

 sensors-22-02459

sensors-22-02459

Sensors 2022, 22(7), 2459; doi:10.3390/s22072459

Article

A Configurable and Fully Synthesizable RTL-Based Convolutional Neural Network for Biosensor Applications

Pervesh Kumar 1, Huo Yingge 1, Imran Ali 1,2[image: Orcid], Young-Gun Pu 1,2, Keum-Cheol Hwang 1[image: Orcid], Youngoo Yang 1, Yeon-Jae Jung 1,2, Hyung-Ki Huh 1,2, Seok-Kee Kim 1,2, Joon-Mo Yoo 1,2 and Kang-Yoon Lee 1,2,*

1

Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16416, Korea

2

SKAIChips, Sungkyunkwan University, Suwon 16419, Korea

*

Correspondence: klee@skku.edu; Tel.: +82-31-299-4954

Received: 14 December 2021 / Accepted: 21 March 2022 / Published: 23 March 2022

Abstract

:

This paper presents a register-transistor level (RTL) based convolutional neural network (CNN) for biosensor applications. Biosensor-based diseases detection by DNA identification using biosensors is currently needed. We proposed a synthesizable RTL-based CNN architecture for this purpose. The adopted technique of parallel computation of multiplication and accumulation (MAC) approach optimizes the hardware overhead by significantly reducing the arithmetic calculation and achieves instant results. While multiplier bank sharing throughout the convolutional operation with fully connected operation significantly reduces the implementation area. The CNN model is trained in MATLAB® on MNIST® handwritten dataset. For validation, the image pixel array from MNIST® handwritten dataset is applied on proposed RTL-based CNN architecture for biosensor applications in ModelSim®. The consistency is checked with multiple test samples and 92% accuracy is achieved. The proposed idea is implemented in 28 nm CMOS technology. It occupies 9.986 mm2 of the total area. The power requirement is 2.93 W from 1.8 V supply. The total time taken is 8.6538 ms.

Keywords:

convolutional neural network; biosensor; diseases classification; RTL-based design

1. Introduction

A biosensor is a device that is sensitive to biological substances and converts its concentration into an electrical signal for further processing and analysis [1]. Existing artificial intelligence (AI) biosensors have many limitations: (1) They require a large number of well-labeled data; (2) have poor flexibility, and (3) features extraction strongly depends on logic and accumulation. Due to these restrictions, the potency of traditional biosensors is limited by aspects of performance such as accuracy, timing, etc. [2,3]. During the past few years, with the promising research in deep learning, especially in CNN, these limitations can be overcome. Apart from traditional biosensor systems, CNN can meaningfully progress on extracting the different features. Therefore, based on CNN, a biosensor system can exploit the unlabeled data and the features are learned automatically by the network architecture. Hence CNN is a promising approach for biosensor applications and has also been vastly studied by existing works [4,5].

While achieving real-time performance, CNN-based techniques demand much more computation and memory resources than conventional methods. Therefore, an energy efficient CNN implementation is inevitable. Application specific integrated circuit (ASIC) and field-programmable gate arrays (FPGA) [6,7,8,9] based accelerators are promising alternates. ASIC-based study in [10,11] is proposed for the purpose of cost efficiency, energy, and throughput. Similarly, FPGA-based research [12,13,14] achieve better performance because of the parallel computation. Moreover, CNN chip implementation is categorized into two classes: (1) standard or traditional chips, and (2) neuro-chips. Standard chips are further divided into two subclasses: (I) multi-processor, and (II) sequential accelerator. In multi-processor, multiple cores are integrated for CNN operation. The purpose is to perform parallel operations for decreasing the throughput, improving the system performance and data loading by two folds. With the sequential accelerator breakthrough, the CNN algorithm on-chip integration is implementable.

The neuro-chips are built with multi-electrode arrays; a kind of integrated circuit chip that performs better because of good connectivity and fast and parallel computation. It needs low power and occupies less memory compared to traditional chips [15,16,17,18]. The research associated with neuro-chips is further classified into three main methods: fully analog, fully digital, and mixed analog/digital methods. For the mixed analog/digital [19,20], there are two operational modes; one is neuron mode, and another is synapse mode. For the neuron mode, usually, the asynchronous digital is adopted to perform the spiking. Regarding the synapse mode, most studies use analog methods to carry out compact operations such as those discussed in [21,22,23]. But there are studies that use analog/digital hybrid circuits to achieve timing synapses [24]. The digital logic foundation is adopted for on-chip structure configuration and providing corresponding algorithms. Different CNN architectures are implemented as per requirements. When using only the analog approach, mem-resistors are the key technology for implementing any functionality, keeping and tuning the resistance state according to the supply changes. Therefore, through it and resistive switching memories, it can meaningfully give the chance to achieve neural networks performance and functionalities in a fully analog manner. In [25], different functionalities of the neural network are implemented and achieved good performance in terms of small area and less power consumption. For the fully digital methods, the hardware algorithms are designed to address the functionalities and performance of the neural networks. These studies adopt software for modeling and training the neural network, get trained weights and bias values, and use these parameters for hardware implementation [26,27].

Previously, all the proposed CNN hardware implementation architectures for classification purposes used architectural parallelism and parameter reuse approaches. As a result, less memory was required or all memory on-chip was accommodated, but the drawback was moderate accuracy. In [28] and some other related studies, they also adopted parallel computation for reducing the processing time, but the trade-off was a large implementation area, nominal accuracy, and limitation of the number of layers.

The motivation of this work is to design a reconfigurable RTL-based CNN architecture for a biosensor for disease detection applications. The proposed design is fully synthesizable and technology independent. The parallel computation of MAC operation is used to reduce the arithmetic and extensive calculations. The multiplier bank is shared among all the convolutional layers and fully connected layers to reduce the implementation area.

The rest of the paper is organized as follows: Section 2 introduces the proposed top architecture of CNN for biosensor applications. The overall proposed system structure. The structures and functions of the sub-blocks are introduced in Section 3. Section 4 lists the experimental results, which includes software modeling results and hardware simulations results. Layout, mathematical results, and comparison with other works are also summarized. Finally, the paper is concluded in Section 5.

2. Top Architecture

The top structure of the proposed RTL-based CNN hardware implementation is shown in Figure 1. The proposed idea is comprised of three parts: (1) CNN architecture modeling and training in MATLAB®; (2) External on-board memory; and (3) hardware implementation system based on RTL compiler. In MATLAB®, two operations are performed: (1) CNN architecture is modeled, trained, tested, and trained weights and bias data is saved in a .txt file.; (2) Converting the input feature map data into binary data, which can be recognized by hardware tools and save it into a .txt file, for further processing.

External on-board memory is a kind of multiple programmable memory. It is used for storing the trained kernels’ weights and bias values with preloaded instruction for on-chip processing. Its operation is controlled by the top controller with reading instructions and enabling signals. The interface protocol is adopted to flow the data between external on-board memory and on-chip CNN system.

In the on-chip system, the same CNN architecture is modeled. Figure 1 shows the corresponding architecture, which is comprised of several building blocks. The dotted lines represent the data path and describe the data flow direction between different sub-blocks. The solid line shows the control signal working path and indicates how sub-blocks work together. On-chip block has several sub-blocks such as the memory system, which is designed to preload and store kernel weights, bias, and feature maps data. The CNN architecture layers are convolution + ReLU layer, pooling layers and fully connected (FC) layer. The top controller controls the whole system operation, connecting the different sub-blocks and controlling the data saving on the on-chip memory or going to the next stage operation. A multiplier bank is there to perform convolution calculations. Actually, it is the main computing resource for reducing the computation and is designed to be shared among all convolution + ReLU and fully connected layers. An output control logic is designed to find the final results of the system and also for final classification results.

The on-chip system operation is described in Figure 2. As the system starts, the feature buffer saves the input data, and the external on-board memory saves trained weights and bias. Once the CONV enable signal works, the CONV + ReLU and multiplier bank get input data from the feature buffers and weight and bias values from external on-board memory, and then the convolutional operation is performed. The convolved results go to pooling layer for sampling purposes. Once all convolution and pooling iterations are done, FB enables the signal works and the output activation feature maps are saved on the on-chip feature buffers. When FC enables the signal works, the FC layer and multiplier bank obtain weights and bias from external on-board memory and feature maps from feature buffers to perform the FC operation. As the FC operation finishes, the FC done signal is generated, the output control logic finds the labels having maximum computation value, and outputs it as a class.

Figure 3 shows the proposed CNN architecture. It has seven layers in total, out of which there are two convolutional layers, two pooling layers, two fully connected layers, and one softMax output layer. Input feature map data dimension is 32 × 32. In C1, the input feature maps are convolved with six kernels each of size 5 × 5 with a stride of 1. It generates the six feature maps with a size of 28 × 28. Then it is handled by the activation function, such as rectified linear unit (ReLU). In S2, the size of feature maps has been sub-sampled to the half by adopting the max-pooling approach with size of 2 × 2, and the stride size is 2, to sub-sample the input feature maps to 14 × 14. In C3, 16 feature maps with 14 × 14 is convolved with a 16 kernel of size 5 × 5 to get 16 feature maps with the size of 10 × 10 and again processed with ReLU operation. The S4 max-pooling operation is operated with size 2 × 2, the stride is 2 to acheive 16 feature maps with 5 × 5. The C5 is also a convolution layer with 120 kernels each of 5 × 5 size, F6 is fully connected layer with 84 feature maps. Softmax is basically used for classification. The feature with the highest probability value is classified as an output result from handwritten digits. The CNN model is typically trained with a 32-bit floating point precision using MATLAB® platform. Since the MATLAB® computes parallelly, so the processing time is reduced compared to conventional C or C++ language processing approaches.

3. Building Blocks

3.1. Top Controller

The top controller is the overall controlling module of the system. Firstly, it is used to control the module sequentially with enable and done signals. When these blocks need data, the enable signal for the next operation directly starts the next module, but also disables the current module operation. Secondly, the top controller is applied for communication with external memory for reading weights and bias information. Through the interface protocol, like serial peripheral interface (SPI), the data is transferred from external on-board memory to an on-chip system. Thirdly, the top controller is also used to differentiate the read/write indicates between the contiguous blocks and manage the calculation results being saved to the memories or go to the next stage. Fourthly, it is used to control convolution + ReLU module and share the multiplier bank with the fully connected module. It controls the selection of the data information in memories, which consists of various calculation blocks to be shared multipliers or pooling blocks, and also manages the multiplier calculated values that are being sent to the convolution operation or FC operation.

3.2. Feature Buffers

The feature buffers, as shown in Figure 1, are used to save the output data of each sub-block. They are integrated to perform as on-chip memories. Each sub-block saves its output activation map into different on-chip memories, according to the size of the memories. These memories are built by the size of 10 k pf components, it means for each block, the capacity is 10 k bits. As for the case of the depth of the computation memory is bigger compared to this maximum size of 10 k, then another memory component is adopted which also has same size with this one.

3.3. Convolutional Operation

The top architecture of the convolution layer is shown in Figure 4. It consists of a dedicated CONV controller, windows wrapper, multiplier bank, adder trees, and ReLU modules. The input feature maps data and kernel bias data for convolutional operation are pre-trained, after preloading, and saved in the on-chip memory. The calculation results from multiplier bank passed to adder tress for the next calculation. After computation, the results are transformed and stored into the on-chip feature buffers for next layer processing, which also has the same size with this one.

The CONV controller of convolution operation is mainly built by counters. Firstly it gets enable signal from the top controller and starts providing read signals for feature buffers and external on-board memory when convolution operation starts. Secondly, according to the kernel window size, it controls the window wrapper to select the input features maps data for partial convolution operation and slides this over all the spatial feature maps with the stride of 1. Finally, it manages the writing address to save output activation map value after ReLU processing to on-chip memories.

The role of the window wrapper is to select the window, as shown in Figure 5. According to the kernel size, selecting the corresponding pixels from the input feature map data. It consists of a window shifter and a window selector. The window shifter consists of shift registers, as shown in Figure 6. After obtaining feature map data from the feature buffer and the shift signal from Conv Controller, it shifts the data serially and provides it to the window selector in parallel. The window selector is consists of MUX, after getting kernel x and y coordinates from Conv Controller, it performs pixel selection, according to the kernel window size, as shown in Figure 7.

After receiving selected pixels from window wrapper and kernel, bias values from external on-board memory, the convolution operation is performed by multiplier bank and adder tree, as shown in Figure 8. The multiplier bank consists of multipliers, and the number of multipliers is decided by the kernel window size. For example, the kernel window size is 5 × 5, so the number of multipliers should be 25 = 32. Each multiplier is used to multiply 8-bit kernel values with 8-bit selected pixel in a parallel manner and provide the result to the adder tree. The adder tree accumulates the multiplier bank result, also with bias values within one kernel window. The number of addresses is decided through the multipliers, then it can be calculated as follows in (1):

 N a d d e r = ∑ i = 0 log 2 N 2 i + 1

(1)

where, N is the number of multipliers, and Nadder is the number of addresses.

The block diagram of the ReLU operation is given Figure 9. The adder tree in this figure consists of comparator and mux, which performs as a kernel for the assigned bit of pixel value. Basically, it converts the negative values to zero, while it leaves the positive values unchanged. Mathematically this can be given as in (2):

 f (x) = { 0 , x < 0 x , x ≥ 0

(2)

where f(x) represents the output of ReLU activation function. Its output is given to the max-pooling layer directly.

3.4. Max-Pooling Operation

The Max-pooling operation is achieved by combining the max-pooling controller with comparators. The block diagram is given in Figure 10. After receiving the enable signal from the top controller and input values from the previous layer, the max-pooling controller performs partition of the input feature maps data into a set of rectangular sub-regions with the size of 2 × 2, and the stride size is 2. The difference with window selection of convolution operation is moved without any overlapping. The comparator is used to compare the 2 × 2 sub-region values and outputs the maximum value of each sub-region. The controller also provides a read signal to the last stage for informing the start of operation and supplies a write address to save the output value to feature buffer for the next layer processing.

3.5. Fully Connected Operation

The function of the FC layer is the matrix multiplication. It is typically built by the the FC controller and multiplication and accumulation operations, which are similar to convolutional layers. A block diagram of fully connected operation is shown in Figure 11. After receiving enable signal from the top controller, the FC controller starts sending the read signal to the feature buffer and external on-board memory. It saves the last layer’s computation results to obtain the input feature and weight value. The parallel multiplication and accumulation computations are used to calculate the sharing feature maps data to all the rows and they are calculated together in parallel. By adopting the sharing multiplier bank with a convolutional layer, the computation is much reduced. Typically, the performance of the FC layer associates the input pitch points with output pitch points in the current layer. The function is given as in (3):

 Y i = ∑ k = 0 W ∗ H − 1 X k × W i + b i , N ≥ i ≥ 0

(3)

where X k represents the feature maps, Y i represents calculations results, W i is the weights values, and b i represents the bias value. N is the number of the output nodes.

4. Experimental Results

4.1. MATLAB® Modeling and Results

The proposed CNN architecture was modeled and verified in MATLAB®. The model structure comprehensive analysis is given in Figure 12. It shows the layer-wise execution details, operations, operands and the total number of parameters at each layer after training. The model was trained on 60,000 images of MNIST® handwritten digits [29], number of epochs were 10, with batch size of 50. The learning rate was kept 0.5. The proposed CNN model consisted of 3 convolutional layers, and 2 fully connected layers with a kernel size of 3 × 3 are used for each convolutional layer, ReLu activation function was used and max-pooling with a strip size of 2 × 2 was used. The model was tested on 1000 images from MNIST® data set. Initially, a digits image is given to the model. After processing, the training error is shown in Figure 13a and the accuracy is shown in Figure 13b. We achieved 92.4977% model training accuracy. The classification results are displayed in Figure 14.

4.2. FPGA Implementation

The simulation result of the top convolutional layer is shown in Figure 15. Image data was preloaded into image array memory; after top window selection, the selected pixels could perform the convolution operation with kernel and bias value. Figure 16 basically shows the convolution operation logic, which combined the multiplier bank and adder tree to perform operation given in Equation (4).

 O u t = ∑ i n × k e r n e l + b i a s

(4)

where in is the input feature map data of convolution module, kernel is the corresponding weights data, and bias represents the system bias data.

Window wrapper simulation results are described in Figure 17, which performed the pixels selection. As Figure 17a shows, according to the k e r n e l _ x , k e r n e l _ y , the kernel window can slide around the whole image data and output the selected value which has the same size with kernel window, such as 5 × 5, Figure 17b shows the whole image data array with selected windows.

Max-pooling operations simulation results: Figure 18 shows the max-pooling operation results. When enable signal is asserted, the comparator compares the 2 × 2 sub-region values and outputs the maximum value of each sub-region. Its calculation formula is given as in (5):

 O u t = M A X (i n p u t 1 , i n p u t 2 , i n p u t 3 , i n p u t 4)

(5)

where O u t represents the output value of the comparison. I n p u t 1 , i n p u t 2 , i n p u t 3 , i n p u t 4 are the four input values of each sub-region.

Fully connected operations simulation results: Figure 19 shows the FC module operation results. FC block associates input value with output value in the present module. When enable signal is high, it performs matrix multiplication. Shown as follow in (6).

 s u m b = ∑ f e a t u r e p i x e l s ∗ w e i g h t + b i a s

(6)

where, f e a t u r e p i x e l s represents the input data of the fully connected module, weight represents kernel weights value, bias is the bias value, and s u m b presents the output value of the fully connected module.

The top simulation results of the CNN system are described in Figure 20. Compared 10 outputs of final fully connected layer, the maximum value can be found which represents final classification results. It can be achieved by (7),

 Y = M A X (a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9)

(7)

where Y is the final output of the classification results. The fully connected operation results are a 1 – a 9 . Figure 20a–d shows the classification results when the input digit is 3 , 5 , 6 , 8 separately.

Figure 21 shows the timing consumption of different layers of the proposed CNN system. According to this table, CONV3 has the highest processing time because in this layer it has the largest number of kernels. So, the timing of loading weights and bias value to this layer and the feature map data loading time is the most costed. The total processing timing is 8.6538 ms.

Figure 22 shows the layout results of the proposed CNN on the chip logic part. It is implemented on 28 nm process technology by design compiler and IC compiler. The synthesis area is 3.16 mm × 3.16 mm.

The proposed CNN system is verified on the FPGA. Figure 23 shows the experimental setup for measuring the proposed CNN system. Figure 23a shows the block diagram of the measurement framework, Figure 23b shows the actual verifying lab setup situation. UART Data Logger is the software for monitoring activities of ports. It monitors data exchanged between the FPGA and an application via UART external interface, and analysis of the result for further researching. The FPGA board is connected to the computer by UART cable. After processing, the result is shown on the 7-segment on the FPGA board.

Table 1 shows the performance summaries. Compared to the other three works, [9,10,11], firstly, we can achieve the highest classification accuracy. Secondly, the on chip memory size is relatively small due to adopting the methods of sharing the multiplier bank and adder tree, especially compared to [10], which has a smaller number of layers but has a large on chip memory size. Thirdly, the power consumption is relatively low compared to the other works, which are also a fully digital-based design.

5. Conclusions

In the recent past, DNN and CNN have gained significant attention. This is because of its high precision and throughput. In the field of biosensors, there is still a gap in terms of the rapid detection of diseases. In this paper, we presented a synthesizable RTL-based CNN architecture for disease detection by DNA classification. The opted approach of MAC technique optimizes the hardware system by decreasing the arithmetic calculation and achieves a quick output. Multiplier bank sharing among all the convolutional layer and fully connected layer significantly reduce the implementation area.

We trained and validated the proposed RTL-based CNN model on MNIST handwritten dataset and achieved 92% accuracy. It is synthesized in 28 nm CMOS process technology and occupies 9.986 mm 2 of the synthesis area. The drawn power is 2.93 W from 1.8 V supply. The total computation time is 8.6538 ms. Compared to the reference studies, our proposed design achieved the highest classification accuracy while maintaining less synthesis area and power consumption.

Author Contributions

Conceptualization, P.K. and H.Y.; methodology, P.K. and I.A.; software, P.K. and H.Y.; validation, investigation P.K. and I.A.; resource H.Y.; data curation, P.K.; writing—original draft presentation, P.K.; writing-review and editing, P.K. and K.-Y.L.; visualization, P.K.; supervision, K.-Y.L., I.A., Y.-G.P., K.-C.H., Y.Y., Y.-J.J., H.-K.H., S.-K.K. and J.-M.Y.; project administration, K.-Y.L.; funding acquisition, K.-Y.L. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1A4A1033424), and the Institute of Information and communications Technology Planning and Evaluation (IITP) grant funded by the Korean government (MSIT) (No.2019-0-00421, Artificial Intelligence Graduate School Program (Sungkyunkwan University)).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Justino, C.I.L.; Duarte, A.C.; Rocha-Santos, T.A.P. Recent progress in biosensors for environmental monitoring: A review. Sensors 2017, 17, 2918. [Google Scholar] [CrossRef]

	

Schackart, K.E., III; Yoon, J.-Y. Machine Learning Enhances the Performance of Bioreceptor-Free Biosensors. Sensors 2021, 21, 5519. [Google Scholar] [CrossRef]

	

Cui, F.; Yue, Y.; Zhang, Y.; Zhang, Z.; Zhou, H.S. Advancing biosensors with machine learning. ACS Sens. 2020, 5, 3346–3364. [Google Scholar] [CrossRef]

	

Nguyen, N.; Tran, V.; Ngo, D.; Phan, D.; Lumbanraja, F.; Faisal, M.; Abapihi, B.; Kubo, M.; Satou, K. DNA Sequence Classification by Convolutional Neural Network. J. Biomed. Sci. Eng. 2016, 9, 280–286. [Google Scholar] [CrossRef]

	

Jin, X.; Liu, C.; Xu, T.; Su, L.; Zhang, X. Artificial intelligence biosensors: Challenges and prospects. Biosens. Bioelectron. 2020, 165, 112412. [Google Scholar] [CrossRef] [PubMed]

	

Shawahna, A.; Sait, S.M.; El-Maleh, A. FPGA-based accelerators of deep learning networks for learning and classification: A review. IEEE Access 2019, 7, 7823–7859. [Google Scholar] [CrossRef]

	

Farrukh, F.U.D.; Xie, T.; Zhang, C.; Wang, Z. Optimization for efficient hardware implementation of CNN on FPGA. In Proceedings of the 2018 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), Beijing, China, 21–23 November 2018; pp. 88–89. [Google Scholar]

	

Ma, Y.; Cao, Y.; Vrudhula, S.; Seo, J. Optimizing the Convolution Operation to Accelerate Deep Neural Networks on FPGA. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 1354–1367. [Google Scholar] [CrossRef]

	

Guo, K.; Zeng, S.; Yu, J.; Wang, Y.; Yang, H. A survey of FPGA-based neural network interface accelerator. ACM Trans. Reconfig. Technol. Syst. 2018, 12, 2. [Google Scholar]

	

Jiang, Z.; Yin, S.; Seo, J.S.; Seok, M. C3SRAM: An in-memory-computing SRAM macro based on robust capacitive coupling computing mechanism. IEEE J. Solid-State Circuits 2020, 55, 1888–1897. [Google Scholar] [CrossRef]

	

Ding, C.; Ren, A.; Yuan, G.; Ma, X.; Li, J.; Liu, N.; Yuan, B.; Wang, Y. Structured Weight Matrices-Based Hardware Accelerators in Deep Neural Networks: FPGAs and ASICs. arXiv 2018, arXiv:1804.11239. [Google Scholar]

	

Kim, H.; Choi, K. Low Power FPGA-SoC Design Techniques for CNN-based Object Detection Accelerator. In Proceedings of the 2019 IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference, New York, NY, USA, 10–12 October 2019. [Google Scholar]

	

Mujawar, S.; Kiran, D.; Ramasangu, H. An Efficient CNN Architecture for Image Classification on FPGA Accelerator. In Proceedings of the 2018 Second International Conference on Advances in Electronics, Computers and Communications, Bangalore, India, 9–10 February 2018; pp. 1–4. [Google Scholar]

	

Ghaffari, A.; Savaria, Y. CNN2Gate: An Implementation of Convolutional Neural Networks Inference on FPGAs with Automated Design Space Exploration. Electronics 2020, 9, 2200. [Google Scholar] [CrossRef]

	

Kang, M.; Lee, Y.; Park, M. Energy Efficiency of Machine Learning in Embedded Systems Using Neuromorphic Hardware. Electronics 2020, 9, 1069. [Google Scholar] [CrossRef]

	

Schuman, C.D.; Potok, T.E.; Patton, R.M.; Birdwell, J.D.; Dean, M.E.; Rose, G.S.; Plank, J.S. A Survey of Neuromorphic Computing and Neural Networks in Hardware. arXiv 2017, arXiv:1705.06963. [Google Scholar]

	

Liu, B.; Li, H.; Chen, Y.; Li, X.; Wu, Q.; Huang, T. Vortex: Variation-aware training for memristor X-bar. In Proceedings of the 52nd Annual Design Automation Conference, San Francisco, CA, USA, 8–12 June 2015; pp. 1–6. [Google Scholar]

	

Chang, J.; Sha, J. An Efficient Implementation of 2D convolution in CNN. IEICE Electron. Express 2017, 14, 20161134. [Google Scholar] [CrossRef]

	

Marukame, T.; Nomura, K.; Matusmoto, M.; Takaya, S.; Nishi, Y. Proposal analysis and demonstration of Analog/Digital-mixed Neural Networks based on memristive device arrays. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar]

	

Bankman, D.; Yang, L.; Moons, B.; Verhelst, M.; Murmann, B. An Always-On 3.8 μJ/86% CIFAR-10 Mixed-Signal Binary CNN Processor with All Memory on Chip in 28 nm CMOS. IEEE J. Solid-State Circuits 2018, 54, 158–172. [Google Scholar] [CrossRef]

	

Indiveri, G.; Corradi, F.; Qiao, N. Neuromorphic Architectures for Spiking Deep Neural Networks. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015; pp. 421–424. [Google Scholar]

	

Chen, P.; Gao, L.; Yu, S. Design of Resistive Synaptic Array for Implementing On-Chip Sparse Learning. IEEE Trans. Multi-Scale Comput. Syst. 2016, 2, 257–264. [Google Scholar] [CrossRef]

	

Hardware Acceleration of Deep Neural Networks: GPU, FPGA, ASIC, TPU, VPU, IPU, DPU, NPU, RPU, NNP and Other Letters. Available online: https://itnesweb.com/article/hardware-acceleration-of-deep-neural-networks-gpu-fpga-asic-tpu-vpu-ipu-dpu-npu-rpu-nnp-and-other-letters (accessed on 12 March 2020).

	

Pedram, M.; Abdollahi, A. Low-power RT-level synthesis techniques: A tutorial. IEE Proc. Comput. Digit. Tech. 2005, 152, 333–343. [Google Scholar] [CrossRef]

	

Ahn, M.; Hwang, S.J.; Kim, W.; Jung, S.; Lee, Y.; Chung, M.; Lim, W.; Kim, Y. AIX: A high performance and energy efficient inference accelerator on FPGA for a DNN-based commercial speech recognition. In Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy, 25–29 March 2019; pp. 1495–1500. [Google Scholar]

	

Krestinskaya, O.; James, A.P. Binary Weighted Memristive Analog Deep Neural Network for Near-Sensor Edge Processing. In Proceedings of the 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO), Cork, Ireland, 23–26 July 2018; pp. 1–4. [Google Scholar]

	

Hasan, R.; Taha, T.M. Enabling Back Propagation Training of Memristor Crossbar Neuromorphic Processors. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014; pp. 21–28. [Google Scholar]

	

Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing fpga-based accelerator design for deep convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2015; pp. 161–170. [Google Scholar]

	

Yann, L. The MNIST Database of Handwritten Digits. 1998. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on 1 January 2022).

[image: Sensors 22 02459 g001 550]

Figure 1. Top structure of CNN hardware implementation.

Figure 1. Top structure of CNN hardware implementation.

[image: Sensors 22 02459 g001]

[image: Sensors 22 02459 g002 550]

Figure 2. Flow chart of the proposed CNN architecture.

Figure 2. Flow chart of the proposed CNN architecture.

[image: Sensors 22 02459 g002]

[image: Sensors 22 02459 g003 550]

Figure 3. The proposed CNN model structure.

Figure 3. The proposed CNN model structure.

[image: Sensors 22 02459 g003]

[image: Sensors 22 02459 g004 550]

Figure 4. Overall architecture of the convolution layer.

Figure 4. Overall architecture of the convolution layer.

[image: Sensors 22 02459 g004]

[image: Sensors 22 02459 g005 550]

Figure 5. Window wrapper structure.

Figure 5. Window wrapper structure.

[image: Sensors 22 02459 g005]

[image: Sensors 22 02459 g006 550]

Figure 6. Window shift structure.

Figure 6. Window shift structure.

[image: Sensors 22 02459 g006]

[image: Sensors 22 02459 g007 550]

Figure 7. Window selector structure.

Figure 7. Window selector structure.

[image: Sensors 22 02459 g007]

[image: Sensors 22 02459 g008 550]

Figure 8. The architecture of convolutional operation.

Figure 8. The architecture of convolutional operation.

[image: Sensors 22 02459 g008]

[image: Sensors 22 02459 g009 550]

Figure 9. The architecture of convolutional operation.

Figure 9. The architecture of convolutional operation.

[image: Sensors 22 02459 g009]

[image: Sensors 22 02459 g010 550]

Figure 10. The architecture of the max-pooling operation.

Figure 10. The architecture of the max-pooling operation.

[image: Sensors 22 02459 g010]

[image: Sensors 22 02459 g011 550]

Figure 11. The architecture of the fully connected operation.

Figure 11. The architecture of the fully connected operation.

[image: Sensors 22 02459 g011]

[image: Sensors 22 02459 g012 550]

Figure 12. Analysis results of proposed CNN structure in MATLAB®.

Figure 12. Analysis results of proposed CNN structure in MATLAB®.

[image: Sensors 22 02459 g012]

[image: Sensors 22 02459 g013 550]

Figure 13. Training, testing error and accuracy of the proposed architecture. (a) The training error result. (b) The training accuracy.

Figure 13. Training, testing error and accuracy of the proposed architecture. (a) The training error result. (b) The training accuracy.

[image: Sensors 22 02459 g013]

[image: Sensors 22 02459 g014 550]

Figure 14. The classification result of the proposed CNN model.

Figure 14. The classification result of the proposed CNN model.

[image: Sensors 22 02459 g014]

[image: Sensors 22 02459 g015 550]

Figure 15. The simulation result of the top convolutional layer.

Figure 15. The simulation result of the top convolutional layer.

[image: Sensors 22 02459 g015]

[image: Sensors 22 02459 g016 550]

Figure 16. The simulation result of the convolution operation.

Figure 16. The simulation result of the convolution operation.

[image: Sensors 22 02459 g016]

[image: Sensors 22 02459 g017 550]

Figure 17. The simulation result of the max-pooling operation, where windows wrapper results are shown in (a) Simulation result of window wrapper, while data of one selected image is shown in (b) One image data with selected window.

Figure 17. The simulation result of the max-pooling operation, where windows wrapper results are shown in (a) Simulation result of window wrapper, while data of one selected image is shown in (b) One image data with selected window.

[image: Sensors 22 02459 g017]

[image: Sensors 22 02459 g018 550]

Figure 18. The simulation result of the max-pooling operation.

Figure 18. The simulation result of the max-pooling operation.

[image: Sensors 22 02459 g018]

[image: Sensors 22 02459 g019 550]

Figure 19. The simulation result of fully connected operation.

Figure 19. The simulation result of fully connected operation.

[image: Sensors 22 02459 g019]

[image: Sensors 22 02459 g020a 550][image: Sensors 22 02459 g020b 550]

Figure 20. The top simulation results of the proposed CNN system. (a) The top simulation result of digit 3. (b) The top simulation result of digit 5. (c) The top simulation result of digit 6. (d) The top simulation result of digit 8.

Figure 20. The top simulation results of the proposed CNN system. (a) The top simulation result of digit 3. (b) The top simulation result of digit 5. (c) The top simulation result of digit 6. (d) The top simulation result of digit 8.

[image: Sensors 22 02459 g020a][image: Sensors 22 02459 g020b]

[image: Sensors 22 02459 g021 550]

Figure 21. The timing consumption of different layers.

Figure 21. The timing consumption of different layers.

[image: Sensors 22 02459 g021]

[image: Sensors 22 02459 g022 550]

Figure 22. The layout of the proposed CNN system.

Figure 22. The layout of the proposed CNN system.

[image: Sensors 22 02459 g022]

[image: Sensors 22 02459 g023 550]

Figure 23. The proposed CNN system measurement setup. (a) The proposed CNN system measurement setup block diagram. (b) Measurement setup on FPGA.

Figure 23. The proposed CNN system measurement setup. (a) The proposed CNN system measurement setup block diagram. (b) Measurement setup on FPGA.

[image: Sensors 22 02459 g023]

[image: Table]

Table 1. Performance comparison.

Table 1. Performance comparison.

	Parameter
	This Work
	[17]
	[12]
	[16]

	Process (nm)
	CMOS 28
	CMOS 28
	CMOS 65
	CMOS 40

	Architecture
	Digital
	Digital and Analog
	Digital
	Digital and Analog

	Design Entry
	RTL
	-
	RTL
	-

	Frequency (MHz)
	100
	300
	550
	204

	CNN Model
	6 layers
	11 layers
	9 layers (CNN/MLP)
	-

	Datasets
	MNIST
	CIFAR-10
	MNIST
	MNIST

	V (V)
	1.8
	0.8
	1
	0.55–1.1

	Power(W)
	2.93
	0.000899
	0.00012
	25

	Accuracy (%)
	92
	86.05
	98
	98.2

	On-Chip Memory
	10 Kb
	2676 Kb
	-
	-

	Off-Chip Memory
	40 Kb
	no
	-
	-

	Throughput (FPS)
	5.33 k
	-
	8.6 M
	1 k

	Chip Area (mm2)
	9.986
	5.76
	15
	-

	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

media/file13.jpg
Baffer_vector| — —_—

MUX [0]
.
DATAUT0
ATt [ResuLTOl 0]
B > MUX 1] >
DATAN[7

Value_owt7:0]
MUX >

DATAV[7:0)
EtavEr]

DATAIL: IRESULTOL:
[DATMOO o} iy) (RESCETOL,
DATAN[T0)
|

e i

DATA0(7:0)
DATAL70]

[RESULTOL:
clock —p LR

MUX 3]

reset —b]

10— 1

media/file4.png
Save input data to feature buffers, trained filter weights and
bias to external on-board memory from .txt files

No CONV Enable?

CONV+ReLU+Multiplier bank: gets input data from feature
buffers, weights and bias from external on-board memory,
performs convolution operation

I

Pooling

Store the output data to Feature buffer

No FC Enable
Yes

FC+Multiplier bank: Gets weight and bias from external on-
board memory, feature maps data from Feature buffer,
perform fully connected operations

No FC Done

Yes

Output Control Logic finds the labels which has maximum
computation value

|

Processing Done

media/file39.jpg

media/file18.png
0 4>‘
Output of] ._ Compar ator

CONV J Convolved data "\

MUX

Output Data

Max
Pooling

media/file21.jpg
Feature
Buffer

Input Featur

Multiplier Bank

utput Data,
10]

data Multiplier
LS

utput Data|
1)

Multiplier
m

[Tapur

Feature
Buffer

\Output Datal
N]

FC Controller

‘Write Signal

media/file44.png
=~ Timing Consumption
=
?E: 3.5 3.02683
- 5 2 2.31135
s b 1.67533
'§ 1.5 1.12616
= 1 0. 51361
= 0.5
0
ﬁExecuUOn
Time (ms)
® CONVI+Pooling 2.31135
® CONV2+Pooling 1.67533
u CONV3 3.02683
mFC1 1.12616
= FC2 0.51361
® CONVI1+Pooling = CONV2+Pooling
= CONV3 mFCl

= FC2

media/file26.png
Error

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

4

5 6
Number of Epochs

(a)

Accuracy

09r

085

08r

0.75

07r

0.65

06

0.85

ol

1 2 3 4 5 6
Number of Epochs

(b)

media/file7.jpg
Enable Signal

Read Signal

Conv

Controller

v

[MP Enable signal

Input
Data

Muliplier
Bank +
Adder

Tree

media/file28.png
| ™

o Tp]

w

- 1)

i

~ A

~

= |

o400

media/file10.png
Clock

Reset

Pixel_in [7:0]

Shift

Kernal x

Window_Shift

-
Buffer _out[8191:0]

Buffer_out[8191:0]

Keranal_x+Height

Keranal_y+Width_

Window_Selector
Height[0] Width[0]

Value_out[7:0]

p
Buffer out[8191:0]

Keranal x+Height

Keranal_y+Width |

Kernal v

Window_Selector
Height[0] Width[1]

Keranal_x+tHeight

Keranal_y+Width

>

-
(Buffer _out[$191:0]

Window_Selector
Height[0] Width[2]

Value out[7:0]

» Windows out[199:0]

-
(Buffer_out[8191:0]

Keranal_xﬂleighL

Keranal _y+“"idtg

Window_Selector
Height[0] Width[4]

Value_out[7:0]

Value_out[7:0]

Kernel x+4 ... Kernel x

Kernel v +4

Kernel v

media/file11.jpg
Column Column Column Column
Shift 4 smin shift - shit
Register Register Register Register
3 3 3 ¥
' T
Column ‘Column
Shift 4 4 snit
Register Register
3 ¥
' T
Column Column
Shift 4 - shift
Register Register
¥ 3y
H H
Column Column
Shift E - snit
Register Register Register Register
B1] 0]

o

Pixel in[7:0]

media/file6.png
C1: Feature S2: Feature C3: Feature maps S4: Feature C5: Feature Fo6: Feature

2
Input 32x23 maps28x28, 6 maps 14x14, 6 10%10, 16 maps5x5,16 maps 1x1,120 maps 1x1,84

Output 10
9

>
& T = S

. | |

Convolution+ReLU Pooling Convolution+RelLU

Fully connected layer

media/file36.png
b id
<
\ e
ol
,
-
v
s
¥

=MAX(inputl, input2, input3,
input4)

Poollng output

media/file15.jpg
e
Kerst 550 —3]

[

dock —{

nav.xhtml

 sensors-22-02459

 		
 sensors-22-02459

media/file41.png
iR R i O D e otk R i R D R :c:tttmm:wmctcmﬂm O
@)‘1@ A e A A e O D Y A o o N O DA DM e £ 0K)

thl Rish| 18 {1 il il Al Hlll’l"i‘i"i‘i"”’”‘”’

Out = MAX(al, a2, a3, a4, a5, a6, a7, a8,a9)

000D 101

RN A D A A H ¢¢ttmcmommemxoxm:accuutm
OEMCOHONOND t_ L(J(M]UJJXU)IM:C AHCOOMCH IMD‘M S e e o e O A O o C O O OO O RN g -

1
R R o T o AR

Out = MAX(al, a2, a3, a4, ab, a6, a7, a8 A9)

media/file2.png
Data Path

Control Signal
---------- >

Feature
Buffer

4
.| Convolution

+ RelLU

T 1

N

,
| Multiplier [«

Bank

T 1

Fully

F 3

Connected

Output+<

Output Control
Logic

P

Top
Controller

External on-
board Memory

("
CONYV,
Weights, Bias
. J
{ N
FC, Weights,
Bias
\. J
MATLAB
{ N
Training CNN
Model
\. J

(Convert lmagew
into Binary

X pixel data

media/file23.jpg
128 04 o0

media/file40.jpg

media/file24.png
Deep Learning Network Analyz
Network from Deep Network Designer

120

0A

ESEET

Analysis date: 12-May-2020 21:43:50 layers wamings errors
ANALYSIS RESULT (9]
+ | Name Type Activations Leamnables Total Learnab...
1 imageinput Image Input 32x32x1 -]
1 cony 32x32x1 images with 'zerocenter' normalization
2 |C1_conv Convolution 28=28x6 Weights S=Sx1xf 156
o 8§ 5x5x1 convolutions with stride [1 1] and padding [0 0 0 0] Bias hESET
re —
2 |relu_1 RelLU 28=28=6 - 2]
RelU
52_maxpool .
4 | 52_maxpool Max Pooling 14=14x=6 - 8
28x28 max pooling with stride [2 2] and padding 'same'
c3 ; .
e s |C3_conv Convolution 18x10=16 Weights Sx5=6x16 2416
16 5x5x6 convolutions with stride [1 1] and padding [0 00 0] Bias 1=1=16/
relu_2 & |relu_2 RelU 10%10%16 - o
RelU
54_maxpool 7 | S4_maxpool Max Pooling 5x5x16 - 2]
1414 max pooling with stride [2 2] and padding 'same’
C5_conv 2 5_conv Convolution 1x1x128 Weights 5=5x16x128 48120
120 5x5x16 convolutions with stride [1 1] and padding [0 0 0 0] Bias 1x1x12@
F&_fo o |F6_fc Fully Connected 1=x1=34 Weights 84=128 18164
24 fully connected layer Bias B4=1
T & 1o |F7_fc Fully Connected 1x1x18 Weights 10=34 85@
- 10 fully connected layer Bias 18=1
P — 11 | softmax Softmax 1=1=18 - 8
softmax
12 |classoutput Classification Output |- - 2]
classoutput crosseniropyex

media/file29.jpg

media/file1.jpg
Data Path

Control Sigasi

Outpute—i

On-Chip

Feature
Buffer

Fully

Connected

1

SREE
Oupat Control
Logic

Top
Controller

External on

board Memory

MATLAB

media/file12.png
Column Column
Shift T+ Shift
Register Register
y ¥
S/ !
Column Column
Shift 4 Shift
Register Register
) 3 J
y/ |

Column
Shift

Column
Shift
Register

Column
Shift
Register

y

Column
Shift
Register

F

Register
|
/
Column
Shift -
Register

Column
Shift
Register

* % & & # # & F % * »

1]

Column
Shift
Register

Column
Shift
Register

Buffer out[8191:0]

—

7y
& # & & & & # # F F %

H

=

p—
[
el

[0]

[0]

Pixel in[7:0]

media/file9.jpg
L

e Vit

e W

oo

Pt

media/file42.png
CERTE R R R R R R e R R R R R e R N tIIi[rﬁﬁﬁ#im{ﬂ{m#(ﬂm{tﬂtlI{tlliﬂi#mﬂﬂmuﬂm{[). el e
o g A D OO OO AR RGO)

I ettt i iR R R R b R ittt ettt

Out = MAX(al, a2, a3, a4, ab, ab, a7, a8 ,a9

1000111
|!ﬁﬁﬂﬁiﬁﬂﬁitﬁ(ﬁﬁﬁiﬁﬂmﬂmﬁﬁmﬁ{ﬂﬁﬁcWfﬁﬂﬁ(‘iﬂﬁfﬁﬂmﬂ#{ﬁﬁﬁwﬁ%i‘-{iﬂtttf‘:ﬁmﬂmﬂﬂﬂﬂmﬂﬁ{ﬁm':S‘-W".W‘mﬂﬁm{ﬁﬂmﬂﬁ{ﬁ{f %'T-ﬂtﬂtﬂﬁfﬁﬂﬂfﬂﬂﬁmﬁﬂﬂﬂﬁﬁv{:‘:':'T-W':CW‘:Wmﬂmﬂmﬁﬁ{ﬁ#-.-('T-{itﬂ':Wﬁmﬂmﬂmwﬁﬂriﬁﬂ(ﬁﬂﬂfﬁﬂﬂfﬁmﬂﬂ ﬁiﬂﬂﬁiv#
0 0) B 8 @ RS E B @@)@ @)@ B 00)00 @0 0 00 0)) 80 0 @)) @ I

1

Mttt R s R s s g R i i s

Out =MAX(al, a2, a3, a4, ab, a6, a7, a8,39)

[=1]
--..-..---...'-7

media/file47.jpg
Computer FPGA Board

UART Data External TOP CNN
Logger [© > | Interface [<] Modute []7-Sesment

(b)

media/file38.png
=

SlElEIEtEIElEE

|
1 1 1 1 I 1
7 3 3 7 3 3 7 3 £ 7
1 1 1 1
59066, |72)92, J110 J1S8 | 381 386 J406 J410 J458 471 Ja77 J457 J515 JseB 786 791 j811 JB15 1863 a p 30
| | |
s)71 a1 108 JisT 37} 1380 15 J%05 %09 Ja57 |)a63 Jam Jare Jass 514 Jsep 1776)785 1759 JBi0 JB1% 862 | Jpes JB7s JsBl J90] 919 Jee7 Y081 1150 (1155 11215 11209 J1267 | Y1273 1260 11286 1130
7 1 B i 2 11 1 1 3 1 1 1 7 1 B i 1 THE)
1 1] 1 | » N | |) T P I) I Y) "I I
& &1 B b 0 B T B B 0 JI 7T (W T TR B 1 5 » I [2 01 B b 1 | 2 11 B n I 7
7 B0 8 6 8 214 P)5 D J4 L1 & v)T T3 Iz:s PFEI] 5 110 ﬂ :15 | z) I 1] .13 6 13 1214 B 5 N & e ® | 17 Is) £Ti]
B0 1B =& Io) FIC I I 1 0 E 17 B 1@ Ils)71 ‘o JFRE] ,9 5 Izu = B B E _:'_20 8 & P 218 i9) R I] :45 ®_E 17)¥.1]
,ss 7181 J10s 15? 1370 1380 385 J405 405 457 363 J&m) 475 '499 514 sez m 735 ?99 sm aw 862 1 asa 575 1] 90,1 4919 967 1w1 1150 | ms 1215 1219 1267 112?3:12;;0 12&5 13
B o hss rrrrid s L1 562 1 1 1 Be2 1 1] i :' 1 ke7] i e] I
Sa)66 |72 Ja2 Jii0 Jisé {1381 586 J406 Ja1d Jasa a7 Jar7 497 515 saa 786 m 811 8[5 Be3 an a2 902 G20 Jo6 1191 ms 1216 [1290 J1268 usx 1287 13_c

media/file17.jpg
Output of
CONV [Comovaranm

media/file30.png
+ M+

v
7
7
4
-4
o
v) 4 CONV
£
£
4
34
“u
2
-4
-4
7
-4
£
£
-t
Lo
-t
-t
34
4
4
£
£
£
A

L 1
e e e e T e e
YN NN Y N N Y N N Y NN Y NN Y YN Y Y NN Y NN Y N Y Y N
DO000000000000S000000000000000N000000000D00C000000000N00000D00000NH000NI0 000NN 00000000000 00000 0000000000000 00000 0000000000 H000N00 00RO 00D 000 NIOD00 00000000 0000000000000 0000000000000000000000!

LR AAAAANIANSARES APAANNARNRS, P A A R A R, AARAANNN P A R R A A LA,

000, .. EO00000000000D, . . 0. ! | I |
| | | | | | | | | |
| i | | i | | | ' | |
' — a -
ﬁﬁﬂiﬁiﬁtﬁﬁiﬁtiﬁ i ratlitiialite B B T T

i {

#ﬁkﬂ"#ﬁhlﬁimIﬂHﬁbﬂiﬂ#D‘.=IWﬂbﬂbﬁI'HW:*I'HEIE!1.‘1I'HHﬂ!ﬁtI'l'lWWWNIﬂmeﬂmmﬁm&dmﬂﬂmﬂmmﬁmﬂm :{mummMuﬂmb:ﬁ:xxtmm:mmm&itdtmmnmmmmmwmﬁmmcmw mmcmmﬂmmmmmmmmm&wmmm
[F'-FF- d 23 4 125 U 127 | 1

B P BT A A A AL B AL A LB B e 0 AP TAIABEAI LA R A AT, T P A R A R A AL R R BRI |

10111311

QOO lll.lIilII‘IIlllilI!GlII-IIllllllllllllllllllllllll!II“II‘lil‘bllbIIIllIbllillll-lIlllblll‘lllll!ll!llllllIlllllIllIllIIlIltlllllllll“ll‘lll‘illb_.llIillilIilIIllII-IIhlIli-llPIl!ll!lllllllllllllllll‘

A A R AR R R TR, AR L LR R e Pt R, Pl Ry Pt AR ek A, AR AR Pt R, Pt

‘I‘Qllillli-l

Pl ity

media/file35.jpg

media/file48.png
Computer

UART Data
Logger

FPGA Board
External TOP CNN N P)
Interface Module -segment

(b)

media/file27.jpg
0-.

"™ -

)

~ il

media/file3.jpg
_j:w_l..’t':'".'

media/file22.png
Multiplier Bank

Feature
Buffer

Input Feature E " E Output Data
data ___+ |Multiplier |} | Adder o
Feature " :': [0] E [0]
Buffer ' L
N —\! [)OutputData
P|Multiplier |} [Adder m
[1] : I—» [1]
; /1 —
S E . : . .
- N 4 E Output Data
f;:f:::"l > Mnltiplierl i |Adder | v
= [fuput Weight! . g
memory '\ NI ' r b \
b enen 4 L...... s F
k._“_.a
' N
FC Controller o
Read Signal Write Signal
\ J
F 3

Enable Signal

media/file19.jpg

media/file33.jpg
®

media/file32.png
% JE7] i i 3
7] lis 3 7] E Ea B . . .
: i Qut = Y in+ kernel + biasg
P 00000 00000¢... V000 HOCD .. 0000, K000, P000. 000, POD, . HO0D., D000, 0000, 0000, 0000, 0000, 0000, Do), o0, 0000000000000 0000000R000000000045 I

|+

n

-
-
.
ot
0
v
-i

+

- 00000000, D000 0000, D000, 0000, D000 . 0000, D000 0000, L0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, D000 . 0000, 0000, 0000, 0000 0000000000000 000000L
['IV()I ution OU LpUL 1 W01 731 101 257 507 b1 451 27 731 Fa 151 277 257 ¥ =

-]

media/file14.png
Buffer vector [

r ﬁ
[8191:0] DATAO0[7:0]]
g DATAIL[7:0] _ RESULTO[7:0
; » MUX [0] LN
DATA31[7:0],_
- \
*
DATAO0[7:0] h
DATA1[7:0] _ RESULTO0[7:0]
" 1 MUX [1] >
DATA31[7:0]
“\ J
3
x[4:0] > MUX
DATAO0[7:0]
DATAI[7:0] _ RESULTO[7:0]
. » MUX [2] >
DATA31[7:0] J
- \
DATAO[7:0] _
DATAI[7:0] _ SULTO[7:0]
DATA31[7:0
resef —— L]= J L
"

v[4:0] >

Value out[7:0]

-

media/file37.jpg

media/file46.png
Py th s ep e
Al Al Ay
A

R el ‘-'

|

5
,:j,,

=3
s

£

B aai
Blipanct B

b kTR

i_.-

PO

5,—.

’- .
- sy —

W i

3 - |

Lot pes A U

£

| - e 3 Y. R <
FHIR . v e . Lre T " 1] 3 .
5108 1 L p- % 3 - { HE L& LI K} 1) L R 1 ;
f | : . % - 2 ¥ I g i r -
i , ; - ! | q " I 4 : rYt | 4 ') 1 |]
I i) : - t 4 - e . :
sty oy ! i * i oF 4 : A
e] : § ¥ 4 i : - Tigs i N L
R e S W 1100 o1 R ; x . : i | :
. , v : i Ll - 343 3 i :
: ! i i ma ¥ BT -
A i . H- Fage =g & SNy 4 . o 15 risacy s
: : i il - . i Al — E o
' N 3 o + : ay r |] T , : .

media/file45.jpg
wwigl'g

media/file16.png
Out [21:0]

Multiplier
Bank Adder Tree
In [255:0] — 'E‘ﬁ‘. ——| Mult = add add add add
Kernal [255:0] = 33:::: ;l_, 0] [0]
Bias[21:0] >
reset sy Mult %I—. :
operant_a[7:0] =+ [1] .
operant_b[7:0] .
ko Mult . .
—p—p . .
operant_ ar" 0] > [2] add }—]
operant_h[7:0] .
cock=—>1 Muit . .
operant_a[7:0] =5 [3] *
operant_b[7:0] =
;'9!%;: ;; Mult F
t
overantbi7oj——p| 301 add
clock =y Aock
TESEf m— reset _“_; M“]t F‘h
‘, - n'l o
0] [31]

media/file20.png
Enable Signal

b 4

Read Signal f

l Max Pooling Controller

] MP Enable Signal

)

Output of
CONV+
RelLU

[Output]Ilpli Data [f

Output
Registerl lReglsterZJ

/ Input Data[2]

D Compar ator
Output [Output] Input Data[3]|
Registerl lReglsterZJ

s Input Data[4]

")

Qutput Data

Feature

Buffer

media/file5.jpg

media/file31.jpg

media/file25.jpg

media/file0.png

media/file8.png
Enable Signal

Read Signal [

A A

l

Conv Controller

]MP Enable Signal

)

l

-

g N

Multiplier
Bank +

Adder
Tree

. \ | Input
Feature Data | Window
buffers Wrapper
A\
(A
External |« Filter Data
on-board Bias Data
| memory |

v

A

RelLU

Output
Data

Max
Pooling

media/file43.jpg
g Timing Consumption
% 3.5 3.02683
£ 3
£ 3 231135
H 2 1.67533
E 15 1.12616
2 1 5 1361
= 0.5
0
Execution
Time (ms)
= CONVI1+Pooling 231135
u CONV2+Pooling 1.67533
= CONV3 3.02683
uFCl 1.12616
uFC2 0.51361
u CONVI+Pooling u CONV2+Pooling
= CONV3 wFCl

mFC2

media/file34.png
Kernel XS0

ﬂ(ﬂﬁ({(ﬁ(t(((((ﬂﬁﬂt(ﬁtﬂmtmt (l¢1ﬂﬂm{(l{mﬂi{m{ﬂ(lﬁCﬂi(t(({(!ﬂm
000 0010

100101011001001

I (ttiﬁﬂW({(Itl{ﬂ(l(ﬂﬁl(ﬁﬂﬂtﬂ(lim(ﬂﬁ(ti(i(ﬁ({((((ﬂ(ﬁ(

10001010100100

(Mtﬂ#ﬁﬂﬂtﬂ{Mﬂﬂ(ﬁﬂ(ﬂ(ﬂﬁﬁw

001010 011001100

1
!(Htt(((tl(ﬁﬂﬂﬁﬂtﬂ(Cﬂtﬁﬂﬂﬂlﬂ{ﬂm)"ﬂtﬁ(i{lﬂw’fgﬁt(ﬁ(tf.ct((((tﬁl(liilﬁtﬁ((W(ﬂﬂ(Ctﬂ(mﬂ{ﬂ{tﬂﬁﬂ(iﬂ(ﬂiKHtﬁt*.':l'#If.t(l(#’(ﬂﬂfW(Hﬂ(ﬂﬂﬂ#H{Cmﬂ{m{C(WiﬁﬂﬁﬁﬂOiﬂ(Hﬂt(i(ﬂ(ﬁCOZ(Mﬂtﬁ{ﬂﬂﬂ(ﬂ{ﬂ(HWI{((#ﬂﬁﬁﬁﬁﬁ(iﬂ(ﬂﬁt((#iittﬁi(lm(((«#flﬁlmt(Wﬂ(Hﬂ(HH(ﬂi(tﬂtﬂﬁﬁlﬁtﬂﬂtﬁﬂiﬂttmlﬁﬁtl(l((Wﬂ((ﬁl(HﬂmmmWCWIl{ﬂﬂ({({ﬁ(ﬁ(ﬁt(ﬁ(ﬂtﬂHﬂul(t((MZIﬂWC(W(M

e e e
[27) PR P I 5B 7 1) SO FEI (I (R) i T Jos 16

3

/uut/window_inst/ e @ 18339130 ps /TB NDOW/uut/window_inst/w 28 ps
{212 191 16‘ 121 67} {196 171 139 99 51} [1"5 148 118 82 41} {149 126 99 68 36} {139 117 92 &3 34)_(0 20 55 EE 117) {3 27 63 97 126} {15 44 E3 120 150} (30 66 108 146 174} {48 90 134 169 193}

R 62 1010000110001
R R R 212
sim:/TB_TOP_WINDOW/uut/window_inst/window_wire @ 20457017 p
{212 191 162 121 67} {198 171 139 99 51} {175 148 118 82 41} {149 126 99 68 36} {139 117 92 63 34)

+) p window_wire {212 191 162 12...

sim: ,’IB _TOP WINDOW/uut/window inst/window_shift_inst/buffer reg @ 21057017 ps=

3l 0 2 15 30 2B 68 B8 107 119 124 129 137 144 152 158 163 168 169 168 160 144 123 104 €6 70 S7 45 35 27 20 16 14
g : 20 27 44 BE 80 116 141 165 182 192 199 204 208 212 216 220 224 226 227 222 206 185 164 142 122 105 89 74 €1 47 34 29
29 : 55 B3 B3 10F 134 160 184 206 219 224 225 225 223 221 220 221 223 227 233 236 230 21% 207 193 178 162 145 127 107 83 60 51
28 : BE 97 120 146 1659 190 207 221 224 218 210 201 191 182 174 170 169 172 180 188 195 200 202 202 199 195 186 173 155 126 95 83
27 117 126 150 174 193 207 214 216 207 189 170 151 133 118 105 98 94 96 105 116 130 146 161 176 189 201 205 203 191 161 126 113
26 137 147 172 194 208 214 211 199 178 148 119 94 72 54 41 33 30 32 37 47 62 81 105 132 159 187 206 217 215 187 150 137
25 :SE|ECtEd Window 145 155 183 206 217 218 208 186 157 118 84 56 34 19 9 3 1 1 1 6 16 32 56 87 123 165 198 221 227 203 167 154
24 }(ernel X= 27 145 155 184 208 219 220 208 1684 151 108 72 46 28 16 10 6 6 5 1 0 2 11 31 62 99 145 184 215 229 210 176 165
23 143 153 182 206 217 218 206 181 147 102 66 43 28 20 18 17 19 17 8 3 3 11 30 59 93 136 172 202 219 205 178 169
22 }(Ern8| Y= 2?143 153 179 202 212 213 202 179 145 100 64 44 33 27 28 30 35 34 24 17 17 24 41 66 96 132 164 194 212 202 180 172
21 : 149 157 181 201 209 208 195 173 141 98 65 48 39 37 39 43 50 49 37 28 29 37 53 75 101 133 162 191 209 202 184 178
20 : 149 157 178 196 202 200 187 164 133 91 59 45 39 39 43 50 59 58 44 34 33 40 54 75 101 132 161 189 208 205 192 188
19 & 147 155 178 197 202 199 187 167 136 92 59 43 36 36 42 48 55 54 40 31 32 40 57 €1 111 146 177 203 219 212 195 1l@s
18 : 141 151 178 201 209 208 197 176 143 97 61 45 36 34 37 42 49 48 37 30 31 40 58 84 115 152 184 210 224 214 194 188
17 : 136 148 180 206 218 219 209 188 155 105 67 47 37 32 34 38 45 46 37 32 33 41 59 BS5 117 155 187 213 227 215 192 184
16 : 138 150 183 211 224 227 220 203 169 116 74 51 37 31 32 36 42 44 40 37 38 44 61 B6 117 157 190 217 230 216 190 182
15 : 144 156 186 212 224 227 223 210 177 123 B0 55 39 32 32 34 40 44 43 43 43 48 63 86 117 159 193 220 234 220 194 186
14 : 149 159 185 208 220 223 220 207 176 123 B0 55 40 32 30 32 38 42 44 45 45 49 63 B85 116 156 190 219 235 223 199 191
13 : 152 160 184 204 213 216 211 198 167 116 75 52 37 29 28 30 36 40 40 40 41 46 60 83 112 150 183 212 228 218 197 189
12 = 153 160 181 198 205 205 197 182 151 104 €7 47 35 30 30 33 37 39 35 33 34 39 55 79 109 147 180 208 223 210 185 177
11 : 153 160 178 192 195 1%2 180 160 130 B9 5B 42 34 33 36 39 43 41 32 26 27 34 51 76 108 147 180 206 218 201 172 162
10 : 153 159 176 188 191 185 170 147 117 B0 53 41 37 37 41 44 47 43 28 19 21 31 50 78 110 148 179 202 212 194 165 155
9 : 151 158 177 192 195 190 174 148 118 B1 54 40 34 34 37 40 42 38 22 13 18 32 53 B1 112 147 176 199 210 197 175 147
g : 143 151 175 195 202 199 184 158 127 B89 59 43 34 28 27 26 27 22 9 4 17 38 63 92 122 154 180 200 210 198 176 168
T = 128 139 168 194 208 211 199 175 145 106 74 52 36 25 18 14 14 12 5 7 27 54 82 113 141 169 191 207 213 198 173 165
6 : 111 124 158 191 213 225 223 207 181 142 106 78 55 38 27 22 22 24 26 35 60 90 119 147 172 193 208 219 220 200 172 162
S & 96 110 148 184 212 231 239 235 218 185 154 126 102 €4 72 67 69 73 78 90 114 142 165 186 202 214 220 222 216 193 165 155
- 84 98 133 169 199 223 239 246 240 220 199 181 165 151 141 137 139 143 149 158 174 192 205 215 221 223 220 212 1898 175 143 139
3 : 70 81 110 141 170 197 219 237 243 239 232 225 217 211 206 204 206 208 212 216 222 227 229 228 224 218 207 I51 171 148 1d6 117
2 : S0 59 B1 107 134 161 188 213 230 239 245 248 249 249 248 248 249 250 252 252 248 243 235 225 213 200 183 182 133 118 5% 24
l: 34 39 53 71 93 119 146 175 197 212 224 233 240 243 245 247 249 250 252 250 241 230 216 200 182 164 144 121 95 £2 &f &3
0: 35 37 40 46 55 68 84 102 117 131 143 153 162 171 179 185 189 192 195 194 186 175 160 143 125 105 86 €7 51 41 3& 34

(b)

