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Abstract: This article presents the results of research with the main goal of identifying possible
applications of edge computing (EC) in industry. This study used the methodology of systematic
literature review and text mining analysis. The main findings showed that the primary goal of EC is
to reduce the time required to transfer large amounts of data. With the ability to analyze data at the
edge, it is possible to obtain immediate feedback and use it in the decision-making process. However,
the implementation of EC requires investments not only in infrastructure, but also in the development
of employee knowledge related to modern computing methods based on artificial intelligence. As
the results of the analyses showed, great importance is also attached to energy consumption, both
in ongoing production processes and for the purposes of data transmission and analysis. This
paper also highlights problems related to quality management. Based on the analyses, we indicate
further research directions for the application of edge computing and associated technologies that
are required in the area of intelligent resource scheduling (for flexible production systems and
autonomous systems), anomaly detection and resulting decision making, data analysis and transfer,
knowledge management (for smart designing), and simulations (for autonomous systems).

Keywords: edge computing; intelligent manufacturing; digital factory; Industry 4.0

1. Introduction

Introducing new and improved tools, machines, devices, or techniques into production
processes that increase work efficiency or save raw materials or energy leads to technical
progress. In the history of industry so far, we can distinguish four breakthrough concepts
that have had a huge impact on production systems: Industry 1.0—water and steam mech-
anization; Industry 2.0—mass production based on electricity; Industry 3.0—increasing
production automation based on digitization; and Industry 4.0—digitalization of manufac-
turing systems.

Today’s industry is shifting towards a green and digital transformation. There is much
emphasis on the implementation of sustainable development. Three aspects of sustainable
development have been discussed in the literature: economic, environmental, and social.
Industry 4.0 technology can support all of these [1]. Sustainable development is associ-
ated with all technologies applied to develop the economy with simultaneous care for the
preservation of the natural environment and respect for people [2]. Consequently, there is
a constant search for approaches and technologies that can support these activities. For
example, the concept of zero defect manufacturing, widely explored in [3], can support all
aspects of sustainability. This is because, by preventing defects, we prevent the waste of
materials and energy, and, thus, excessive costs and additional work that would have to be
completed to eliminate defects or to produce a new product without defects. Therefore,
the goal is to prevent defects and achieve correct production the first time. Some technolo-
gies are based on the analysis of previously collected data to predict problems, such as
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virtual metrology, which estimates the results of a process based on previous metrological
measurements rather than performing them in real time [4]. In the case of semiconductor
manufacturing, a machine learning system is used for this purpose [5]. For this to be
possible, it is necessary to collect data for analysis.

It is indispensable to monitor the processes and ensure that the required parameters
of the processes will be maintained throughout the entire production process. For this
purpose, it becomes necessary to implement technologies that will enable data collection
and analysis in real time, so that, if necessary, parameters can be adjusted immediately.
This means that the entire procedure must be carried out at the point of process realization,
that is, at the edge. Therefore, to ensure the quality of the process and products (that is,
zero defect manufacturing), edge computing (EC) must be implemented [6]. Therefore,
it can be said that EC can also support sustainable development. However, for this to be
possible, a digital transformation is necessary.

When analyzing the concepts of Industry 4.0, the literature distinguishes the fol-
lowing categories of technologies on which the concept is based: cyber-physical systems
(e.g., [7]), Internet of Things, big data analytics, cloud computing, fog and edge computing
(EC), Augmented Reality (AR) and Virtual Reality, robotics, cyber security, Semantic Web
technologies, and additive manufacturing [8,9].

While browsing the available publications, we notice that some researchers had fo-
cused on creating taxonomies for Industry 4.0 technologies that supported the digital
transformation and industrial needs [10,11]. Some researchers studied business use cases or
consulted company reports and white papers [12]. In [13], the authors, through a systematic
literature review, looked for the links between Industry 4.0 and sustainability, while in [14]
the authors studied challenges and risks related to Industry 4.0. Additionally, trends and
directions for artificial intelligence application in industry [15] and the Industrial Internet
of Things [16] have been studied through systematic literature reviews. Similarly, with
the use of literature review and multiple case studies, the authors of [17] discussed big
data analytics in industrial applications. There are also papers that have widely discussed
the use of cloud computing in industry and related security problems [18,19]. However,
we did not find any publications presenting literature reviews related to edge computing
application in industry. However, for example, in [20] the authors presented a comparison
of edge computing architectures found throughout survey-specific areas of application, but
edge-computing-related technologies were not summarized.

The main purpose of this study is to identify the possibilities of using edge computing
in industry on the basis of literature review. The analysis was conducted to answer the
questions of where and how enterprises can apply EC to produce more economically and
to respond faster to customer needs, as well as to decrease negative influences on the
environment and provide a friendlier workplace for employees.

This paper consists of five sections. The next section presents the goal and methodol-
ogy of the study, including research questions, systematic literature review methodology,
text mining procedure, and qualitative analysis methodology. The third section presents the
research results and the analysis. Then, discussion on the research questions is described.
The last section presents conclusions.

2. Goal and Methodology of the Research
2.1. General Overview and Research Questions

The main goal of this study was to identify the areas of possible EC application in the
manufacturing industry.

The following steps were taken as part of the research:

1. A systematic literature review in the field of EC;
2. Text mining analysis of identified keywords;
3. Qualitative analysis of abstracts and full texts in terms of technologies used in pro-

duction areas.
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The research was conducted to answer the following research questions:
RQ1: What topics are discussed in the literature in relation to edge computing (EC)?
RQ2: What are the possibilities of using EC in the manufacturing industry?

2.2. Systematic Literature Review

In this paper, a systematic literature review was applied. A systematic review allows
for a critical and reproducible summary of the results on a specific topic [21].

For the research, three databases were searched: Web of Science, IEEE Xplore, and
Scopus. The following inclusion criteria were used in the process: (1) language (English),
(2) search in (title, abstract, and keywords), and (3) access (works available in full version).

The following combinations of keywords were used in the searching process: “edge
computing” AND “manufacturing”, “edge computing” AND “quality control”, “edge
computing” AND “machining”, and “edge computing” AND “production”.

The number of publications that appeared in the first search in each database after
using a specific combination of keywords is presented in Table 1.

In order to limit the number of publications to those most related to the analyzed
issue, the following categories were excluded: agriculture multidisciplinary, biotechnol-
ogy applied microbiology (Web of Science), agricultural and biological sciences, earth
and planetary sciences, environmental science, medicine, multidisciplinary, and social
sciences (Scopus).

The data extraction plan is presented in Figure 1.
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Table 1. Number of results displayed when searching electronic databases.

Keywords Combination Web of Science IEEE Xplore Scopus Total

“edge computing”
AND “manufacturing” 146 259 254 659

“edge computing” AND “production” 162 328 281 771
“edge computing” AND “quality control” 6 8 90 104

“edge computing” AND “machining” 13 85 16 114

After applying the exclusion criteria, the following results were obtained: 326 pub-
lications in Web of Science, 680 publications in IEEE Explore, and 585 publications in
Scopus. Then, a joint database was prepared from which duplicates were removed. Thus,
903 publications remained. Then, the publications without keywords were eliminated.
Thus, 722 articles were left.

2.3. The Text Mining Procedure

Text mining analysis was performed using VOSviewer [22]. A map was created based
on the bibliographic data, i.e., keywords, from 722 publications. It required the preparation
of one file with data from all the searched databases. Scopus file structure was applied.
For the type of analysis and the counting method, author keyword co-occurrence and full
counting were selected. In order to identify the most frequently discussed topics, it was
assumed that only author keywords that occurred at least 10 times would be taken into
consideration. A total of 2039 different author keywords were identified, and 34 of these
met the threshold. Table 2 presents a list of the identified author keywords with information
about their occurrences and total link strength.

Table 2. An initial list of terms with a threshold of 10 occurrences.

Keyword Occurrences Total Link
Strength Keyword Occurrences Total Link

Strength

edge computing 346 397 resource allocation 18 33
fog computing 97 186 big data 14 31

cloud computing 76 166 computation offloading 18 29
Internet of Things 75 146 cyber-physical systems 15 28

Industry 4.0 60 129 Industrial IoT 10 27
IoT 47 91 security 14 27

blockchain 36 72 Industrial Internet of Things (IIoT) 22 26
smart factory 23 56 resource management 12 26

smart manufacturing 24 52 game theory 12 25
Internet of Things (IoT) 31 50 digital twin 12 21

machine learning 21 45 energy efficiency 11 21
IIoT 16 43 SDN 14 21

mobile edge computing 37 41 latency 10 20
deep learning 23 40 anomaly detection 11 16

Industrial Internet of Things 25 40 deep reinforcement learning 11 15
5G 23 35 mec 16 14

artificial intelligence 20 35 mobile edge computing (mec) 17 10

It was noticed that there are words with identical meanings in the table. Therefore, a
list of synonyms was developed, and their initial name was indicated (Table 3). Then, the
final list of author keywords most often appearing in the analyzed articles was prepared
(Table 4). The specified terms were further analyzed. In Section 4.2, we give definitions of
these terms. Then, in the next section, the network of terms is visualized.
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Table 3. The list of synonyms and their valid names.

Synonyms Valid Name Synonyms Valid Name

Industrial Internet of Things (IIoT)
Industrial Internet of Things; IIot

Industrial IoT
Industrial IoT (IIoT)

Industrial Internet of Things (IIoTs)
Industry IoT

Industrial Internet of Things

Internet of Things
Internet of Things (IoT); IoT

Internet of Things (IoT)
Internet of Things

Mobile edge computing; MEC
Mobile edge computing (MEC)
Mobile-edge computing (MEC)

Mobile edge computing

Table 4. The final list of terms.

Keyword Occurrences Total Link
Strength Keyword Occurrences Total Link

Strength

edge computing 346 397 resource allocation 18 33
Internet of Things 144 258 big data 14 30

fog computing 97 180 computation offloading 18 30
cloud computing 76 163 cyber-physical systems 15 28

Industrial Internet of Things 78 139 security 14 28
Industry 4.0 60 127 resource management 12 27
blockchain 36 74 game theory 12 26

mobile edge computing 73 74 digital twin 12 21
smart factory 23 56 latency 10 21

smart manufacturing 24 52 SDN 14 20
machine learning 21 44 energy efficiency 11 21

deep learning 23 40 anomaly detection 11 16
artificial intelligence 20 35 deep reinforcement learning 11 15

5G 23 34

The most common terms identified through text mining were further analyzed and
are presented in the next section.

2.4. Qualitative Analysis of Data

For qualitative analysis to limit the number of papers for deep review, from 722 pub-
lications, we chose only the papers registered in the Web of Science database. We can
consider this a limitation of our study because, in non-reviewed papers, other applica-
tions can be presented. However, we decided that adopting this rule would be clear that,
when looking for further possible application, it would be advisable to read articles from
other databases.

After analyzing the abstracts of publications, the publications related to the manufac-
turing industry were selected for further analysis. The goal of the analysis was to identify
the applications of EC in that industry.

3. The Research Results and Analysis
3.1. Topic Definitions

The most common terms identified through text mining are defined as follows.
Edge computing (EC) is the so-called marginal calculations where data are generated

and immediately processed at the edge of the network. This technology is necessary to cope
with the growing number of communicating devices connected to the network. The goal is
to avoid high latency and bottlenecks in cloud computing traffic in networks where several
devices both access and generate large amounts of data. Edge computing also improves
network support for mobility, security, and privacy [23].

Cyber-physical systems (CPS) are intelligent computer systems that are highly con-
nected, and their physical and computational elements work together [24].
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Internet of Things is a system that is connected by a network of things, e.g., machines
or devices. Due to this, they are able to communicate with each other by processing,
collecting, or exchanging data [8].

Industrial Internet of Things (IIoT) is the integration of different IoT technologies
into industrial manufacturing processes to ensure a high level of efficiency and automation
which leads to economic growth. In IIoT, communication technologies are present within
the whole manufacturing lifecycle. IIoT is a key element of CPS, supporting the ability to
collect data, compute, transfer information, and control processes [25].

Cloud computing is a technology for storing and processing data using scalable
services on the Internet [8].

Fog computing is an extension of the concept of cloud computing that shifts comput-
ing to the edge of the network. It is closely related to edge computing and the Internet
of Things and has all their advantages. It is the link between edge devices and data
centers [26].

Computation offloading is the offloading of calculations by moving the location of
execution from the cloud to the edge of the network in order to accelerate them and reduce
delays [27].

Blockchain technology is based on the use of blockchains, which are shared distributer
registers. It is used in smart and digitally connected factories to store information about
resources and processes. Blockchain technology ensures that the processes are more au-
tonomous, efficient, faster, and secure by providing safe communication mechanisms (a
public and private key) to ensure authentication [28].

Smart factory enables high personalization of production with little participation from
employees. Cyber-physical production systems are constructed in such a way that they can
react to almost any change in the market in a short time [29].

Smart manufacturing is a new form of production that integrates current and future
production assets with sensors, computing platforms, communication technology, control,
simulation, modeling, and data-intensive computing with manufacturing engineering [30].

Artificial Intelligence (AI) is, according to Andreas Kaplan and Michael Haenlein,
“the ability of a system to correctly interpret data from external sources, learn from them
and use this knowledge to perform specific tasks and achieve goals through flexible adap-
tation” [31].

Machine learning (ML) is the process of constructing computer programs that are
capable of learning from data. Appropriate algorithms allow the software to automate the
process of data acquisition and analysis for the purpose of improving and developing its
own system [32]. ML can have a positive impact on products and processes by enabling
effective prediction of their behavior based on past experience, data, and information [33].

Deep learning is an ML category where algorithms (usually artificial neural networks)
are composed to form communicating layers. Each layer is taught to transform input into a
more meaningful concept (e.g., pixels—edges—a shape—a flower) [34].

Deep reinforcement learning is when techniques of deep learning are combined with
reinforcement learning methods and used to represent problems related to the introduction
of raw multidimensional data [35].

Mobile edge computing is a concept that combines elements of information tech-
nology and a telecommunications network, in which computing, memory, and network
resources are integrated with a cellular base station [36].

5G is the fifth generation cellular network standard that is expected to transmit data
faster, increase the connectivity spectrum of devices, increase throughput, lower costs,
increase consistency, increase quality, and reduce data transmission delays [37].

Big data is, according to Jarosław Woźniczka, “diverse and variable data sets created
thanks to modern telecommunications devices that are stored, processed and analyzed
using advanced information technology” [38].

Resource allocation is the allocation of the required resources to the nodes in the
network according to the possibility of their use [39].
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Resource management is the efficient and effective development of an organization’s
resources when they are needed [40].

Game theory is a mathematical theory of socio-economic phenomena that shows
interactions between decision-making units. This theory is based on structural procedures
of mathematics and addresses problems from various fields of application [41].

Digital twin is a virtual model that is fully compatible and consistent with a physical
object. It simulates object behavior and performance in a real-time environment [42]. Digital
twins support sustainable development by saving resources, preventing waste, and, thus,
optimizing the effort involved [43].

SDN (software-defined networking) is a programmable network building technology
that enables central management and control. It consolidates all control into one node—a
network controller (no distributed control architecture). Network relay devices no longer
participate in network control and only forward data packets [44].

Anomaly detection uses data mining techniques to detect surprising behaviors hidden
in data. When applied to cybersecurity, anomaly detection increases the probability of
detecting an attempted break-in or attack [45]. Machine failure can be predicted in machine
monitoring with anomaly detection.

3.2. Network and Its Visualization

Based on the mapping of keywords that appeared at least 10 times, the network
visualization shown in Figure 2 [46] was obtained after the use of thesaurus grouping. In
the visualization, each circle represents a specific term. The area of the circle indicates the
number of publications with the appropriate term. The thickness of the line joining the
terms indicates the total strength of the term co-occurrences in different works [47].
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Terms that often coexisted with each other are placed close to each other in the
visualization. The terms were grouped into five clusters. The blue cluster in the left area
of the visualization consists of terms related to the decrease in data transfer time. The red
cluster in the top area covers AI-related terms. In the right and central visualization areas,
the green cluster consists of manufacturing-system-related terms. In the central part of the
yellow cluster are terms related to locations where data are computed. At the bottom of the
map, the purple cluster contains terms related to data volume. The conducted mapping
gives a general view of issues related to EC.

The numerical values of term weights and link strengths are presented in Tables 5 and 6,
respectively. The weights inform about the importance of the terms. Here, it refers to the
number of occurrences of a term in publications. The link strength provides information
about the degree of association between the term Edge Computing and a term shown in the
first column of Table 6. The absolute value is the number of publications in which both
terms occurred in the keywords section. Relative values were calculated as a percent of the
maximum value from the given category.

In Table 5, the absolute values of the weights do not sum up in a table row. For
example, the number of occurrences of the term Edge Computing in all three databases was
346 and 346 6= 138 + 180 + 218. The reasons for this phenomenon are as follows:

1. The same publication could have been indexed in multiple databases;
2. The number of occurrence of a term in a database was less than 10 (in such cases, the

term was not included in the results).

Table 5. Term weights in the analyzed databases.

Term
All Databases WoS IEEE Explorer SCOPUS

Weight Relative
Weight Weight Relative

Weight Weight Relative
Weight Weight Relative

Weight

latency 10 2.9 0 0.0 0 0.0 0 0.0
anomaly detection 11 3.2 6 4.3 0 0.0 0 0.0

deep reinforcement learning 11 3.2 0 0.0 7 3.9 0 0.0
energy efficiency 11 3.2 0 0.0 8 4.4 0 0.0

digital twin 12 3.5 7 5.1 0 0.0 9 4.1
game theory 12 3.5 0 0.0 9 5.0 0 0.0

resource management 12 3.5 0 0.0 9 5.0 0 0.0
big data 14 4.0 4 2.9 10 5.6 7 3.2

SDN 14 4.0 0 0.0 8 4.4 6 2.8
security 14 4.0 0 0.0 11 6.1 0 0.0

cyber-physical systems 15 4.3 5 3.6 7 3.9 10 4.6
computation offloading 18 5.2 0 0.0 15 8.3 6 2.8

resource allocation 18 5.2 0 0.0 14 7.8 6 2.8
artificial intelligence 20 5.8 5 3.6 9 5.0 14 6.4

machine learning 21 6.1 11 8.0 14 7.8 18 8.3
5G 23 6.6 7 5.1 10 5.6 14 6.4

deep learning 23 6.6 8 5.8 14 7.8 12 5.5
smart factory 23 6.6 11 8.0 13 7.2 13 6.0

smart manufacturing 24 6.9 13 9.4 13 7.2 19 8.7
blockchain 36 10.4 10 7.2 23 12.8 15 6.9

Industry 4.0 60 17.3 17 12.3 38 21.1 33 15.1
mobile edge computing 73 21.1 12 8.7 50 27.8 31 14.2

cloud computing 76 22.0 20 14.5 45 25.0 38 17.4
Industrial Internet of Things 78 22.5 26 18.8 57 31.7 34 15.6

fog computing 97 28.0 25 18.1 70 38.9 37 17.0
Internet of Things 144 41.6 47 34.1 79 43.9 91 41.7
edge computing 346 100.0 138 100.0 180 100.0 218 100.0
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In Table 6, the sum of the absolute values in the column link strength for all databases
was 397, which was the total link strength for the term Edge Computing (see Table 4, row 1).
However, as in Table 5, the absolute value of link strength for a selected term does not sum
up. The reasons are identical to those mentioned earlier.

Table 6. Link strength between a term and the Edge Computing term.

Term

All Databases WoS IEEE Explorer SCOPUS

Link
Strength

Relative
Link

Strength

Link
Strength

Relative
Link

Strength

Link
Strength

Relative
Link

Strength

Link
Strength

Relative
Link

Strength

energy efficiency 2 2.5 0 0.0 0 0.0 0 0.0
mobile edge computing 2 2.5 1 2.6 1 2.6 1 1.8

latency 3 3.8 0 0.0 0 0.0 0 0.0
SDN 3 3.8 0 0.0 3 7.9 1 1.8

computation offloading 4 5.0 0 0.0 3 7.9 3 5.4
resource management 4 5.0 0 0.0 2 5.3 0 0.0

security 4 5.0 0 0.0 3 7.9 0 0.0
5G 5 6.3 3 7.9 2 5.3 3 5.4

anomaly detection 5 6.3 1 2.6 0 0.0 0 0.0
deep reinforcement learning 5 6.3 0 0.0 2 5.3 0 0.0

game theory 5 6.3 0 0.0 4 10.5 0 0.0
big data 7 8.8 3 7.9 5 13.2 5 8.9

resource allocation 7 8.8 0 0.0 4 10.5 4 7.1
digital twin 8 10.0 4 10.5 0 0.0 7 12.5

cyber-physical systems 9 11.3 3 7.9 4 10.5 5 8.9
deep learning 10 12.5 3 7.9 6 15.8 5 8.9

machine learning 10 12.5 5 13.2 6 15.8 9 16.1
artificial intelligence 13 16.3 3 7.9 6 15.8 9 16.1

smart factory 16 20.0 9 23.7 8 21.1 9 16.1
blockchain 21 26.3 8 21.1 12 31.6 12 21.4

smart manufacturing 21 26.3 12 31.6 11 28.9 18 32.1
Industry 4.0 30 37.5 10 26.3 16 42.1 18 32.1

fog computing 37 46.3 17 44.7 18 47.4 23 41.1
Industrial Internet of Things 40 50.0 19 50.0 25 65.8 22 39.3

cloud computing 46 57.5 17 44.7 19 50.0 31 55.4
Internet of Things 80 100.0 38 100.0 38 100.0 56 100.0

3.3. Identified Challenges and Technologies Related to EC in Production Systems

An analysis of the full articles retrieved from the WoS database allowed for the
identification of EC industrial applications and technologies related to the EC. The results
of the analysis are summarized in Table 7.

Apart from edge computing, the following technologies were indicated in the analyzed
works: 5G, blockchain, AR, Mixed Reality, HoloLens, discrete-event simulation, big data,
CPS, data analytics, data mining, cloud computing, fog computing, fog-edge computing,
AI, ML, deep learning, reinforcement learning, deep reinforcement learning, inverse rein-
forcement learning, neural networks, deep neural network, convolutional neural networks,
distributed ensemble learning, dynamic knowledge bases, emotion interaction, facial recog-
nition, image mining, mobile cloud computing, mobile edge computing, mobile edge-cloud
computing, particle swarm optimization, evolutionary algorithm, programmable computer
network (SDN), and programmable gate arrays.
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Table 7. EC industrial application and related technologies.

Industrial Application Source Technologies

Machine-to-machine communication [48,49] Cloud computing, discrete-event simulation
Human–machine interaction [50] CPS

Front-end IoT devices [51] Fog computing
Robot calibration, dynamic reorganization, and

reconfiguration of the assembly line [52,53] Deep learning

Creation of a digital twin, adaptive production,
Digital Shadow [54–59] Data mining, dynamic knowledge bases, cloud and

fog computing
CNC machining machine simulation [60] AR, CPS, HoloLens

Discovery of data-driven solutions, efficiency and
flexibility of IT systems, IT system development [61,62] Mixed Reality

Sharing knowledge and services in production ecosystems [63] Blockchain
Improvement of the efficiency of production process [64,65] ML, AI, emotion interaction

Product design evaluation, AM-based product
development process [66,67] Cloud computing, AI

Product damage diagnostics, diagnostics and prognostics
in industrial applications [68,69] Deep learning, distributed ensemble learning

Diagnostics of machine part damage [70,71] Deep neural network,
Assessment of the condition of working aircraft engines

and predicting remaining service life of components [72] deep learning

Monitoring and damping of spindle vibration [73] Cloud computing
Reduction of energy consumption, planning of energy
resources, minimizing delays and power consumption [64,74,75] AI, Mobile edge computing, particle

swarm optimization
Real-time data processing, real-time industrial automation

monitoring, real-time surface roughness monitoring,
monitoring and damping of spindle vibration, analysis of

the thermal characteristics of machine tool spindles

[73,76–81] CPS, cloud computing, 5G, programmable computer
network (SDN)

Intelligent manufacturing, production automation, CPS,
increasing efficiency, automation, remote operation and

monitoring, remotely controlled manufacturing,
edge-cloud cooperation, optimizing response time of

microservice-based applications, intelligent and
flexible manufacturing

[82–102]

Cloud computing, data analytics, blockchain, CPS,
AI, deep learning, reinforcement learning, particle
swarm optimization, mobile edge computing, fog

computing, SDN

Visual inspection of products, image edge detection and
defect detection, identification and classification of defects,

decision support system for product quality control,
virtual metrology system, reducing inspection cycle time,

quality assurance

[103–110] ML, cloud computing, convolutional neural network,
fog computing, deep learning, image mining

Visual system for product sorting [111] Convolutional neural networks, cloud computing
Data acquisition and management, data transfer, data

control automation, and security improvement [112–119] Fog computing, ML, mobile edge computing, 5G,
deep and inverse reinforcement learning

Improving data security, real-time security monitoring,
shortening data processing time, reducing energy

consumption, anomaly detection, intelligent networks,
cyber attack prevention

[120–125] Programmable gate array, AI, big data, cloud
computing, ML, deep learning

Energy consumption of uploading data, computing
energy waste, efficient data processing, big data real-time

feedback, real-world datasets, industrial network,
industrial wireless network

[126–135] Reinforcement learning, mobile edge-cloud
computing, SDN, mobile edge computing

Allocation of resources and machines [136] Evolutionary algorithm
Recognition of facial expressions, image restoration [137,138] Facial recognition, deep learning

Discovery of edge networks, distributed AI as a service,
self-configuration of the network [139–141] AI, fog computing, 5G, SDN, cloud computing

Detection of production anomalies, anomaly detection in
time series data for edge computing, real-time

fault detection
[142–144] Convolutional neural networks, neural networks,

deep learning
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Table 7. Cont.

Industrial Application Source Technologies

Online job scheduling for networks, infrastructure,
dynamic and green scheduling, planning and scheduling

of process and resources allocation and utilization,
real-time scheduling, task sorting by priority and decision

making customized production, cloud MES

[145–156]
Neural networks, fog computing, AI, mobile

cloud computing, reinforcement learning,
cloud computing

Collaboration of heterogeneous robots, autonomous
vehicle, and autonomous mobile robots, machine–cloud

communication, autonomous navigation
[157–164] Cloud, mobile edge and fog-edge computing

Flexible distributed networked production, streamlining
supply chain management [165,166] Cloud computing

4. Discussion
4.1. Topics Related to Edge Computing

The aim of this study was to discover the possibility of using edge computing in
industry based on the existing scientific evidence. The first research question (RQ1) asked
about the topics discussed in the literature in relation to edge computing. The answer
was that the most-discussed topics were connected with the Internet of Things, cloud
computing, Industrial Internet of Things, and fog computing. The topics that were least
discussed in connection with EC were energy efficiency, mobile edge computing, latency,
and SDN. These conclusions were drawn from the analysis of Table 6 and Figure 3.

Table 8. Differences in the relative link strength between all data and individual databases.

Term
Relative Link Strength Differences

∆ WOS ∆ IEEE Xplore ∆ SCOPUS

energy efficiency −2.5 −2.5 −2.5
mobile edge computing 0.1 0.1 −0.7

latency −3.8 −3.8 −3.8
SDN −3.8 4.1 −2.0

computation offloading −5.0 2.9 0.4
resource management −5.0 0.3 −5.0

security −5.0 2.9 −5.0
5G 1.6 −1.0 −0.9

anomaly detection −3.6 −6.3 −6.3
deep reinforcement learning −6.3 −1.0 −6.3

game theory −6.3 4.3 −6.3
big data −0.9 4.4 0.2

resource allocation −8.8 1.8 −1.6
digital twin 0.5 −10.0 2.5

cyber-physical systems −3.4 −0.7 −2.3
deep learning −4.6 3.3 −3.6

machine learning 0.7 3.3 3.6
artificial intelligence −8.4 −0.5 −0.2

smart factory 3.7 1.1 −3.9
blockchain −5.2 5.3 −4.8

smart manufacturing 5.3 2.7 5.9
Industry 4.0 −11.2 4.6 −5.4

fog computing −1.5 1.1 −5.2
Industrial Internet of Things 0.0 15.8 −10.7

cloud computing −12.8 −7.5 −2.1
Internet of Things 0.0 0.0 0.0
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Figure 3. Relative link strength between the term Edge Computing and selected terms.

Based on relative link strength (RLS) values from Table 6, we evaluated content
differences between individual bibliographic databases. Table 8 presents a proposal of
such an evaluation calculated as an arithmetic difference (the RLS of a term for a selected
database minus the RLS of a term for the whole set) (Equation (1)):

∆ = RLSSINGLE_DB − RLSALL. (1)

where RLSSINGLE_DB is the relative link strength for a single database and RLSALL is the
relative link strength for all databases.

Values of ∆ provide information about the extent to which the content of publications
in a single database differs from the whole set. Negative values of ∆ indicate that there are
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fewer related terms in the given database compared to the whole. In order to obtain an ag-
gregate coefficient of database differences, we proposed calculation of the root mean square
(RMS) for the ∆. The calculated values of RMS∆ were: RMS∆WOS = 5.3, RMS∆IEEE_Ex = 4.9,
and RMS∆SCOPUS = 4.3.

Taking into account the obtained numerical values, the following conclusions can
be proposed:

1. In each of the three databases, the most- and the least-discussed topics related to
the Edge Computing term were the same as mentioned previously (see Table 6, last
four rows);

2. Compared to the dataset composed of WoS, IEEE Xplore, and Scopus, WoS contained
fewer papers in which the term Edge Computing was connected to the terms Cloud
Computing, Industry 4.0, Artificial Intelligence, and Resource Allocation;

3. The IEEE Xplore database had more publications where the term Edge Computing was
connected to the term Industrial Internet of Things and fewer connected to the term
Digital Twin;

4. The SCOPUS database contained fewer papers in which the term Edge Computing was
connected to the term Industrial Internet of Things;

5. The overall content of the considered databases in the context of terms related to EC
was similar. Therefore, for a more-detailed publication analysis, one database can be
chosen instead of the whole set. In such a case, we expect that analysis results will
have an error within the limits of RMS∆.

4.2. Edge Computing Possible Applications

The second research question (RQ2) inquired about the possibilities of using edge
computing in the manufacturing industry. These possibilities were discovered by analyzing
problems discussed in the reviewed publications. After reviewing 119 papers, 32 main
challenges were identified, as presented in Table 7 (Section 3.3). Based on the information
included in Table 7, we proposed to distinguish the following 12 main groups based on the
area of occurrence.

Group 1: intelligent manufacturing organization in a form of CPS that includes process
and data transfer automation, as well as data analytics realized in the cloud and on the
edge. The aim is to improve the efficiency of production processes by remote control and
optimization of response time. Moreover, distributed AI supports edge networks, which
may extend to a supply chain.

Group 2: data management and data security covering data acquisition and transfer,
as well as cyber attack prevention. The goal is to collect data and transfer it securely to
the destination, while ensuring minimum energy consumption. This requires, among
others, implementing appropriate security protocols, identifying threats, and preventing
cyber attacks.

Group 3: real-time data processing to monitor the manufacturing process, machines,
the quality of the manufactured products, or product performance. In the reviewed papers,
different examples were presented, such as monitoring of the work of aircraft engines
and their components or production machines and different characteristics. The aim is to
evaluate the performance, evaluate the condition, or evaluate the life remaining.

Group 4: quality control supported by technologies. The goal is to shorten and
automate quality control processes using historical data, as in the case of virtual metrology
systems [3]. Visual inspection and image recognition are also of great importance in this
group as detection of anomalies in production can be realized in real time.

Group 5: the use of simulation to improve manufacturing processes. Examples
presented in the literature concerned, among others, digital twins that can be used in
simulations or in real production monitoring and adjustment.
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Group 6: improvement of communication and interactions between machines, as well
as between machines and humans. This group is mainly about cooperation remaining
undisturbed by communication breaks or erroneous messages that can cause errors, cause
delays, and generate costs.

Group 7: facilitating IT system development. The main goal is the development of IT
solutions based on data and tailored to needs as much as possible.

Group 8: knowledge management. The goal is to provide relevant knowledge wher-
ever it is needed. An additional advantage is the automatic generation of knowledge based
on data.

Group 9: supporting the designing process. In the presented examples, AI was
applied to support designing processes in the field of decision making.

Group 10: energy consumption and saving in manufacturing and data management
processes. The presented challenges were related to energy savings not only in production,
but also in data processing. The necessity to collect large amounts of data increases the
energy consumption of devices for recording, analyzing, and transferring data.

Group 11: manufacturing process scheduling and resource allocation. The goal
is to involve AI in optimizing the use of resources and planning their involvement in
the implementation of production processes with ongoing monitoring of demand and
immediate response to it. This is connected with lean manufacturing, Just-in-Time, and
pull system concepts, which allow the minimization of resource consumption.

Group 12: robots and autonomous systems. In autonomous and robotic systems,
many decisions are made depending on the situation. An unmanned system must react
appropriately to the situation in order to achieve the set goal.

Based on the research results, it can be said that EC can be applied in different do-
mains. EC is primarily used because of its ability to collect big data and the increased
difficulties with fast data transfer. Although 5G technology is more and more widely used,
by implementing EC, it was discovered that it was no longer necessary to transfer all data
to the central system, since it can be used on the edge. This can, for example, reduce energy
consumption, as well as the space needed for data collection. At the edge, the data can
be used in real time, and only those that are unique in some way can be collected and
transferred to a central system.

4.3. Identified Directions for Further Development and Research in the Areas of Edge
Computing Application

The identified challenges (which are described in the previous section) in which EC
was applied are summarized in Figure 4. The identified applications of EC are related
to CPS. The processes realized in CPS must be scheduled. Therefore, an intelligent re-
source scheduling strategy can be applied to fulfill the real-time requirement needing to be
taken into consideration in smart manufacturing supported by edge computing [145]. The
required adjustments to the production schedule may result from changes in customer de-
mand, as well as the quality of the production. This means, for example, that the production
of a non-conforming product will generate an automatic schedule change to ensure that a
certain number of good products are produced for customers. This is an important direction
of development because the introduction of such solutions will eliminate overproduction
resulting from the production of more products caused by production planning based on
statistics from historical data on the percentage of non-conforming products produced.
This is related to the detection of production errors in real time, the identification and clas-
sification of defects, and a decision support system in product quality control. Therefore,
the development of methods and tools facilitating product control during the production
process is important to detect non-conformities [106] at the location of occurrence and not
to transfer non-conforming products to the next stage of the production process, which
only generates costs and other problems.
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Not only should the manufactured products be controlled in real time, but most
of the implemented processes and devices must be monitored to estimate the possibil-
ity of problems [77]. An important direction of further development in this area is the
implementation of decision-making systems at the edge to prevent the production of a
non-conforming product. Certain ranges of process parameter values (e.g., speed and
rotation) or the occurrence of specific values of the operating parameters for machines
and devices (e.g., power consumption and temperature) may result in the appearance of a
non-compliant product. Therefore, the ability to identify such situations in order to react
quickly to them is something desirable to implement in this industry.

The data coming from the monitoring process can be transferred through communica-
tion systems to a database to be stored. A “hold-until-changed” approach can be applied
to decide which data should be stored. This approach is based on keeping track of earlier
transmitted data to determine which data should be transmitted when and to whom [130].
This can minimize data storage requirements and associated costs and result in lower
bandwidth utilization, as well as high-speed transmission. It is an important research
direction related to sustainable development. In addition, it can reduce the amount of
work involved in further data analysis, the results of which will not add any value to the
decision-making process.

One of the topics that appears in the literature in an EC context is energy consumption.
This can be related to data transfer in CPS [101] and production scheduling considering
energy consumption [150]. The number of connected devices in the CPS has increased
significantly, which has generated an energy demand. Therefore, we need research and
innovative solutions that will not require much energy.

The data coming from the monitoring process can be transferred through communica-
tion systems to a database where they can be transformed into knowledge available for
employees. Knowledge management is important from many perspectives, for example,
in the management of product lifecycle data and in supporting related decision-making
processes [66]. Therefore, products can be better-suited to changing requirements. Agile
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adaptation to market needs and flexible production systems are the directions in which
enterprises should develop. Modern technologies should support enterprises looking in
this direction.

Another identified important direction of research and subsequent industrial implemen-
tations is simulations. Although many simulation methods and tools are currently known,
their use remains time-consuming and, thus, expensive. The newly designed processes and
product operations can be simulated before implementation, as well as after implementation,
for example, with the use of digital twins [43]. This is especially important for flexible
production systems, as well as for autonomous systems [157]. In this context, the direction of
further research that we have identified is the development of methods and tools facilitating
the creation of models of the functioning of real objects and simulating their work in various
conditions in order to identify potential problems that may arise during operation.

5. Conclusions

With the use of a systematic review of the literature, it was possible to analyze widely
the use of EC. Applied text mining analysis enabled automated text searching of a vast
number of publications in order to obtain a new type of information, constituting a quan-
titative data analysis. A qualitative analysis of the abstracts and full papers allowed the
identification of documented application areas of edge computing in industry. The results
of the analyses indicated both the technologies used to analyze the identified problems and
the documented sources of data.

The presented results are useful material for enterprises looking for answers to ques-
tions focusing on smart manufacturing implementation and decision makers in manu-
facturing companies to determine the possibility of implementing edge computing and
related technologies.

The main conclusion of this study was that, despite the large number of publications
on edge computing, this field of knowledge is still being developed. It is a promising field
of scientific exploration for the future, and many research problems still need to be solved.

Future research in EC should particularly cover areas where actions require immediate
decision making and the processing of big data, such as autonomous control of robots,
vehicles, or entire factories. The second area of research should be technologies related
to mobile edge computing, for example, telecommunications and all issues related to
5G technology.

In particular, on the basis of the conducted research, we have indicated areas that
require further research due to the need to implement innovative solutions in the industry.
The further research on the application of edge computing and associated technologies is
required in the area of intelligent resource scheduling (especially for flexible production
systems and autonomous systems), anomaly detection and the resulting decision making
(e.g., improper operation of machines, improper implementation of processes, and appear-
ance of non-conforming products), data analysis and transfer (When? How? What? To
whom?), knowledge management (knowledge used for smart designing), and simulations
(to prevent future problems, especially in autonomous systems).

Further literature research may help identify other directions for the development of
EC applications. But the development of effective and practically applicable solutions in
the areas indicated by this paper that enterprises will be able to implement would be a
significant step towards the development of smart factories.

The systematic literature review also applied to the taxonomy building process. Exam-
ples are papers [167] or [168], where the authors presented proposals for the taxonomy of
EC in intelligent manufacturing and a general taxonomy for the EC paradigm. The first
of the taxonomies contained a section with potential applications of EC in the industry;
however, it was limited to a few examples. The second paper did not mention applications
of EC in manufacturing. The results of the work presented in this paper can be used to
enrich available taxonomies or to create new taxonomies in the area of EC application in
the manufacturing industry.
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33. Kozłowski, E.; Antosz, K.; Mazurkiewicz, D.; Sęp, J.; Żabiński, T. Integrating advanced measurement and signal processing for

reliability decision-making. Eksploat. I Niezawodn.—Maint. Reliab. 2021, 23, 777–787. [CrossRef]
34. Deng, L.; Yu, D. Deep Learning: Methods and Applications. Found. Trends Signal Process. 2014, 7, 197–387. [CrossRef]
35. Mousavi, S.; Schukat, M.; Howley, E. Deep Reinforcement Learning: An Overview. In Proceedings of the SAI Intelligent Systems

Conference (IntelliSys) 2016; Lecture Notes in Networks and Systems; Bi, Y., Kapoor, S., Bhatia, R., Eds.; Springer: Cham,
Switzerland, 2016; Volume 16. [CrossRef]

36. Gupta, L.; Jain, R. Mobile Edge Computing—An important ingredient of 5G Networks. IEEE Softwarization Newsl. 2016. Avail-
able online: https://sdn.ieee.org/newsletter/march-2016/mobile-edge-computing-an-important-ingredient-of-5g-networks
(accessed on 13 February 2022).

37. Pirinen, P. A brief overview of 5G research activities. In Proceedings of the 1st International Conference on 5G for Ubiquitous
Connectivity, Levi, Finland, 26–27 November 2014; Latva-aho, M., Tafazolli, R., Rajatheva, N., Correia, L.M., Rasheed, T., Eds.;
ICST: Gent, Belgium, 2014; pp. 17–22. [CrossRef]
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