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Abstract: As an alternative to traditional remote controller, research on vision-based hand gesture
recognition is being actively conducted in the field of interaction between human and unmanned
aerial vehicle (UAV). However, vision-based gesture system has a challenging problem in recognizing
the motion of dynamic gesture because it is difficult to estimate the pose of multi-dimensional hand
gestures in 2D images. This leads to complex algorithms, including tracking in addition to detection,
to recognize dynamic gestures, but they are not suitable for human–UAV interaction (HUI) systems
that require safe design with high real-time performance. Therefore, in this paper, we propose a hybrid
hand gesture system that combines an inertial measurement unit (IMU)-based motion capture system
and a vision-based gesture system to increase real-time performance. First, IMU-based commands
and vision-based commands are divided according to whether drone operation commands are
continuously input. Second, IMU-based control commands are intuitively mapped to allow the
UAV to move in the same direction by utilizing estimated orientation sensed by a thumb-mounted
micro-IMU, and vision-based control commands are mapped with hand’s appearance through
real-time object detection. The proposed system is verified in a simulation environment through
efficiency evaluation with dynamic gestures of the existing vision-based system in addition to
usability comparison with traditional joystick controller conducted for applicants with no experience
in manipulation. As a result, it proves that it is a safer and more intuitive HUI design with a 0.089 ms
processing speed and average lap time that takes about 19 s less than the joystick controller. In other
words, it shows that it is viable as an alternative to existing HUI.

Keywords: human–UAV interaction; hybrid-based hand gesture recognition; hand-gesture-based
recognition; IMU-based motion capture system; deep learning

1. Introduction
1.1. Research Backgrounds

In recent years, interest in UAV has increased in civilian applications, such as aerial
photography, delivery, transportation, rescue, and surveillance. Naturally, the interaction
between humans and UAVs has become frequent, and with the development of artificial
intelligence (AI), intelligent HUI approach is actively being developed as an alternative to
traditional joystick-based controller [1]. Unlike joystick-based controller, which is limited
to highly trained professionals with complex interfaces, the HUI system allows non-skilled
users to easily control with the goal of designing a natural and intuitive human-centered
interfaces. The field of HUI research is progressing toward designing more innovative
and natural interfaces and can be largely classified into four categories: wearable sensors,
more user-friendly remote controllers, speech recognition, and hand gesture recognition [2].
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The advantages and disadvantages of each HUI are summarized in Table 1. In particular,
research on hand-gesture-based recognition (HGR) is being more actively conducted than
other research due to the characteristics of hand gestures, which are intuitive and natural
means of communication to convey meaningful information between people [1,3–5].

Table 1. Advantages and disadvantages of four types of categories in the HUI.

HUI Advantages Disadvantages

Wearable Sensors

- Intuitive, Natural
- Low computation compared to other interfaces
- Suitable performance for human

motion capture

- Expensive equipment required
- Lack of ability to distinguish between

unconscious and predefined similar behaviors

More User-Friendly Remote
Controller

- Less training time compared to traditional
remote controller

- Additional features, such as path planning
using touch-screen devices

- Less intuitive than other interfaces
- Distance limitation by WiFi signal

transmission characteristics

Speech
- Intuitive, Natural
- No additional devices required

- Decreased performance due to influences from
surrounding environment, such as noise

- Effects of language and intonation differences

Gesture
- Intuitive, Natural
- No additional devices required
- No need for many commands

- Lower control performance than other
interfaces due to limited discriminant ability

- High computation compared to
other interfaces

1.2. Problem Description

According to the related works on HGR, they mainly focus on designing the recogni-
tion algorithms with different data sources. Therefore, the HGR can be divided into two
categories based on the type of data being processed: the sensor-based gesture recognition
(SGR) and the vision-based gesture recognition (VGR) [6]. After that, each approach can be
divided in detail according to data collection, pre-processing steps, and training methods,
such as machine learning or deep learning [7]. The SGR uses one-dimensional raw data
extracted from glove-based wearable sensors composed of multiple sensors, such as IMU,
ElectroMyoGram (EMG), and flex sensors, and so on [8–10]. The SGR system has low
computation, in that it uses relevant data without the process of feature extraction, and
it is robust to external environments, such as lighting conditions. However, the majority
of studies have been focused on VGR because the VGR system is affordable and easier to
collect data than the SGR system. VGR concentrates on analyzing 2D images, 3D images,
or video obtained from optical sensors. VGR research can be divided into handcrafted
feature-based and deep feature-based approaches.

Compared to handcrafted feature-based approaches, such as Markov models [11,12]
and support vector machines (SVMs) [13], which have limitations in gesture complexity
and modeling limitations, studies are focused on deep feature-based approaches with
relatively low cost by end-to-end training and enhanced feature extraction capabilities. The
deep feature-based approaches consist mostly of a process of detecting, recognizing, and
interpreting static and dynamic gestures. Here, static gesture means that there is no change
in movement for several frames, and dynamic gesture means a combination of poses with
various movements across multiple frames [14]. In the case of static gesture recognition,
it shows high performance through neural-network-centered approaches, but dynamic
gesture recognition still has a challenging problem, in that it is difficult to estimate the
pose of a multi-dimensional hand gesture on 2D images. To solve this problem, as in the
case of tracking through simple KF of gestures detected through the proposed developed
model of Tiny-YOLOv2 [15] and tracking through Deep SORT of skeleton extracted through
OpenPose [16], tracking algorithms in addition to deep-learning networks are combined
and consequently increase computational complexity. However, complex algorithms are
not suitable for the goal of safe and intuitive design of the HUI system, a hard real-time
system that values real-time performance.
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Therefore, in this paper, we propose a hybrid hand gesture system that combines an
IMU-based motion capture system and a vision-based gesture system to increase real-time
performance. As an alternative to dynamic gesture recognition in VGR systems that are
difficult to estimate pose, gesture recognition can be more easily recognized by utilizing
estimated orientation information from IMU-based motion capture system. In the proposed
system, the IMU-based control commands are intuitively mapped to be controlled in the
same direction as the orientation of the thumb-mounted micro-IMU, and the vision-based
control commands are mapped to the hand’s appearance obtained through real-time object
detection to perform defined control. The proposed system can be confirmed to be a safe
and intuitive interface through usability and efficiency comparisons with traditional joystick
controller and existing VGR systems. The main contribution of this paper is as follows:

1. We propose a safer and more intuitive interface by combining IMU-based motion
capture system and vision-based system.

2. The proposed system compensates for the disadvantages of sensor-based system:
proposal of wearable system.

3. The proposed system compensates for the disadvantages of vision-based system: rec-
ognizing complex dynamic gestures using an IMU sensor reduces system complexity
and computational amount.

In the subsequent sections, Section 2 presents related work, including two types
of hand-gesture-based registration. Section 3 presents the proposed system’s overall
architecture. In Section 4, the developed system is presented, followed by static gesture
recognition and dynamic gesture recognition. Then, Section 5 discusses the experimental
results. Conclusions are drawn in Section 6 and finally, it can be expected to provide a safe
and intuitive HUI interface that can be easily operated by non-professionals.

2. Previous Research

Various studies have been conducted on the interaction between human gestures and
UAVs using different sources of information. The hand gesture recognition methods can be
broadly categorized as either SGR or VGR according to the type of data being processed.

2.1. Sensor-Based Gesture Recognition Systems

There are many algorithms for SGR. IMU-based SGR can be divided into two parts:
data-based and machine-learning (ML)-based. Data-based method utilizes acceleration
information extracted from IMU sensors attached to the hand. They provide the valu-
able information about hand pose, finger joints’ angular pose, and from this we can
recognize gestures [17,18]. In addition, in Ref [19], an approach to implement hand motion
tracking and recognition with data received from a data glove composed of accelerom-
eters was presented. Most data-based approaches have an advantage in computational
complexity to recognize hand gestures. However, there is a disadvantage, namely that
it is inconvenient, since the users have to wear sensors. ML-based SGR approach is a
method of using machine-learning technology, and there are various classification tech-
niques for gesture recognition algorithms, namely, decision tree (DT) [20], artificial neural
networks (ANN) [20,21], K-nearest neighbors (KNN) [22], and SVM [23,24]. In Ref [25],
Muezzinoglu, T. compared the results extracted from data gloves for DT, SVM, and KNN
classification algorithms. Although ML-based approaches have the advantage of high
accuracy, they have the disadvantage of high computation and poor accuracy for data
for people who do not undergo training. In addition, research on systems using surface-
electromyogram (sEMG) sensors and Flex sensors along with IMU sensors is being ac-
tively conducted. In Ref [26], Mardiyanto, R. proposed to control the underwater remote-
operated vehicle by mounting the IMU to the elbow, forearm, and wrist, and to control
the gripper of the robot by attaching the flex sensor to the finger. In Ref [27], Kim, M.K.
presented a real-time motion and force capturing system that combines sEMG with IMU.
In the proposed system, the IMU captures arm motion, and the sEMG detects the hand
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force of human. In the case of such a system, there is a disadvantage, in that mapping is
not natural as a time-varying signal that relies on human physical condition.

2.2. Vision-Based Gesture Recognition Systems

Hand gesture recognition can be seen as an object detection problem, so VGR algo-
rithms can be divided into handcrafted feature-based and deep feature-based approaches.
Handcrafted feature-based algorithm is characterized by training features extracted manu-
ally by humans. It has the following pipelines: pre-processing, handcrafted feature extrac-
tion, and trainable classifier [28–30]. It is less complex than deep learning but has the disad-
vantage of showing limited performance. Recently, deep feature-based approaches [31,32],
such as convolutional neural networks (CNN) and long short-term memory (LSTM) net-
work, have achieved great performance for hand gesture recognition. However, deep
feature-based approach for gesture recognition has many aspects to be solved for dynamic
hand motion recognition, and various studies are being conducted. In Ref [15], Kassab, M.A.
proposed to detect three parts of the interacted person and tracking the detected parts
using Kalman filter (KF). In Ref [16], dynamic gesture recognition proceeds with skeleton
extraction through OpenPose and human tracking through DeepSORT. In order to improve
the efficiency and performance of dynamic gesture recreation, it performs detection and
tracking algorithms and consists of high computation and complex systems [2,6].

Therefore, the proposed method to increase the real-time performance, which is im-
portant for UAV control, is as follows. The dynamic gestures, which are relatively difficult
to recognize in vision-based systems, perform recognition in IMU-based system. Control
commands with movement in the same direction as orientation data extracted from IMU
mounted on the thumb are intuitively mapped. In addition, static gestures perform mapped
control through real-time object detection of vision-based system. Therefore, in this paper,
we propose an interface that can be easily controlled by non-professionals by combining
the sensor-based system and the vision-based system and recognizing gestures efficiently.

3. System Architecture

The objective of the proposed system is to control UAVs with a more natural and
intuitive HUI system by efficiently separating gestures in consideration of the characteristics
of each sensor. The overall structure of this system consists of two major steps: wearable
system and hand gesture recognition system, as shown in Figure 1.

3.1. Wearable System

We proposed gesture recognition based on multiple sensors using IMU and camera
sensors, and for this purpose, a command system using both hands was implemented.
To implement this system, a wearable system and gesture recognition environment were
constructed using micro IMU, camera, and thimble for fingers. For dynamic gesture
recognition through the IMU, the system with the IMU attached to the operator’s right
thumb was designed. For vision-based static gesture recognition, it was configured to wear
three-colored thimble to improve real-time object detection performance.

The wearable system is designed based on the command transmission method through
both hands. The gesture recognition through IMU can be implemented by attaching an
IMU to the operator’s right thumb, and vision-based gesture recognition can be configured
to wear three-color thimble to improve the accuracy of real-time object detection. The
hand gesture information can be obtained as orientation and image data from the wearable
system and the gesture recognition environment.

3.2. Hand Gesture Recognition System

The sequential components for hand gesture recognition consist of data collection from
wearable system, data processing for gesture recognition of IMU-based motion capture
system and VGR system, and calculation of control command values for each recognized
gesture. First, the hand gesture information can be obtained as orientation and image data
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from the wearable system and the gesture recognition environment. Next, each gesture is
recognized through real-time object detection or motion estimation algorithm according
to each control mode using the gesture information. The control mode is in the form of a
state machine, divided into three modes: not control mode, camera control mode, and IMU
control mode, which are selected according to the command of the operator. Then, control
command according to the recognized gesture is performed to control UAV.
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Figure 1. The proposed architecture on hand gesture recognition for controlling UAV.

4. Motion Capture and Hand Gesture Recognition-Based Real-Time HUI System
4.1. Gesture Definition

In order to efficiently classify static and dynamic gestures, the traditional remote
controller with a joystick-based multi-copter operation method was considered. Essentially,
the movement of the drone consists of translation and rotation based on the three axes, as
shown in Figure 2.
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As can be seen from Figure 3, when rotating in the roll direction through joystick
operation, the drone moves left and right, as it tilts left and right. When rotating in the pitch
direction, the drone rider moves up and down to move forward or backward. In the case
of yaw rotation, the drone is rotated while it is horizontally maintained, and movement
against rising and falling is performed by throttle operation. In addition, it can perform
various functions, such as arming, disarming, back home, take off, and landing.
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For gesture mapping suitable for the proposed gesture recognition-based UAVs control,
command lists were selected, as shown in Table 2, in consideration of the joystick-based
multi-copter control command. Essentially, it consists of position control in the direction
of roll, pitch, and yaw, and altitude control commands of the multi-copter. In addition,
Arming, Disarming, which additionally turns on/off the start of the aircraft motor, and the
Stop command to stop the movement of the multi-copter and enter the hovering state, were
selected. Take off and Land, which are instructions to take off and land the multi-copter, and
Back home command to return the multi-copter to its initial takeoff point, were selected.

Table 2. Command list considering joystick-based multi-copter direct operation instructions and
proposed system.

No. Command No. Command

1 Move forward (Pitch down) 8 Descend (Throttle down)

2 Move backward (Pitch up) 9 Arming

3 Move left (Roll left) 10 Disarming

4 Move right (Roll right) 11 Take off

5 Turn left (Yaw left) 12 Land

6 Turn right (Yaw right) 13 Back home

7 Ascend (Throttle up) 14 Stop

The selected commands list can be classified according to the characteristics of the
continuous manipulation input. The commands, such as roll, pitch, yaw, and throttle,
require the operator to maintain continuous operation input. On the other hand, Arming,
Disarming, Stop, Take off, Land, and Back home commands do not require continuous operation
input due to their relatively low frequency of operation input. Therefore, in consideration
of the characteristics of continuous manipulation input and frequency of manipulation
input, the selected commands can be classified into IMU-based and vision-based gesture
recognition commands. In the case of roll, pitch, yaw, and throttle commands, the operation
was implemented by mapping to IMU, which has the characteristics of high sampling
cycles and intuitive orientation estimation. In the case of Arming, Disarming, Stop, Take off,
Land, and Back home commands, the operation was mapped with hand gesture recognition
through the camera. When configuring commands, hand gestures that are not frequently
used on a daily basis were defined, so that unnecessary recognition was not performed.
The mapping between the command and the corresponding control for IMU-based and
vision-based gesture recognition system is shown in Figure 4.

4.2. Gesture Recognition of IMU-Based Motion Capture System

In the proposed system, the pointing gesture method using IMU mounted on the
thumb is used. The control method through the direction indicated by the thumb can
be operated in a more intuitive and simple way. It is expected to be easily controlled
by non-professionals. The system consists of two steps as follows: (1) Alignment and
(2) Orientation estimation.
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4.2.1. Alignment

Even if each person makes the same gesture, it can appear in various ways depending
on their unique habits and characteristics. Therefore, alignment mode was added before
classification. The orientation data on the forward command were collected for 5 s while
stationary. A process of setting the average value of the collected orientation to the origin of
the reference coordinate system was performed. Therefore, IMU-based gesture recognition
estimates a pose based on the reference coordinate system.

4.2.2. Orientation Estimation

After performing the alignment, the process of recognizing the gesture through the
IMU attached to the thumb is performed. The orientation data of the thumb is estimated
based on the reference frame, whose z-axis points up. Using the orientation extracted
from IMU, a corresponding dynamic gesture can be recognized. For example, when the
thumb has a pose within 20 degrees left and right on the x-axis, 20 degrees up and down
on the y-axis, and 20 degrees left and right on the z-axis, it is recognized as a “Move forward”
command. When the direction of the thumb is within 20 degrees left and right on the x-axis,
within 130 to 180 degrees on the y-axis, and within 160 to 200 degrees on the z-axis, it is
recognized as a gesture command of the “Move backward” command. In this way, a total of
six dynamic gestures according to the orientation of the thumb are defined as shown in
Figure 5. Finally, a movement command according to the recognized gesture is performed,
and the UAV is controlled.

The proposed mapping method of gestures through IMU-based motion capture system
and gestures through VGR system results in an intuitive interaction between the operator
and UAVs, which is meaningful, in that the operator does not have to remember most
of the designed gesture mapping. For example, when we control UAVs higher than the
purpose, we can point our thumb down rather than thinking of complex gesture mapping
to make a decision. So, the proposed system can make it easier to control the movement of
UAVs through the intuitive HUI when the user observes that the UAVs deviates from the
desired path in the precision control area.
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4.3. Static Gesture Recognition
4.3.1. Dataset Construction

In order to recognize gestures through the deep-learning-based model, a class-labeled
training dataset for each gesture is essential. Since there are a total of six commands through
static gesture recognition that we defined in the previous section, the training dataset we
built consists of a total of six classes: Stop, Arming, Disarming, Back home, Take off, and Land,
as shown in Figure 6. The gesture for each class was defined as the hand gesture that is not
frequently used on a daily basis, so that unnecessary command input is not made when
performing operations.

The camera sensor to be used in the experiments, oCam-5CRO-U-M, was used
to build the dataset. In order to build the dataset, a total of 2494 images of gestures
were collected from 9 applicants. For training of the model, the dataset is divided into
2048 images (82.12%) and 446 images (17.88%), respectively, with training and validation
set. Figure 7 shows the distribution for each class of the overall data set, training set, and
validation set.

4.3.2. Static Gesture Recognition Model

Image-based object detection models can be largely divided into two types: two-stage
model and one-stage model. The two-stage model separately conducts bounding boxes
prediction and class prediction. On the other hand, a one-stage model predicts bounding
boxes and classes at once. In the case of the two-stage model, accuracy is high, but there is
a disadvantage in that it takes a long prediction time. In contrast, the one-stage model has
the advantage that the prediction time is very fast, although the accuracy is slightly lower
than that of the two-stage model. In the case of the gesture recognition for UAV control,
real-time performance is the most important factor. Therefore, the proposed system for
recognizing static gestures is based on the one-stage model. Among them, YOLOv4 [33] that
guarantees high accuracy as well as real-time performance was selected as the static gesture
recognition model. As a result of training YOLOv4 using the constructed dataset, YOLOv4
achieved 98.3% mean average precision (mAP) and 91.7% average IoU. Detailed results on
the performance of the static gesture recognition model are described in Section 5.2.



Sensors 2022, 22, 2513 9 of 17

Sensors 2022, 22, x FOR PEER REVIEW 9 of 18 
 

 

The proposed mapping method of gestures through IMU-based motion capture sys-
tem and gestures through VGR system results in an intuitive interaction between the op-
erator and UAVs, which is meaningful, in that the operator does not have to remember 
most of the designed gesture mapping. For example, when we control UAVs higher than 
the purpose, we can point our thumb down rather than thinking of complex gesture map-
ping to make a decision. So, the proposed system can make it easier to control the move-
ment of UAVs through the intuitive HUI when the user observes that the UAVs deviates 
from the desired path in the precision control area. 

4.3. Static Gesture Recognition 
4.3.1. Dataset Construction 

In order to recognize gestures through the deep-learning-based model, a class-la-
beled training dataset for each gesture is essential. Since there are a total of six commands 
through static gesture recognition that we defined in the previous section, the training 
dataset we built consists of a total of six classes: Stop, Arming, Disarming, Back home, Take 
off, and Land, as shown in Figure 6. The gesture for each class was defined as the hand 
gesture that is not frequently used on a daily basis, so that unnecessary command input 
is not made when performing operations. 

 
Figure 6. Example of the dataset regarding a gesture definition for each labeled class for vision-
based gesture recognition. 

The camera sensor to be used in the experiments, oCam-5CRO-U-M, was used to 
build the dataset. In order to build the dataset, a total of 2494 images of gestures were 
collected from 9 applicants. For training of the model, the dataset is divided into 2048 
images (82.12%) and 446 images (17.88%), respectively, with training and validation set. 
Figure 7 shows the distribution for each class of the overall data set, training set, and val-
idation set. 

Figure 6. Example of the dataset regarding a gesture definition for each labeled class for vision-based
gesture recognition.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 7. The class distribution of dataset. The X-axis represents class, and the Y-axis represents the 
number of images for each class. 

4.3.2. Static Gesture Recognition Model 
Image-based object detection models can be largely divided into two types: two-stage 

model and one-stage model. The two-stage model separately conducts bounding boxes 
prediction and class prediction. On the other hand, a one-stage model predicts bounding 
boxes and classes at once. In the case of the two-stage model, accuracy is high, but there 
is a disadvantage in that it takes a long prediction time. In contrast, the one-stage model 
has the advantage that the prediction time is very fast, although the accuracy is slightly 
lower than that of the two-stage model. In the case of the gesture recognition for UAV 
control, real-time performance is the most important factor. Therefore, the proposed sys-
tem for recognizing static gestures is based on the one-stage model. Among them, 
YOLOv4 [33] that guarantees high accuracy as well as real-time performance was selected 
as the static gesture recognition model. As a result of training YOLOv4 using the con-
structed dataset, YOLOv4 achieved 98.3% mean average precision (mAP) and 91.7% av-
erage IoU. Detailed results on the performance of the static gesture recognition model are 
described in Section 5.2. 

Using the trained YOLOv4 model, a confidence score indicating the probability of 
prediction of the class can be obtained through static gesture recognition, and a threshold 
value of 90% can be set to exclude gestures with low confidence score. In addition, it was 
implemented to prevent unnecessary input of commands by defining the precedence re-
lation between static gesture commands. A state was defined to indicate the states of Dis-
arming, Arming (or Land), and Take off in which precedence relationships exist, so that op-
erable commands according to each state were executed. As shown in Figure 8, if the cur-
rent is Disarming, the operable command is Arming. When Arming (or Land) is in the cur-
rent state, the Disarming and Take off commands are available. When the current state is 
Take off, it can be seen that the Stop, Back home, and Land commands can be operated. 

Figure 7. The class distribution of dataset. The X-axis represents class, and the Y-axis represents the
number of images for each class.

Using the trained YOLOv4 model, a confidence score indicating the probability of
prediction of the class can be obtained through static gesture recognition, and a threshold
value of 90% can be set to exclude gestures with low confidence score. In addition, it
was implemented to prevent unnecessary input of commands by defining the precedence
relation between static gesture commands. A state was defined to indicate the states of
Disarming, Arming (or Land), and Take off in which precedence relationships exist, so that
operable commands according to each state were executed. As shown in Figure 8, if the
current is Disarming, the operable command is Arming. When Arming (or Land) is in the
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current state, the Disarming and Take off commands are available. When the current state is
Take off, it can be seen that the Stop, Back home, and Land commands can be operated.
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5. Experiments

In order to verify the proposed method, the experiments were conducted focusing on
the test of the utility of each function through gesture recognition and the usability in terms
of lap time comparison with the traditional joystick-based controller. Considering the safety
issue that may occur during UAV control and the experimental scenarios to be described
later, the proposed algorithm was evaluated in Gazebo with PX4 [34] software in the loop
(SITL). Experiments on the simulation environments were conducted on 10 non-experts
who had never controlled the UAVs. Finally, we demonstrated the suitability of the
proposed HUI system for non-experts in controlling UAVs.

5.1. Experimental Setup
5.1.1. Wearable System Design

Unlike smart gloves with complicated structure, we built a wearable system and ges-
ture recognition environment based on a miniature IMU and camera. This system is based
on both hands, and the configuration is as shown in Figure 9. The IMU can be attached to
an operator’s right thumb to collect data on the pose and perform gesture recognition. The
operator’s left hand performs gesture recognition through real-time object detection of the
camera and is configured to wear three colors of thimble to improve detection performance.
The model of the IMU sensor used in the system is EBIMU-9DOFV5. It is an ultra-small
AHRS module with built-in three-axis accelerometer, three-axis gyroscope, and three-axis
magnetometer, and it supports improved sensor precision and improved sensor calibration.
In the case of a camera sensor, oCam-5CRO-U m model was used. This has the advantage
of being able to link with various software with USB video class (UVC) support and can be
used even in low-performance systems, as it is designed to allow video data to be written
to memory. Therefore, it was used because it can be used in robot operating system (ROS)
environment without installing a separate driver due to UVC compatibility.

5.1.2. Simulation Setup

The simulation environment of the proposed method is based on ROS. Among the
various simulators for UAVs control, the experiment was conducted in the Gazebo simulator
because it is open source and compatible with ROS. It also sets up SITL, the PX4 firmware
used in the simulation, to perform a low level of control over position, attitude, and velocity.
This setup can be seen in Figure 10.



Sensors 2022, 22, 2513 11 of 17Sensors 2022, 22, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 9. Wearable system for gesture recognition. 

5.1.2. Simulation Setup 
The simulation environment of the proposed method is based on ROS. Among the 

various simulators for UAVs control, the experiment was conducted in the Gazebo simu-
lator because it is open source and compatible with ROS. It also sets up SITL, the PX4 
firmware used in the simulation, to perform a low level of control over position, attitude, 
and velocity. This setup can be seen in Figure 10. 

 
Figure 10. The simulation setup of proposed system. 

The test scenario in the simulation environment was constructed with reference to 
the practical test for the pilot certification of the ultra-light flying device conducted by 
Korea Transportation Safety Authority (TS) [35]. Compared to completing 10 h of flight 
time and conducting practical tests for actual pilot qualification, the operation time of the 
test using the proposed system is quite insufficient. Accordingly, in the “(1) take off, (2) 
straight and backward level flight, (3) triangle flight, (4) rhombus flight (rudder turn), (5) 
crosswind approach, and land” phase of the practical test, the procedures of “(2) straight 
and backward level flight” and “(4) rhombus flight” were used to construct the segments 
of the test scenario. In the rhombus flight, the scenario was constructed to manipulate the 
heading of the UAV toward each destination instead of the rudder turn method. In addi-
tion, a segment of “(6) approaching the roof of the building” was constructed, and the 
entire test scenario can be seen in Table 3. 

  

Figure 9. Wearable system for gesture recognition.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 9. Wearable system for gesture recognition. 

5.1.2. Simulation Setup 
The simulation environment of the proposed method is based on ROS. Among the 

various simulators for UAVs control, the experiment was conducted in the Gazebo simu-
lator because it is open source and compatible with ROS. It also sets up SITL, the PX4 
firmware used in the simulation, to perform a low level of control over position, attitude, 
and velocity. This setup can be seen in Figure 10. 

 
Figure 10. The simulation setup of proposed system. 

The test scenario in the simulation environment was constructed with reference to 
the practical test for the pilot certification of the ultra-light flying device conducted by 
Korea Transportation Safety Authority (TS) [35]. Compared to completing 10 h of flight 
time and conducting practical tests for actual pilot qualification, the operation time of the 
test using the proposed system is quite insufficient. Accordingly, in the “(1) take off, (2) 
straight and backward level flight, (3) triangle flight, (4) rhombus flight (rudder turn), (5) 
crosswind approach, and land” phase of the practical test, the procedures of “(2) straight 
and backward level flight” and “(4) rhombus flight” were used to construct the segments 
of the test scenario. In the rhombus flight, the scenario was constructed to manipulate the 
heading of the UAV toward each destination instead of the rudder turn method. In addi-
tion, a segment of “(6) approaching the roof of the building” was constructed, and the 
entire test scenario can be seen in Table 3. 

  

Figure 10. The simulation setup of proposed system.

The test scenario in the simulation environment was constructed with reference to
the practical test for the pilot certification of the ultra-light flying device conducted by
Korea Transportation Safety Authority (TS) [35]. Compared to completing 10 h of flight
time and conducting practical tests for actual pilot qualification, the operation time of
the test using the proposed system is quite insufficient. Accordingly, in the “(1) take off,
(2) straight and backward level flight, (3) triangle flight, (4) rhombus flight (rudder turn),
(5) crosswind approach, and land” phase of the practical test, the procedures of “(2) straight
and backward level flight” and “(4) rhombus flight” were used to construct the segments
of the test scenario. In the rhombus flight, the scenario was constructed to manipulate
the heading of the UAV toward each destination instead of the rudder turn method. In
addition, a segment of “(6) approaching the roof of the building” was constructed, and the
entire test scenario can be seen in Table 3.

In order to proceed with the test according to the scenario, the Gazebo environment
was established as shown in Figure 11. Four boxes were placed for “(2) straight and
backward level flight” and “(4) rhombus flight”, and about 200 m high building was placed
for “(6) approaching the roof of the building” segment to establish a test environment that
complies with the scenario procedure.

5.2. Experimental Results

The experiments on the proposed algorithm consist of three parts: evaluation of
VGR system-based gesture classification, evaluation of the efficiency of gesture through
IMU-based motion capture system, and evaluation of usability in terms of lap time through
comparison of traditional joystick-based controller and proposed interface.

5.2.1. Evaluation of VGR System-Based Gesture Classification

In this section, we conducted a test to confirm the classification performance of static
gesture recognition. We used confusion matrix as metric to usefully express the classifi-
cation performance of the static gestures by referring to the preliminary research on the
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HGR system [15,16,25,36]. Figure 12 shows the confusion matrix and normalized confusion
matrix on the test set, and the diagonal value of the normalized confusion matrix shows
high density. This verifies that static gestures are accurately predicted and confirm the
functionality of the vision-based system as an interface.

Table 3. Test scenario procedure.

No. Segment Operation

1 IMU alignment Proceed with IMU alignment in neural mode [N]

2 Arming Switch to camera control mode [C]

Perform Arming command with vision-based
gesture recognition

3 Take off Perform Take off command with vision-based
gesture recognition

4 Straight and level flight Switch to IMU control mode [I]

Mode home position—C point (5 s waiting) with
IMU-based gesture recognition

5 Backward and level flight Move C point—home position with IMU-based
gesture recognition

6 Rhombus flight
Move home position—B point—C point—D

point—home sequentially through IMU-based
gesture recognition

7 Target approach Move home position—building structure
through IMU-based gesture recognition

8 Back home
Switch to camera control mode [C]

Perform Back home command with vision-based
gesture recognition

9 Stop Perform Stop command with vision-based
gesture recognition

10 Land Perform Land command with vision-based
gesture recognition

11 Disarming Perform Disarming command with vision-based
gesture recognition
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5.2.2. Evaluation of the Efficiency of Gesture through IMU-Based Motion Capture System

In this section, an experiment was conducted on the efficiency of gesture recognition
through IMU-based motion capture on the proposed system. Because real-time perfor-
mance is most important in controlling UAVs, we proposed a method of replacing the
dynamic gesture part of the complex vision-based system with IMU-based system. There-
fore, we compared the computation time required to operate the commands of the proposed
IMU-based system and vision-based system in addition to verifying the utility of each
gesture through IMU-based motion capture system.

First, to confirm the functionality of the IMU-based motion capture system as an inter-
face, an experiment was conducted on 10 applicants who had no experience in operating
drones. Referring to the evaluation method of related HUI studies [28,37], each applicant
conducted an experiment 30 times for each command, and as shown in Table 4, the accuracy
was analyzed by counting the number of successes and failures of the commands. Since
the command for each gesture was performed without being significantly affected by the
applicant, IMU-based motion capture system proved to be suitable as an interface.

Table 4. Result of evaluating the utility of each function for each dynamic gesture.

Function Accuracy

IMU-based gesture command

Move forward 97.78%

Move backward 97.78%

Move left 98.89%

Move right 100%

Turn right 91.11%

Turn left 92.22%

Ascend 96.67%

Descend 100%

Next, the speed of the proposed system and vision-based system for dynamic gesture
recognition were compared, which can be seen in Table 5. Chen, B. [2] proposed a six-
action gesture system through graph convolutional network (GCN), and it takes 45 ms
to recognize the dynamic gesture. In the case of Kasab, Mohamed A. [15], a system for
recognizing dynamic gesture through directly developed simplified Tiny-YOLOv2 was
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proposed. It is performed with KF algorithm and takes 42.7786 ms. Liu, C. [6] proposed
two dynamic gesture recognition systems using CNN-based detection, which takes 20 ms.

Table 5. Result of comparison between the proposed system and the vision-based system for dynamic
gesture recognition.

Authors Interacted
System

Deep-Learning
Algorithm

Number of
Dynamic
Gestures

Processing Speed of
Dynamic Gesture
Recognition (ms)

Chen, B. [2] UAV Yes
(GNN) 6 45

Kasab, Mohamed A. [15] UAV
Yes

(Developed
Tiny-YOLOv2)

10 42.7786

Liu, C. [6] UAV Yes
(CNN) 2 20

Ours UAV No
(IMU-based system) 8 0.089

Finally, unlike the previous vision-based system, we proposed IMU-based dynamic
gesture recognition, which takes 0.089 ms to recognize them. Processing time may vary
depending on the experimental environment, but considering the data and algorithms that
are processed, there will be no significant change in the processing speed. Through this, we
can prove that gesture recognition through our proposed IMU-based system is suitable for
controlling UAVs.

5.2.3. Evaluation of Usability in Terms of Lap Time

The goal of the proposed system is to design a safe and intuitive interface for easy
control by non-professionals, so the test was conducted using lap time, one of the flight
performance metrics significantly affected by the type of interface [38–40]. It is a test that
measures the lap time of a traditional joystick-based controller and a proposed system-based
controller, and the experiment was conducted on 10 applicants who had no experience
in drone control. At this time, after giving the same practice time, the time taken to start
from the starting line to the stop line was measured according to the previously defined
scenario. The test result is as shown in Table 6. Even though applicants were given the
same practice time, average lap time of the proposed method took about 19 s less than
joystick-based controller. The difference in average lap time proves that the proposed
system is more intuitive than a joystick-based controller. In other words, an intuitive and
natural HUI system was established, and even non-experts can expect to be able to easily
control the UAV.

Table 6. Lap time comparison of joystick-based systems and proposed systems of 10 applicants
according to a given scenario.

Joystick-Based Control
(mm:ss)

Proposed Method
(mm:ss)

Participant 1 02:34 02:29

Participant 2 03:01 02:34

Participant 3 02:11 01:59

Participant 4 03:04 02:13

Participant 5 02:14 01:31

Participant 6 02:07 02:19

Participant 7 02:46 02:38

Participant 8 02:54 02:38

Participant 9 02:25 02:02

Participant 10 02:34 02:16

Average 02:35 02:16
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6. Conclusions

We propose a real-time human–UAV interaction system that combines an IMU and a
camera. Instead of traditional joystick-based control, which requires a lot of training time,
it aims to build an intuitive and natural interface for easy control by non-professionals.
According to preliminary research, studies are being actively conducted with sensor-based
systems and vision-based systems.

However, vision-based systems require a large amount of computation according to
complex algorithms in recognizing dynamic gesture. Real-time performance is an important
factor in controlling UAVs, and in consideration of this, a hybrid system that combines
IMU-based system and vision-based system was proposed. The commands used in the
joystick-based controller were defined, and mapping was performed in accordance with
the characteristics of each sensor and command. Therefore, by efficiently classifying the
gestures of the IMU-based motion capture system and the gestures of the VGR system, it
was possible to build an intuitive and natural interface.

The experiment was conducted on 10 non-experts who had never controlled the UAVs
to evaluate the classification performance of vision-based gesture recognition, the efficiency
of gestures through IMU-based motion capture system, and usability evaluation in terms of
lap time by comparing the existing joystick-based control system and the proposed system.
First, the classification performance of static gesture recognition was 98.3% mAP and 91.7%
average IoU, and the suitability as a static gesture detector was confirmed through the
classification performance on the test set. Second, in the evaluation of the efficiency of
IMU-based gesture, it showed high performance without performance change, according
to the applicants. In addition, the suitability of proposed gesture recognition system
was confirmed through computation comparison with the existing vision-based gesture
recognition system. Finally, the lap time measurement of the joystick-based system and
the proposed system according to a given scenario was also compared. Although the same
practice time was given for each interface, it was confirmed that the UAV control through
the proposed system completed more quickly, on average by about 19 s. Consequently,
it was verified that the proposed system is a safer and more intuitive human-centered
design than the VGR system, which has computation complexity. In other words, it shows
that it is viable as an alternative to existing HUI, and we expect that it can be easily
operated by non-experts.

In future works, we will apply the proposed system in the real world, overcome the
sensitivity of operation and environmental conditions, and propose a more robust system
by using additional sensors, such as EMG, expanding the scope of gesture commands using
cameras, or securing precision in IMU operation. In addition, in terms of interface design,
we will design a more intuitive interface using a variety of evaluation metrics, such as safe
feeling, satisfaction parameters, and task accumulation. If these points are supplemented, it
will be possible to build a UAV command system through more efficient and user-friendly
gesture recognition.
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