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Abstract: This paper presents a register-transistor level (RTL) based convolutional neural network
(CNN) for biosensor applications. Biosensor-based diseases detection by DNA identification using
biosensors is currently needed. We proposed a synthesizable RTL-based CNN architecture for this
purpose. The adopted technique of parallel computation of multiplication and accumulation (MAC)
approach optimizes the hardware overhead by significantly reducing the arithmetic calculation and
achieves instant results. While multiplier bank sharing throughout the convolutional operation with
fully connected operation significantly reduces the implementation area. The CNN model is trained
in MATLAB® on MNIST® handwritten dataset. For validation, the image pixel array from MNIST®

handwritten dataset is applied on proposed RTL-based CNN architecture for biosensor applications
in ModelSim®. The consistency is checked with multiple test samples and 92% accuracy is achieved.
The proposed idea is implemented in 28 nm CMOS technology. It occupies 9.986 mm2 of the total
area. The power requirement is 2.93 W from 1.8 V supply. The total time taken is 8.6538 ms.

Keywords: convolutional neural network; biosensor; diseases classification; RTL-based design

1. Introduction

A biosensor is a device that is sensitive to biological substances and converts its
concentration into an electrical signal for further processing and analysis [1]. Existing
artificial intelligence (AI) biosensors have many limitations: (1) They require a large number
of well-labeled data; (2) have poor flexibility, and (3) features extraction strongly depends
on logic and accumulation. Due to these restrictions, the potency of traditional biosensors
is limited by aspects of performance such as accuracy, timing, etc. [2,3]. During the past few
years, with the promising research in deep learning, especially in CNN, these limitations can
be overcome. Apart from traditional biosensor systems, CNN can meaningfully progress on
extracting the different features. Therefore, based on CNN, a biosensor system can exploit
the unlabeled data and the features are learned automatically by the network architecture.
Hence CNN is a promising approach for biosensor applications and has also been vastly
studied by existing works [4,5].

While achieving real-time performance, CNN-based techniques demand much more
computation and memory resources than conventional methods. Therefore, an energy effi-
cient CNN implementation is inevitable. Application specific integrated circuit (ASIC) and
field-programmable gate arrays (FPGA) [6–9] based accelerators are promising alternates.
ASIC-based study in [10,11] is proposed for the purpose of cost efficiency, energy, and
throughput. Similarly, FPGA-based research [12–14] achieve better performance because
of the parallel computation. Moreover, CNN chip implementation is categorized into two
classes: (1) standard or traditional chips, and (2) neuro-chips. Standard chips are further
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divided into two subclasses: (I) multi-processor, and (II) sequential accelerator. In multi-
processor, multiple cores are integrated for CNN operation. The purpose is to perform
parallel operations for decreasing the throughput, improving the system performance
and data loading by two folds. With the sequential accelerator breakthrough, the CNN
algorithm on-chip integration is implementable.

The neuro-chips are built with multi-electrode arrays; a kind of integrated circuit chip
that performs better because of good connectivity and fast and parallel computation. It
needs low power and occupies less memory compared to traditional chips [15–18]. The
research associated with neuro-chips is further classified into three main methods: fully ana-
log, fully digital, and mixed analog/digital methods. For the mixed analog/digital [19,20],
there are two operational modes; one is neuron mode, and another is synapse mode. For
the neuron mode, usually, the asynchronous digital is adopted to perform the spiking.
Regarding the synapse mode, most studies use analog methods to carry out compact
operations such as those discussed in [21–23]. But there are studies that use analog/digital
hybrid circuits to achieve timing synapses [24]. The digital logic foundation is adopted for
on-chip structure configuration and providing corresponding algorithms. Different CNN
architectures are implemented as per requirements. When using only the analog approach,
mem-resistors are the key technology for implementing any functionality, keeping and
tuning the resistance state according to the supply changes. Therefore, through it and resis-
tive switching memories, it can meaningfully give the chance to achieve neural networks
performance and functionalities in a fully analog manner. In [25], different functionalities
of the neural network are implemented and achieved good performance in terms of small
area and less power consumption. For the fully digital methods, the hardware algorithms
are designed to address the functionalities and performance of the neural networks. These
studies adopt software for modeling and training the neural network, get trained weights
and bias values, and use these parameters for hardware implementation [26,27].

Previously, all the proposed CNN hardware implementation architectures for classifi-
cation purposes used architectural parallelism and parameter reuse approaches. As a result,
less memory was required or all memory on-chip was accommodated, but the drawback
was moderate accuracy. In [28] and some other related studies, they also adopted parallel
computation for reducing the processing time, but the trade-off was a large implementation
area, nominal accuracy, and limitation of the number of layers.

The motivation of this work is to design a reconfigurable RTL-based CNN architecture
for a biosensor for disease detection applications. The proposed design is fully synthesizable
and technology independent. The parallel computation of MAC operation is used to reduce
the arithmetic and extensive calculations. The multiplier bank is shared among all the
convolutional layers and fully connected layers to reduce the implementation area.

The rest of the paper is organized as follows: Section 2 introduces the proposed top
architecture of CNN for biosensor applications. The overall proposed system structure.
The structures and functions of the sub-blocks are introduced in Section 3. Section 4
lists the experimental results, which includes software modeling results and hardware
simulations results. Layout, mathematical results, and comparison with other works are
also summarized. Finally, the paper is concluded in Section 5.

2. Top Architecture

The top structure of the proposed RTL-based CNN hardware implementation is shown
in Figure 1. The proposed idea is comprised of three parts: (1) CNN architecture modeling
and training in MATLAB®; (2) External on-board memory; and (3) hardware implementa-
tion system based on RTL compiler. In MATLAB®, two operations are performed: (1) CNN
architecture is modeled, trained, tested, and trained weights and bias data is saved in a .txt
file.; (2) Converting the input feature map data into binary data, which can be recognized
by hardware tools and save it into a .txt file, for further processing.
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Figure 1. Top structure of CNN hardware implementation.

External on-board memory is a kind of multiple programmable memory. It is used for
storing the trained kernels’ weights and bias values with preloaded instruction for on-chip
processing. Its operation is controlled by the top controller with reading instructions and
enabling signals. The interface protocol is adopted to flow the data between external
on-board memory and on-chip CNN system.

In the on-chip system, the same CNN architecture is modeled. Figure 1 shows the
corresponding architecture, which is comprised of several building blocks. The dotted
lines represent the data path and describe the data flow direction between different sub-
blocks. The solid line shows the control signal working path and indicates how sub-blocks
work together. On-chip block has several sub-blocks such as the memory system, which
is designed to preload and store kernel weights, bias, and feature maps data. The CNN
architecture layers are convolution + ReLU layer, pooling layers and fully connected (FC)
layer. The top controller controls the whole system operation, connecting the different
sub-blocks and controlling the data saving on the on-chip memory or going to the next
stage operation. A multiplier bank is there to perform convolution calculations. Actually,
it is the main computing resource for reducing the computation and is designed to be
shared among all convolution + ReLU and fully connected layers. An output control logic
is designed to find the final results of the system and also for final classification results.

The on-chip system operation is described in Figure 2. As the system starts, the feature
buffer saves the input data, and the external on-board memory saves trained weights and
bias. Once the CONV enable signal works, the CONV + ReLU and multiplier bank get
input data from the feature buffers and weight and bias values from external on-board
memory, and then the convolutional operation is performed. The convolved results go
to pooling layer for sampling purposes. Once all convolution and pooling iterations are
done, FB enables the signal works and the output activation feature maps are saved on the
on-chip feature buffers. When FC enables the signal works, the FC layer and multiplier
bank obtain weights and bias from external on-board memory and feature maps from
feature buffers to perform the FC operation. As the FC operation finishes, the FC done
signal is generated, the output control logic finds the labels having maximum computation
value, and outputs it as a class.
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Figure 2. Flow chart of the proposed CNN architecture.

Figure 3 shows the proposed CNN architecture. It has seven layers in total, out of
which there are two convolutional layers, two pooling layers, two fully connected layers,
and one softMax output layer. Input feature map data dimension is 32 × 32. In C1, the
input feature maps are convolved with six kernels each of size 5 × 5 with a stride of 1. It
generates the six feature maps with a size of 28 × 28. Then it is handled by the activation
function, such as rectified linear unit (ReLU). In S2, the size of feature maps has been
sub-sampled to the half by adopting the max-pooling approach with size of 2 × 2, and the
stride size is 2, to sub-sample the input feature maps to 14 × 14. In C3, 16 feature maps
with 14 × 14 is convolved with a 16 kernel of size 5 × 5 to get 16 feature maps with the
size of 10 × 10 and again processed with ReLU operation. The S4 max-pooling operation
is operated with size 2 × 2, the stride is 2 to acheive 16 feature maps with 5 × 5. The C5
is also a convolution layer with 120 kernels each of 5 × 5 size, F6 is fully connected layer
with 84 feature maps. Softmax is basically used for classification. The feature with the
highest probability value is classified as an output result from handwritten digits. The CNN
model is typically trained with a 32-bit floating point precision using MATLAB® platform.
Since the MATLAB® computes parallelly, so the processing time is reduced compared to
conventional C or C++ language processing approaches.
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3. Building Blocks
3.1. Top Controller

The top controller is the overall controlling module of the system. Firstly, it is used to
control the module sequentially with enable and done signals. When these blocks need data,
the enable signal for the next operation directly starts the next module, but also disables the
current module operation. Secondly, the top controller is applied for communication with
external memory for reading weights and bias information. Through the interface protocol,
like serial peripheral interface (SPI), the data is transferred from external on-board memory
to an on-chip system. Thirdly, the top controller is also used to differentiate the read/write
indicates between the contiguous blocks and manage the calculation results being saved to
the memories or go to the next stage. Fourthly, it is used to control convolution + ReLU
module and share the multiplier bank with the fully connected module. It controls the
selection of the data information in memories, which consists of various calculation blocks
to be shared multipliers or pooling blocks, and also manages the multiplier calculated
values that are being sent to the convolution operation or FC operation.

3.2. Feature Buffers

The feature buffers, as shown in Figure 1, are used to save the output data of each
sub-block. They are integrated to perform as on-chip memories. Each sub-block saves
its output activation map into different on-chip memories, according to the size of the
memories. These memories are built by the size of 10 k pf components, it means for each
block, the capacity is 10 k bits. As for the case of the depth of the computation memory
is bigger compared to this maximum size of 10 k, then another memory component is
adopted which also has same size with this one.

3.3. Convolutional Operation

The top architecture of the convolution layer is shown in Figure 4. It consists of a
dedicated CONV controller, windows wrapper, multiplier bank, adder trees, and ReLU
modules. The input feature maps data and kernel bias data for convolutional operation
are pre-trained, after preloading, and saved in the on-chip memory. The calculation results
from multiplier bank passed to adder tress for the next calculation. After computation, the
results are transformed and stored into the on-chip feature buffers for next layer processing,
which also has the same size with this one.

The CONV controller of convolution operation is mainly built by counters. Firstly
it gets enable signal from the top controller and starts providing read signals for feature
buffers and external on-board memory when convolution operation starts. Secondly,
according to the kernel window size, it controls the window wrapper to select the input
features maps data for partial convolution operation and slides this over all the spatial
feature maps with the stride of 1. Finally, it manages the writing address to save output
activation map value after ReLU processing to on-chip memories.

The role of the window wrapper is to select the window, as shown in Figure 5. Ac-
cording to the kernel size, selecting the corresponding pixels from the input feature map
data. It consists of a window shifter and a window selector. The window shifter consists



Sensors 2022, 22, 2459 6 of 18

of shift registers, as shown in Figure 6. After obtaining feature map data from the feature
buffer and the shift signal from Conv Controller, it shifts the data serially and provides it
to the window selector in parallel. The window selector is consists of MUX, after getting
kernel x and y coordinates from Conv Controller, it performs pixel selection, according to
the kernel window size, as shown in Figure 7.
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After receiving selected pixels from window wrapper and kernel, bias values from
external on-board memory, the convolution operation is performed by multiplier bank
and adder tree, as shown in Figure 8. The multiplier bank consists of multipliers, and
the number of multipliers is decided by the kernel window size. For example, the kernel
window size is 5 × 5, so the number of multipliers should be 25 = 32. Each multiplier
is used to multiply 8-bit kernel values with 8-bit selected pixel in a parallel manner and
provide the result to the adder tree. The adder tree accumulates the multiplier bank result,
also with bias values within one kernel window. The number of addresses is decided
through the multipliers, then it can be calculated as follows in (1):

Nadder =
log2 N

∑
i=0

2i + 1 (1)
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where, N is the number of multipliers, and Nadder is the number of addresses.
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The block diagram of the ReLU operation is given Figure 9. The adder tree in this
figure consists of comparator and mux, which performs as a kernel for the assigned bit of
pixel value. Basically, it converts the negative values to zero, while it leaves the positive
values unchanged. Mathematically this can be given as in (2):

f (x) =
{

0, x < 0
x, x ≥ 0

(2)

where f (x) represents the output of ReLU activation function. Its output is given to the
max-pooling layer directly.
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3.4. Max-Pooling Operation

The Max-pooling operation is achieved by combining the max-pooling controller with
comparators. The block diagram is given in Figure 10. After receiving the enable signal
from the top controller and input values from the previous layer, the max-pooling controller
performs partition of the input feature maps data into a set of rectangular sub-regions
with the size of 2 × 2, and the stride size is 2. The difference with window selection
of convolution operation is moved without any overlapping. The comparator is used
to compare the 2 × 2 sub-region values and outputs the maximum value of each sub-
region. The controller also provides a read signal to the last stage for informing the start of
operation and supplies a write address to save the output value to feature buffer for the
next layer processing.

3.5. Fully Connected Operation

The function of the FC layer is the matrix multiplication. It is typically built by the
the FC controller and multiplication and accumulation operations, which are similar to
convolutional layers. A block diagram of fully connected operation is shown in Figure 11.
After receiving enable signal from the top controller, the FC controller starts sending
the read signal to the feature buffer and external on-board memory. It saves the last
layer’s computation results to obtain the input feature and weight value. The parallel
multiplication and accumulation computations are used to calculate the sharing feature
maps data to all the rows and they are calculated together in parallel. By adopting the
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sharing multiplier bank with a convolutional layer, the computation is much reduced.
Typically, the performance of the FC layer associates the input pitch points with output
pitch points in the current layer. The function is given as in (3):

Yi = ∑W∗H−1
k=0 Xk × Wi + bi, N ≥ i ≥ 0 (3)

where Xk represents the feature maps, Yi represents calculations results, Wi is the weights
values, and bi represents the bias value. N is the number of the output nodes.
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4. Experimental Results

4.1. MATLAB® Modeling and Results

The proposed CNN architecture was modeled and verified in MATLAB®. The model
structure comprehensive analysis is given in Figure 12. It shows the layer-wise execution
details, operations, operands and the total number of parameters at each layer after training.
The model was trained on 60,000 images of MNIST® handwritten digits [29], number of
epochs were 10, with batch size of 50. The learning rate was kept 0.5. The proposed CNN
model consisted of 3 convolutional layers, and 2 fully connected layers with a kernel size
of 3 × 3 are used for each convolutional layer, ReLu activation function was used and
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max-pooling with a strip size of 2 × 2 was used. The model was tested on 1000 images
from MNIST® data set. Initially, a digits image is given to the model. After processing, the
training error is shown in Figure 13a and the accuracy is shown in Figure 13b. We achieved
92.4977% model training accuracy. The classification results are displayed in Figure 14.
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4.2. FPGA Implementation

The simulation result of the top convolutional layer is shown in Figure 15. Image data
was preloaded into image array memory; after top window selection, the selected pixels
could perform the convolution operation with kernel and bias value. Figure 16 basically
shows the convolution operation logic, which combined the multiplier bank and adder tree
to perform operation given in Equation (4).

Out = ∑ in×kernel + bias (4)

where in is the input feature map data of convolution module, kernel is the corresponding
weights data, and bias represents the system bias data.
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Window wrapper simulation results are described in Figure 17, which performed
the pixels selection. As Figure 17a shows, according to the kernel_x, kernel_y, the kernel
window can slide around the whole image data and output the selected value which has
the same size with kernel window, such as 5 × 5, Figure 17b shows the whole image data
array with selected windows.

Max-pooling operations simulation results: Figure 18 shows the max-pooling opera-
tion results. When enable signal is asserted, the comparator compares the 2 × 2 sub-region
values and outputs the maximum value of each sub-region. Its calculation formula is given
as in (5):

Out = MAX(input1, input2, input3, input4) (5)

where Out represents the output value of the comparison. Input1, input2, input3, input4
are the four input values of each sub-region.

Fully connected operations simulation results: Figure 19 shows the FC module op-
eration results. FC block associates input value with output value in the present module.
When enable signal is high, it performs matrix multiplication. Shown as follow in (6).

sumb = ∑ f eaturepixels ∗ weight + bias (6)
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where, f eaturepixels represents the input data of the fully connected module, weight repre-
sents kernel weights value, bias is the bias value, and sumb presents the output value of the
fully connected module.
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Figure 17. The simulation result of the max-pooling operation, where windows wrapper results are
shown in (a) Simulation result of window wrapper, while data of one selected image is shown in
(b) One image data with selected window.
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The top simulation results of the CNN system are described in Figure 20. Compared
10 outputs of final fully connected layer, the maximum value can be found which represents
final classification results. It can be achieved by (7),

Y = MAX(a1, a2, a3, a4, a5, a6, a7, a8, a9) (7)

where Y is the final output of the classification results. The fully connected operation
results are a1–a9. Figure 20a–d shows the classification results when the input digit
is 3, 5, 6, 8 separately.
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Figure 21 shows the timing consumption of different layers of the proposed CNN
system. According to this table, CONV3 has the highest processing time because in this
layer it has the largest number of kernels. So, the timing of loading weights and bias value
to this layer and the feature map data loading time is the most costed. The total processing
timing is 8.6538 ms.

Figure 22 shows the layout results of the proposed CNN on the chip logic part. It
is implemented on 28 nm process technology by design compiler and IC compiler. The
synthesis area is 3.16 mm × 3.16 mm.
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digit 3. (b) The top simulation result of digit 5. (c) The top simulation result of digit 6. (d) The top
simulation result of digit 8.
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Figure 21. The timing consumption of different layers.

The proposed CNN system is verified on the FPGA. Figure 23 shows the experimental
setup for measuring the proposed CNN system. Figure 23a shows the block diagram of the
measurement framework, Figure 23b shows the actual verifying lab setup situation. UART
Data Logger is the software for monitoring activities of ports. It monitors data exchanged
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between the FPGA and an application via UART external interface, and analysis of the
result for further researching. The FPGA board is connected to the computer by UART
cable. After processing, the result is shown on the 7-segment on the FPGA board.
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Table 1 shows the performance summaries. Compared to the other three works, [9–11],
firstly, we can achieve the highest classification accuracy. Secondly, the on chip memory
size is relatively small due to adopting the methods of sharing the multiplier bank and
adder tree, especially compared to [10], which has a smaller number of layers but has a
large on chip memory size. Thirdly, the power consumption is relatively low compared to
the other works, which are also a fully digital-based design.

Table 1. Performance comparison.

Parameter This Work [17] [12] [16]

Process (nm) CMOS 28 CMOS 28 CMOS 65 CMOS 40

Architecture Digital Digital and
Analog Digital Digital and

Analog

Design Entry RTL - RTL -

Frequency (MHz) 100 300 550 204

CNN Model 6 layers 11 layers 9 layers
(CNN/MLP) -

Datasets MNIST CIFAR-10 MNIST MNIST

V (V) 1.8 0.8 1 0.55–1.1

Power(W) 2.93 0.000899 0.00012 25

Accuracy (%) 92 86.05 98 98.2

On-Chip Memory 10 Kb 2676 Kb - -

Off-Chip Memory 40 Kb no - -

Throughput (FPS) 5.33 k - 8.6 M 1 k

Chip Area (mm2) 9.986 5.76 15 -

5. Conclusions

In the recent past, DNN and CNN have gained significant attention. This is because of
its high precision and throughput. In the field of biosensors, there is still a gap in terms
of the rapid detection of diseases. In this paper, we presented a synthesizable RTL-based
CNN architecture for disease detection by DNA classification. The opted approach of MAC
technique optimizes the hardware system by decreasing the arithmetic calculation and
achieves a quick output. Multiplier bank sharing among all the convolutional layer and
fully connected layer significantly reduce the implementation area.

We trained and validated the proposed RTL-based CNN model on MNIST handwritten
dataset and achieved 92% accuracy. It is synthesized in 28 nm CMOS process technology
and occupies 9.986 mm2 of the synthesis area. The drawn power is 2.93 W from 1.8 V supply.
The total computation time is 8.6538 ms. Compared to the reference studies, our proposed
design achieved the highest classification accuracy while maintaining less synthesis area
and power consumption.
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