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Abstract: A 32-bit chipless RFID tag operating in the 4.5–10.9 GHz band is presented in this paper.
The tag has a unique multiple-arc-type shape consisting of closely packed 0.2 mm wide arcs of
different radii and lengths. The specific tag geometry provides multiple resonances in frequency
domain of an RCS plot. A frequency domain coding technique has also been proposed to encode
the tag’s RCS signature into a 32-bit digital identification code. The tag has an overall dimension
of 17.9 × 17.9 mm2, resulting in a high code density of 9.98 bits/cm2 and spectral efficiency of
5 bits/GHz. The proposed tag is built on a low loss substrate bearing a very small footprint, thereby
making it extremely suitable for large-scale product identification purposes in future chipless RFID
tag systems.

Keywords: chipless RFID; product identification; miniaturized; barcode; future systems; IoT

1. Introduction

Optical barcode technology has been used for decades now for the identification,
monitoring, reading, and tracking of items in various scenarios [1]. The barcode technology
is low cost and reliable; however, the latest developments in communications, computing,
and automated systems have raised concerns about the limitations of optical barcode
systems. These limitations include primarily the inevitable line of sight (LoS) and strict
human–machine interface (HMI) requirements. Furthermore, barcode technology has low
security and is short ranged. These limitations can be overcome by using wireless radio
frequency identification (RFID) [2]. An RFID system uses a transceiver system and an
electronic tag to identify a target item. Applications of RFID include shopping products,
cargo items, employee’s card reading, vehicle identification, etc. In the near future, it is
expected that billions of various different products will use RFID tags [3].

An RFID system provides higher security, longer range, high data capacity, and auto-
mated operation as compared to the existing optical barcode systems. The tag used in RFID
system are of two types: (1) with on-board electronics and (2) without any electronics. The
latter being called a chipless RFID tag and is preferred over the former due to its extremely
low cost. The chipless RFID is, therefore, under great focus in research community so
that it can be enabled to be used in future product identification systems. Since a chipless
RFID (CRFID) tag does not use any onboard electronics, the data encoding becomes quite
a challenge. Various encoding schemes have been proposed for CRFID systems, out of
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which four techniques are very prominent [4]. These are: (1) the Time-domain technique,
(2) the Frequency-domain technique, (3) the Spatial-domain technique, and (4) the Hybrid
technique [5–14]. The frequency domain technique works on backscattering phenomena
in which a transmitted wave reflects from a metallic tag and its radar cross-section (RCS)
is computed. The RCS contains encoded information about the tag in question. Several
CRFID tags based on these frequency domain (FD) techniques have been proposed [15–35]
to cope with challenges such as: code density, spectral efficiency, conformability, and cost.

Recently published FD-based CRFID tags are mostly based on closed loop resonators,
such as [23], which is an elliptically shaped tag having a code density of 2.74 bits/cm2 and
a spectral efficiency of 0.83 bits/GHz operating in 3.5–15.5 GHz band. A trefoil-shaped tag
of [24] operating in 5.4–10.4 GHz band bears an overall size of 13.55 × 13.55 mm2. This
tag has a code density of 5.44 bits/cm2 and spectral efficiency of 2 bits/GHz. Similarly,
a butterfly [25] and kite-shaped [26] tags with high bit densities of 5.1 and 5.44 bits/cm2

respectively were presented. Both tags operate in 4.7–10 GHz and attain a low-spectral
efficiency of 2 bits/GHz. These tags [23–26] have high bit densities due to their compact
sizes and complex structures; however, they compromise their bit spectral efficiencies on
the other hand.

Open-loop-resonator-based CRFID tags [27–35] have also been reported recently. For
example, an 8-bit L shaped tag presented in [27] has a code density of 4 bits/cm2 and
spectral efficiency of 5.33 bits/GHz. Semi-Elliptical Shaped tag in [28] provides a code
density of 4.7 bits/cm2 and low spectral efficiency of 1.68 bits/GHz. A dipole-based
tags with capacitive loading [29] provides high spectral efficiency of 12.5 bits/GHz, but
it has very low code density of 1.77 bits/cm2. This is because of its very large size of
16.7 × 67.8 mm2. An 8-bit orientation independent circular ring slot-based tag is presented
in [30]. The tag has a large area of 60.84 mm2 operating in 6–13 GHz that results in very
low code density and spectral efficiency of 3.26 bits/cm2 and 1.14 bits/GHz, respectively.
Similarly, large size tags of [31,32] also results in very low bit densities. For example,
coupled-line micro-strip-resonator-based tag [31] has a size of 60.3 × 11 mm2 and a code
density of 1.1 bits/cm2. A rectangular ring slot-based resonator [32] has a simple design
with a size of 35 × 35 mm2, providing a very low 0.98 bits/cm2 code density and a
1.9 bits/GHz of spectral efficiency.

In this paper, a miniaturized 17.9 × 17.9 mm2 novel 32-bit chipless RFID tag on an
ultra-thin 0.127 mm substrate is presented. The tag geometry is designed such that the
length of the resonators is angle-controlled in a single quadrant, rendering the tag an
efficient design in respect with radar cross-section (RCS) responses with multiple angle-
controlled resonances. Furthermore, the desired frequency spectrum is intelligently utilized
resulting in high spectral efficiency. The novelty in the proposed design is two folds:
(1) an angle-based geometry to intelligently produce a desired tag ID and (2) a customized
encoding technique with unique categorization of frequency-RCS sample space.

2. Tag Design
2.1. Theoretical Tag Design and Coding Scheme

The proposed tag is built upon a thin 0.127 mm Roger’s RT Duroid 5880 substrate
with εr = 2.2 and tanδ = 0.0009. The theoretical geometry of the tag is shown in Figure 1,
with an overall dimension of Lsub ×Wsub mm2.

The top side of tag consists of ‘N’ number of arcs of arbitrary lengths ‘LN’. All these
arcs exist in the first quadrant of a 2-dimensional plane having a radius RN. Each arc length
starts at 0◦ from x-axis and terminate at an angle θN. All arcs have a width of ‘w’ are
separated by a distance ‘g’. The back side of proposed tag does not contain any copper
layer and remains empty. The idea behind using multiple arcs of various lengths is that
each arc will produce an RCS resonance in the frequency domain, thereby enabling the
realization of a single logical bit.



Sensors 2022, 22, 2492 3 of 10
Sensors 2022, 22, x FOR PEER REVIEW 3 of 11 
 

 

 
Figure 1. Proposed theoretical tag design. 

The top side of tag consists of ‘N’ number of arcs of arbitrary lengths ‘LN’. All these 
arcs exist in the first quadrant of a 2-dimensional plane having a radius RN. Each arc 
length starts at 0° from x-axis and terminate at an angle θN. All arcs have a width of ‘w’ 
are separated by a distance ‘g’. The back side of proposed tag does not contain any cop-
per layer and remains empty. The idea behind using multiple arcs of various lengths is 
that each arc will produce an RCS resonance in the frequency domain, thereby enabling 
the realization of a single logical bit. 

The coding scheme used for the proposed tag is frequency domain coding, for which 
the spectral allocation is shown in Figure 2a. The operating band chosen for this partic-
ular tag design is 4.5 to 10.9 GHz. A frequency slot of 150 MHz has been designated to 
indicate the existence of a valid logical bit, known as a ‘bit slot’. Hence, there are a total of 
‘N’ bit slots within the operating band. Each ‘bit slot’ is separated by a ‘guard band’ of 50 
MHz. The guard bands will be used to separate the identification of a true and a false 
bit-reading. The most significant bit is chosen to be ‘bit slot 1′, whereas ‘bit slot N’ is the 
least significant bit in an N-bit ID code. A bit slot start frequency is indicated by ‘fa’ and 
its stop frequency by ‘fb’ with a subscript ‘N’ showing its bit-position. 

To further enhance bit-reading mechanism, the vertical RCS axis has been divided 
into three main regions: (1) a valid logic bit-0 region, (2) a valid logic bit-1 region, and (3) 
an invalid bit region. This division of RCS magnitude is shown in Figure 2b. The first 
designated RCS magnitude region (i.e., for logic bit-0) is from 0 to −38.5 dBsm. The sec-
ond designated RCS magnitude region (i.e., for logic bit-1) is from −41.5 dBsm to 
−infinity, whereas the middle region of 3-dB separation from −38.5 to −41.5 dBsm has 
been designated for an invalid bit reading, i.e., a false logic bit. 

Figure 1. Proposed theoretical tag design.

The coding scheme used for the proposed tag is frequency domain coding, for which
the spectral allocation is shown in Figure 2a. The operating band chosen for this particular
tag design is 4.5 to 10.9 GHz. A frequency slot of 150 MHz has been designated to indicate
the existence of a valid logical bit, known as a ‘bit slot’. Hence, there are a total of ‘N’ bit
slots within the operating band. Each ‘bit slot’ is separated by a ‘guard band’ of 50 MHz.
The guard bands will be used to separate the identification of a true and a false bit-reading.
The most significant bit is chosen to be ‘bit slot 1’, whereas ‘bit slot N’ is the least significant
bit in an N-bit ID code. A bit slot start frequency is indicated by ‘fa’ and its stop frequency
by ‘fb’ with a subscript ‘N’ showing its bit-position.
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Figure 2. (a) Spectral allocation for the proposed tag; (b) RCS magnitude allocation for the pro-
posed tag.

To further enhance bit-reading mechanism, the vertical RCS axis has been divided
into three main regions: (1) a valid logic bit-0 region, (2) a valid logic bit-1 region, and
(3) an invalid bit region. This division of RCS magnitude is shown in Figure 2b. The
first designated RCS magnitude region (i.e., for logic bit-0) is from 0 to −38.5 dBsm. The
second designated RCS magnitude region (i.e., for logic bit-1) is from −41.5 dBsm to
−infinity, whereas the middle region of 3-dB separation from −38.5 to −41.5 dBsm has
been designated for an invalid bit reading, i.e., a false logic bit.
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The proposed tag is being designed to store a 32-bit digital ID code, therefore, variable
N = 32. To realize a 32-bit code of any value, an RCS resonance or an RCS maximum must
be produced at designated regions introduced in Figure 2a,b. For example, if a logical
bit-1 is desired at any bit slot, an RCS resonance will have to be produced at the central
frequency of that particular bit slot. A central frequency is located at +75 MHz from the
start frequency of any bit slot. Similarly, if a logical bit-0 is desired at any bit-slot, an
RCS maximum will have to be produced at the central frequency of that particular bit
slot. Furthermore, an RCS maximum or minimum (i.e., an RCS resonance) must also
have a magnitude that falls within the designated RCS region identified in Figure 2b. The
above-outlined bit-identification process can be summarized as laid out in Table 1.

Table 1. Summary of bit decoding process.

Case Frequency Range,
f (GHz)

RCS Magnitude Range
(dBsm) Decoded Logic

1 FaN < f < FbN |RCS| > −38.5 0
2 FaN < f < FbN |RCS| < −41.5 1
3 FaN < f < FbN −38.5 > RCS > −41.5 invalid
4 FaN−1 < f < FaN RCS > 0 invalid

To create a particular tag ID, the central frequencies ‘fc’ of each bit slot is noted
against the required 32-bit number. The length of each arc is calculated using the following
formula [36]:

LN =
c

2 f

√
2

εr + 1
(1)

Once length of each arc has been calculated, its copper footprint is laid upon the
substrate by using the following standard arc length formula:

LN = RN ·θN (2)

where RN is the radius of arc with length LN, and θN is its finishing angle in radians. It
should be noted here that the starting angle for all the arc lengths is 0◦.

2.2. Single-Bit Resonator

To verify the effect of arc length over RCS, a single element tag is simulated. The
parametric analysis of a single bit resonator is shown in Figure 3, in which the inset shows
the geometric shape of the arc on a tag. It should be noted here that according to Equation
(2), the arc length is directly proportional to the arc’s subtended angle. Therefore, the RCS
is plotted for various arc angles in Figure 3.
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It can be clearly observed that as the length of the arc is varied (by changing θ), the
RCS maximum shifts along the frequency axis. Consequently, it can be concluded that the
RCS maximum is controlled by variations in length L (or angle θ) of the arc. Contrary to
this, an absence of an arc element will result in an RCS minimum. The RCS minimum in
this manuscript will be called an “RCS resonance”. In the proposed design, the width ‘w’
and gap ‘g’ between the arc elements have been chosen to be 0.2 mm.

The RCS for single arc length copper strip depicted in Figure 3 is spread out wide
around its maxima. This indicates low Q for the resonator, which has an advantage of high
RCS magnitude. An excellent and detailed discussion about the relationship between RCS,
resonance frequency, and quality factor using Characteristic Mode Theory (CMT) can be
found in [37].

2.3. Tag Instances

Multiple tag instances of the theoretical design shown in Figure 1 have been simulated
to show that any 32-bit ID can be realized. Keeping brevity, a list of only three tag names
along with their 32-bit ID’s is shown in Table 2.

Table 2. List of tags and their IDs.

Sr. No. Tag Name Tag 32-Bit ID

1 Tag 1 00011111111100111001001011000110
2 Tag 2 00101010100001010010010010010010
3 Tag 3 00100110010100000110100101000110

The first tag in the series, i.e., Tag 1, has been designed with an overall dimension of
17.9 × 17.9 mm2. The track width w = 0.2 mm, and the first element has been placed at a
position where its radius R1 = 7.2 mm. The subsequent arc elements are placed at a distance
g = 0.2 mm apart. The rest of the radii can therefore be calculated as follows:

RN = g + RN−1 (3)

where RN 6= 1.
It has been found through simulation that a total of 24 arc elements were sufficient

to generate the 32-bit ID mentioned in Table 2, against Tag 1. An extra arc at a distance
g = 0.3 mm has been placed to balance the coupling effect between the rest of the arc
elements. The resulting tag geometry and its RCS response is shown in Figure 4.
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The bit values against each bit slot have been properly labeled according to the criterion
set in Table 1. The most significant is at the lowest frequency of 4.55 GHz, whereas the least
significant bit occurs at the highest frequency of 10.8 GHz. Frequency allocation as well as
the RCS threshold regions have been shown in Figure 4 with a grayed rectangle and black
dashed lines. A complete list of optimized arc lengths L1–L25 is given in Table 3.

Table 3. List of optimized parameters for Tag 1.

Parameter L1 L2 L3 L4 L5
Value (mm) 11.22 11.45 11.98 12.5 13.03
Parameter L6 L7 L8 L9 L10

Value (mm) 13.46 13.98 14.56 15.14 15.72
Parameter L11 L12 L13 L14 L15

Value (mm) 16.3 16.82 17.4 18.01 18.6
Parameter L16 L17 L18 L19 L20

Value (mm) 19.21 19.97 20.6 21.43 22.05
Parameter L21 L22 L23 L24 L25

Value (mm) 23.18 24.31 24.94 26.07 27.17

The code density of the proposed tag is 9.98 bits/cm2 and a spectral efficiency of
5 bits/GHz. These values will remain valid for all the rest of tag instances. The remaining
two tag instances outlined in Table 2 (i.e., Tag 2 and Tag 3) have also been simulated and are
shown in Figure 5 along with their RCS responses. All these tags encode 32-bit IDs, however
the number of elements used in each tag is different. For example, Tag 2 has 13 and Tag 3
has 18 arc elements, respectively. The dimensions of these tags remain the same, and hence
their code densities, as well as spectral efficiencies, are unchanged to that of Tag 1. Some of
state-of-the-artwork has been compared with this work and highlighted in Table 4.
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Table 4. Comparison with state-of-the-art CRFID tags.

Ref. No. Operating
Frequency (GHz) No. of Bits Code Density

(Bits/cm2)
Spectral Efficiency

(Bits/GHz)

[29] 2–3.6 20 1.77 12.5
[30] 6–13 8 3.26 1.14
[33] 2.2–3.5 20 0.6 15.4
[34] 4.5–7.5 14 5.88 4.66
[35] 2–8 8 10.74 1.33

Proposed 4.5–10.9 32 9.98 5
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3. Fabrication and Measurement Results

All three tags have been fabricated on an ultra-thin 0.127 mm Roger’s substrate, using
standard PCB process. All tag instances were measured for RCS response in an anechoic
chamber to verify the simulated response of the tag. The photographs of the fabricated tags
are shown in Figure 6. A schematic of the measurement topology is shown in Figure 7a.
The actual measurement setup in bi-static configuration in an anechoic chamber is shown
in Figure 7.
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The RCS of fabricated tags was measured using a standard formula provided by [38],
which is as follows:

σtag =

[
Stag

21 − Sisolation
21

Sref
21 − Sisolation

21

]2

·σref (4)

where Stag
21 is measured S21 of the proposed tags, Sref

21 is the measured S-parameter of the
reference rectangular metallic plate, Sisolation

21 is the isolation measurement without the tag,
σref is the known RCS value of the reference rectangular metallic plate, and σtag is the
obtained RCS value of the proposed chipless RFID tag.

The experimentation to measure RCS response of the tags is performed using three dif-
ferent linearly polarized standard gain antennas (SGAs): (1) 3.95–5.85 GHz, (2) 5.85–8.20 GHz,
and (3) 8.20–12.4 GHz. The SGAs are used in transmitting (Tx) mode and a broadband horn
antenna (from 2–18 GHz) is used in the receiving (Rx) mode. The distance between the Tx
and Rx antennas is kept around 0.75 m, which falls in the far-field region. The wideband
horn and SGAs are connected to an Anritsu vector network analyzer (VNA) MS46122B.
The SGAs have a gain of 12 dBi and the power delivered by VNA is 3 dBm. The simulated
and measured RCS response of the Tag 1 is shown in Figure 8. Similarly, simulated, and
measured RCS response of Tag 2–3 are shown in Figure 9. The measured results show a
good correlation with those simulated.
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4. Conclusions

A unique chipless RFID tag was introduced and analyzed in this paper. The tag
consists of curved metallic resonating elements of various lengths that provide resonant
points on RCS plot. This results in a tag which can encode a 32-bit digital number, operating
in 4.5–10.9 GHz band. A special frequency domain coding method was also proposed that
can potentially lead to an efficient decoding of the information stored in tag’s EM signature.
The simulated and measured results show a stable RCS response with a code density of
9.98 bits/cm2 and spectral efficiency of 5 bits/GHz. The tag was built on an ultra-thin
0.127 mm Roger’s substrate. This unique tag is deemed very suitable for future product
identification and IoT systems designed with chipless RFID tags capabilities.
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