rae, N.; Fletcher, J.R.; Zarnke, S.; Thorson, S.; Hogan, D.B.; Fear, E.C. Engineering approaches to assessing hydration

status. IEEE Rev. Biomed. Eng. 2017, 11, 233–248. [CrossRef] [PubMed]
3. Sawka, M.; Burke, L.; Eichner, R.; Maughan, R.; Montain, S.; Stachenfeld, N. American College of Sports Medicine exercise and

fluid replacement position stand. Med. Sci. Sport. Exerc. 2007, 39, 377–390.
4. Armstrong, L.E.; Costill, D.L.; Fink, W.J. Influence of diuretic-induced dehydration on competitive running performance. Med.

Sci. Sport. Exerc. 1985, 17, 456–461. [CrossRef] [PubMed]
5. Pichan, G.; Gauttam, R.; Tomar, O.; Bajaj, A. Effect of primary hypohydration on physical work capacity. Int. J. Biometeorol. 1988,

32, 176–180. [CrossRef] [PubMed]
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