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Abstract: Patients after stroke with paretic or plegic hands require frequent exercises to promote
neuroplasticity and to improve hand joint mobilization. Available devices for hand exercising are
intended for persons with some level of hand control or provide continuous passive motion with
limited patient involvement. Patients can benefit from self-exercising where they use the other hand
to exercise the plegic or paretic one. However, post-stroke neuropsychological complications, apathy,
and cognitive impairments such as forgetfulness make regular self-exercising difficult. This paper
describes Przypominajka v2—a system intended to support self-exercising, remind about it, and
motivate patients. We propose a glove-based device with an on-device machine-learning-based
exercise scoring, a tablet-based interface, and a web-based application for therapists. The feasibility of
on-device inference and the accuracy of correct exercise classification was evaluated on four healthy
participants. Whole system use was described in a case study with a patient with a paretic hand. The
anomaly classification has an accuracy of 91.3% and f1 value of 91.6% but achieves poorer results for
new users (78% and 81%). The case study showed that patients had a positive reaction to exercising
with Przypominajka, but there were issues relating to sensor glove: ease of putting on and clarity of
instructions. The paper presents a new way in which sensor systems can support the rehabilitation
of after-stroke patients with an on-device machine-learning-based classification that can accurately
score and contribute to patient motivation.

Keywords: stroke; stroke rehabilitation; paresis; plegia; wearable device; sensor glove; sensor system;
Internet of Medical Things

1. Introduction

Stroke is one of the leading causes of permanent disability. Yearly, around 1 out of
1000 persons have a stroke, with over 1.1 million cases in Europe every year [1]. While there
are many existing devices and methods for post-stroke physical rehabilitation, patients
still experience a lack of motivation, boredom, and loneliness, which negatively influence
their rehabilitation outcomes [2]. In this paper, we investigate what should be included in a
motivating system for a post-stroke hand rehabilitation during the plegic (paralyzed) or
paretic (weakly functioning) hand and propose Przypominajka v2— a glove-based device
for reminding patients and motivating them with an on-device machine-learning-based
exercise scoring, a tablet-based interface, and a web-based application for their therapists.

Stroke rehabilitation includes different therapies and interventions that can enhance a
phenomenon called neuroplasticity. Approximately 80% people after a stroke experienced
muscle weakness, impaired exteroceptive sensation or proprioception, aphasia, disturbance
of balance and coordination, cognitive dysfunction, and depression [3]. Early and intensive
rehabilitation is an important factor in improving motor functions and quality of life
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of people after stroke [4]. Neuroplasticity is a process that plays a significant part in
healing the injured brain [5]. Such factors as repeated movements, the focus of attention,
emotions, and reward systems can influence neuroplasticity. These factors can generate
synaptic enhancement and lead to the activation of new neural pathways [6]. However,
during rehabilitation, therapists usually spend more time exercising the plegic lower limb
than the upper one, focusing on the ability to sit up, stand, and walk independently [7].
Therefore, the time of upper limb and hand rehabilitation is limited, and individuals may
achieve less functional recovery.

There are glove-based hand rehabilitation devices, such as Raphael Smart Glove,
which helps focus patients on their workout using computer-based interfaces [8]. Raphael
provides active rehabilitation exercises that mainly focus on patients who already possess
some level of control. The Raphael Smart Glove consists of sensors that collect data from
the patient’s hand movements and convert them into virtual space movements to create
occupation-based hand exercises (such as virtual object grasping, fruit squeezing, etc.).

Focus on motivational aspects can be seen in devices such as MusicGlove, where the
device interface allows playing music through functional grips [9]. The device feedback
mechanism requires users to train the hand “to the tune” by pressing the thumb to distinct
leads on a sensor glove, and is reported to be motivating for the patients participating in
trials. However, a hand has to be already highly functioning (Box and Blocks score of at
least 7) to start training with the device.

A set consisting of Rutgers Master II-ND haptic glove and CyberGlove was used for
hand rehabilitation in research by Adamovich et al. [10]. The devices, along with a web-
based monitoring station and database, formed a system used for training finger motion
for patients during a chronic post-stroke phase. The training was performed in a virtual
environment with four exercises for finger range of motion, speed of movement, strength,
and fractionation. The collected data was used to precisely adjust the difficulty levels of
the sensorimotor tasks through a target-setting algorithm. The training focused on fingers’
dexterity and velocity, so there was no sensor for a position or orientation tracking of the
hand, only the finger flexion and force feedback for the pneumatic actuators. The authors
reported improvement in fingers’ dexterity and velocity but stated that focusing only on
finger training was a limitation. The authors concluded that further research in exercises
for wrist and elbow, patient attention, motivation, and bilateral exercises also utilizing the
unaffected hand is needed.

There are continuous-passive-motion (CPM) devices for hands. The Kinetec company
sells the Kinetec Maestra series of devices (portable, hand, and wrist) for continuous
passive motion of hand and wrist. Kinetec Maestra “Hand” and “Portable” are hand
exoskeletons, while “Wrist” is a stationary continuous passive motion device, all commonly
used as a part of rehabilitation practice. The device’s manual states clinical benefits such
as reducing immobility and possible effusion, preventing joint stiffness, and speeding up
the recovery [11]. The devices and other CPM devices intend to move patients’ hands
with minimal involvement (passive rehabilitation) in place of manual manipulation by
the therapist [12]. However, there is limited patient interaction, and no patient attention
is required. There are devices where there is patient involvement, particularly through
bilateral exercising. Delden et al. provided a review of 20 such devices [13]. The studies
found devices used in acute, subacute, and chronic phases of stroke and were either
purely mechanical linkages or robotic devices. Authors conclude that, based on their
and other meta-analyses, the bilateral training (in general) appears to be an effective
alternative to other forms of treatment and devices can help with increasing training
intensity and frequency while the studies up to date do not have statistical power to fully
prove their value.

In post-stroke therapy, psychological, cognitive, and motivational aspects are impor-
tant. Patients after stroke suffer from depression and other neuropsychiatric complications.
Depression may make rehabilitation difficult and worsen patient comeback and life quality.
In 80% stroke patients, there is a need for antidepressive interventions [14]. Post-stroke
apathy, affecting 23–50% of acute stroke patients, is characterized by reduced motivation,
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lack of initiative, feeling, emotion, and concern. It can overlap with depression but is
considered an independent disorder [15].

Patients can also be affected by anosognosia and denial of illness where they do not
recognize the deficits in their functioning, or deny them altogether. They also can be overly
optimistic and believe that they are already able to move their affected limb while they
cannot [15].

Cognitive impairment due to stroke can inhibit patients’ ability to rehabilitate and
induce lack of focus, forgetfulness, mind fog, and mood disorders. Patients with cognitive
impairments experience worse recovery for activities of daily living [16]. After-stroke
patients also suffer from chronic and acute fatigue, with substantial and persistent fatigue
reported in 39–76% of after-stroke individuals. Persons with fatigue describe their state as
a “sense of weakness, reduced energy . . . feeling drained of energy. . . ”. Patients use terms
such as “tired, weak, exhausted, weary, worn-out” [17].

Luker et al., in the review of stroke survivors’ experiences of physical rehabilitation
studies, provide a list of issues and preferences of patients [2]. Patients value physical
activity and believe that more is better for recovery. Patients feel bored and alone during
an inpatient stay. Particularly, free time was considered unstimulating and negatively
influenced mood and motivation. They desire a patient-centered therapy with meaningful
tasks and an understandable purpose of therapy. Patients also wanted recreational and
social activities through reading materials, games, exercise equipment, and crafts. Indepen-
dence and autonomy were valued, while lack of control was connected to fear, anxiety, and
frustration. Similarly, autonomy was considered a worthwhile goal, and assistance was
to be used only when needed. The motivation was considered as something that needed
to be nurtured and could be influenced by encouragement and support by hospital staff,
other patients, and family. Finally, fatigue influenced other themes, and it was a dominant
experience for some.

In our conference paper, we introduced Przypominajka v1 and the concept of patient
self-training of plegic/paretic hands with the support of a sensor device. The device in
the form of a wearable would remind (przypominaj in Polish) about the training sessions
and sense patient motions during them to score patient activity and therefore motivate
patients. The device was based on a sensor glove with a wrist-worn control and sensing
board. Additionally, a web interface was provided for viewing the session activity [18]. It
was based on an Arudino board, with an interface in the form of a small OLED screen and
buttons, and an SD card for data recording and direct connection through a WiFi module
to the main (therapist) server. The scoring was performed on the device by a simple tree-
based classifier. The wearable device was simple, and its main function —reminding about,
and motivating during, training bilateral exercising sessions, was evaluated as attractive
by therapists. However, preliminary tests and discussions with therapists and patients
revealed several issues:

• The Przypominajka’s v1 user interface was placed over the control box worn on the
patient’s wrist. Hand movement could cause patients not to see the instructions and
score while exercising.

• The screen was small (4 cm × 2 cm) and challenging to use for patients with poor
sight. Similarly, small buttons were challenging to use for patients.

• The scoring system was trained and tested on a single person’s data and their validity,
while the device was used by other persons needing to be checked.

These issues led to the current study and development of version 2 of the device and
this research paper.

Section 2 of this paper presents the Przypominajka v2 design and its components.
A system supporting the patient was developed to facilitate self-exercising. Section 2.1
describes design goals and proposed change in user journey compared to a current rehabil-
itation. Przypominajka creates a more structured exercise environment and enables easier
information sharing between patients and therapists after normal therapy hours. Multiple
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components—sensor glove, tablet-based interface, and servers—form the Przypominajka
system, for which the architecture is described in Section 2.2.

Central to the Przypominajka function is the sensor glove, which is an in-house de-
veloped device. Its hardware and data acquisition are described in Section 2.3, while
Section 2.4 describes filtering and feature extraction. New machine-learning-based scor-
ing based on classification of patients’ data is proposed to provide scoring that is more
robust to multiple users. The previously used decision tree model based on two simple
features, as well as a new model based on convolutional neural network, are described
in Section 2.5. The new model provides better, real-time categorization results while still
being implemented on the device.

Patient and therapist interfaces require focus as they are the main interaction points
between the system and its users. Its details are described in Section 2.6. A tablet appli-
cation was developed as a patient interface. The large screen and multimedia capabilities
enable a better presentation of exercise instructions. The exercises selected with medical
professionals are described in Section 2.7.

We describe and discuss motivational and cognitive aspects of Przypominajka in
Section 2.8, of which the main motivational aspect is a scoring mechanism based on exercise
classification, described in Section 2.9.

To evaluate the Przypominajka system and understand the scoring system behavior
with multiple users, we conducted a study on four healthy participants, described in
Section 3. Results, described in Section 4, show high accuracy, precision, and recall for both
anomaly and exercise classification but worsening for a new user. A separate case study,
described in Section 5, showed that an actual patient with a paretic hand was able to use,
and enjoyed using, the Przypominajka v2 system, while some issues regarding ergonomics
and quality of instructions were found. This section is followed by the Discussion and
Conclusions (Section 6) section, in which the device is compared to others and further work
based on current approach limitations is outlined.

2. Przypomianajka v2 Design
2.1. Design Goals and Constraints

The main idea behind the Przypominajka (“Reminder” in Polish language, Figure 1) is
to motivate and remind patients to train their plegic or weakly functioning hand. Patients in
such a state do not have enough hand control to use devices such as MusicGlove or Raphael
and require a device or technique facilitating active support. Moving and exercising the
hand is necessary to enhance neuroplasticity [5] as well as to avoid effects of prolonged
joint immobilization, particularly contractures. Passive joint mobilization exercises are
used, beginning 24 to 48 h after stroke onset. Such exercises have to be done consistently,
ideally multiple times daily [19].

Figure 1. The prototype version of the device.

Usually, patients are encouraged to self-exercise with a set of exercises (see Figure 1,
proposed by Prof. E. Miller from Jonscher Hospital in Lodz). Such self-training takes place
after the other training sessions. A typical session, presented as a user journey, is shown in
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Figure 2: the patient finishes therapist-assisted training sessions for the day. The therapist
reminds the patient about self-training of the hand. The patient performs hand training in
intervals. Finally, the patient finishes the training for the day.

There are several issues with such an approach: self-training is unstructured, and pa-
tients must choose the exercises based on their memory. As the therapist is not present
during the self-training sessions, the correctness and intensity of exercises are not recorded
and evaluated. This leads to frequent repetition of some exercises while omitting others,
leading to less than full joint mobilization. Patients can forget about the training, partic-
ularly when suffering from the cognitive effects of stroke. Patients perform the training
alone, and issues such as loneliness and apathy can reduce activity.

Therefore, the goals of Przypominajka’s design were the following:

• Reduce patient cognitive load through reminding in programmable intervals about
the training.

• Provide clear instructions during the training.
• Provide a way to record and evaluate patient training both to motivate patient and

better facilitate patient–therapist cooperation.
• Introduce patient, therapists, and family interfaces, as well as data-exchange methods,

for guiding self-therapy, motivating patients, controlling therapy, and engaging family
in patient activity.

The “user journey” with Przypominajka v2 is shown in Figure 2. The patient finishes
the therapist-assisted training. The therapist and the patient agree on a training schedule
with Przypominajka. The device reminds the patient to train during specified intervals.
Particular exercise is given from a preselected set of exercises. The patient trains the hand
with the device using the instruction provided, and score based on patient activity is shown
and recorded. The patient is free for a time, after which another session is proposed until
the end of training time for the day. The therapist can see the results for the day, discuss
them with the patient, and possibly become further motivated.

Figure 2. User journeys: with the current self-training scheme and assisted training with Przypomi-
najka device.
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2.2. System Architecture and Components

Przypominajka v2 uses a distributed architecture for sensing, user interfaces, and data
management. The elements of the system are shown in Figure 3. The primary sensing part
of the device is a sensor glove. The interface for the patient consists of a Tablet application,
while patient data is stored on a database managed by the main server. The therapists’
interface is available as a web application connected to the central server.

sensing filtering

communication

sensor data

device 
 state management

model

score

tablet interface

(BLE UART)

main server

training data
 (REST through wifi)

patient 
schedules 
 excercies

therapist interface

training history

database

training data
 history

schedules 
 excercices

power management

touch sensor

touch 
 sensing

IMU

accel gyro
 (I2C)

flex sensor

flexion
 (ADC)

Figure 3. Diagram showing the elements of the Przypominajka v2 system, their role, and communi-
cation path.

The sensor glove is responsible for data acquisition, self-management, signal filtering,
classifying the data, and communication to the tablet interface.

The tablet interface has a patient application for training and reminding of training
sessions and on-device session scheduler, exercise selector, and option to review train-
ing sessions.

The raw data and results of particular sessions (scores) are sent to the main server.
The server manages data access and records the scores and raw data into a database.
The therapists’ interface enables therapists to view the data records and set up the device
for a particular user.

In the current implementation, the tablet interface is realized as an Android app
created using MIT AppInventor. The main server is a containerized Flask app with a local
SQLite database. The therapist’s interface is a containerized StreamLit app.

2.3. Sensor Glove Hardware and Data Acquisition

The main hardware element of the sensing hardware is a WEMOS LOLIN32 board,
based on an ESP32 microcontroller (Dual Core Tensilica LX6 240 MHz with 520 KB of
SRAM and 4 MB of external flash memory). The board has an LTH7R IC-based battery
management circuitry to which a 980 mAh battery is connected.

Przypominajka v2 uses a combination of flex sensors and a six-axis IMU to measure
the patient’s hand movement. Flex sensors are placed alongside the middle finger (10 cm)
and the thumb (14 cm). The placement of the sensors is shown in Figure 1.

Flex sensors by SpectraSymbol are used. These are resistive sensors where sensor
bend angle translates to a change in sensor resistance. Sensors display nonlinear change
in resistance as a function of bend angle (with a higher sensibility for larger angles); they
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also exhibit step response decay where a step change in bend angle results in decaying
change in resistance [20]. A voltage divider circuit with the flex sensor and a constant value
resistor is used, and the output voltage is measured using the microcontroller’s analog to
digital converter (ADC). Instead of calibrating the sensors, raw ADC values are used in
further processing.

The configuration of voltage divider is shown in Figure 4. The ADC is configured with
11 dB signal attenuation and 12-bits resolution (0.1–3.1 V range, 0–4095 internal).

V_adc

+3.3V

10 kΩ

40 kΩ

Figure 4. Voltage divider circuit used in measuring the voltage on the flex sensor (Vadc), represented
as a variable resistor.

IMU (integrated accelerometer and gyroscope MPU6080) outputs through I2C in-
terface angular velocity and acceleration. Using the factory-calibrated data, values of
acceleration (a m

s2 ) and angular velocity (g rad
s ) are calculated. The values can be interpreted

as related to the movement of the whole hand. Acceleration and rotational velocity in three
axes are used as an input value for a machine-learning-based function to calculate the score
with further data processing.

2.4. Data Filtering and Feature Extraction

Using the acquired raw IMU and flex sensor data we form additional features, later
used in user data classification.

Based on the IMU data, the roll and pitch angles are calculated using a (discrete)
complementary filter with update rule of the form (Equation (1)):

∆T = time[n]− time[n− 1]

rollraw[n] = atan2(ay, az)

pitchraw[n] = atan2(−ax,
√

a2
y + a2

z)

roll[n] = A ∗ (roll[n− 1] + gx[n] ∗ ∆T) + (1− A) ∗ rollraw[n]

pitch[n] = A ∗ (pitch[n− 1] + gy ∗ ∆T) + (1− A) ∗ pitchraw[n]

(1)

where ax...z is acceleration in m/s2, gx...y is angular velocity in rad/s, A is a cutoff time
constant, and ∆T is time between two consecutive sensor readouts.

The (absolute) yaw angle (hand “heading”) can not be accurately estimated using
this method as the rotation axis is parallel to Earth’s gravitational field, so different yaw
values would have the same influence on the accelerometer readings. Another sensor such
as a magnetometer would be needed for this purpose [21]. However, the absolute yaw
angle should have little value in assessing the correctness of the exercise, as any heading
is possibly correct while rotational velocity around the z-axis is already included in the
feature set.
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Sensor readings and calculated angles are concatenated to form a vector v
(Equation (2)):

v[n] = [ax[n], ay[n], az[n], f1[n], f2[n], gx[n], gy[n], gz[n], roll[n], pitch[n]] (2)

with ax, ay, andaz being acceleration in the x, y, and z axes, f1, f2 being the values recorded
from the flex sensor (thumb and middle finger flex sensors), roll pitch being angle calculated
using the complementary filter with update rule shown in (Equation (1)), and time being
time in ms (from device start).

The vector v is used in classification using the deep learning model. The vector
concatenated with an (anomaly classification) score is later sent to the tablet application.

vhistory[n] = (v[n], [time[n], anomalyclass[n]]) (3)

where v is a feature vector and anomalyclass is an anomaly classification score (0–1) as
described in Section 2.5.3.

In our previous paper, we also introduced two criteria (Sacc: summed L1 norm of
acceleration values for a time period and S f lex: sum of smoothed differentials of flex sensor
values for a selected time period) that could be used as anomaly classification features and
could be calculated on a simple microcontroller such as Arduino’s Atmega328 [18].

For each selected time period of recorded signal we calculate two criteria, Sacc (sum
of Equation (4)) and S f lex (Equation (5)):

Sacc(n) =
n

∑
t=n−Ns

|ax|+ |ay|+ |az| (4)

Sacc is the sum of L1 lengths of acceleration vectors for a selected time window. Ns is a
time window. ax, ay, and az are acceleration values in three axes.

S f lex(n) =
n

∑
t=n−Ns

| f1(t) ∗ h(t) + f2(t) ∗ h(t)| =
n

∑
t=n− fs

|( f1(t) + f2(t)) ∗ h(t)| (5)

S f lex is the sum of filtered (discrete convolution) raw sensor values from flex sensors
for a selected time window. The filter used is h = [0.5, 0.4,−0.4,−0.5] which is a smoothed
difference kernel. The h kernel was calculated by scaling by −2 and rounding a differential
(convolution with [−1,1] filter) of a size three Gaussian filter with sigma 0.9; these hyper-
parameter values were selected in preliminary experiments. The goal of using this filter
was to calculate a smoothed difference of the signal, as a change in the flexion would mean
that there was a finger motion with smoothing for reducing the effect of noise.

2.5. Data Classification for Acquiring Score

During the patient training using the device, the patient receives real-time feedback
based on their own actions using the sensor glove. Particularly, points are received for
correctly doing the particular exercise. The feasibility and quality of two classification
model types were considered for this purpose:

• Classification based on the type of the exercise. Patient data is categorized into one of
six categories based on the model hand exercises. The categories are “basket”, “wrist
flexion–extension”, “wrist and fingers extension”, “rolling”, “hand up–down”, and
“hand kneading” and are further described in Table 1. Data that could be categorized
into the correct category (exercise currently prescribed to the patient) would mean that
the patient is performing the exercise correctly; model outputting decision vector with
weights distributed (nearly) equally would mean exercise being performed incorrectly.
The model outputting the correct category would mean exercise being performed
as prescribed.
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• Explicit anomalous behavior detection. In this approach, a binary classifier directly
classifies a particular input data matrix as correct—meaning that the patient exer-
cises in a prescribed way or anomalously, meaning that the exercise was not being
performed correctly.

Both of these approaches were investigated, as the explicit anomalous behavior detec-
tion is conceptually clearer and has potential for a simple solution (such as a decision-tree-
based classifier). The classification of the type of exercises has more potential for future,
more sophisticated interfaces, so its feasibility (using the particular sensor configuration)
was also evaluated.

Table 1. Joint mobility exercises shown through the Przypominajka interface. The exercises are also
classes that the categorizer can recognize.

Name Instruction Given

Basket

Bend both your upper limbs in elbows, place
your elbows on the table, place your hands and
forearms together, bend your fingers in joints,
repeatably turn your hands to first see the back
of your right hand and then your left one.

Wrist
flexion–
extension

Place your affected forearm flat on the table while
wrist and hand are off the table, grasp your af-
fected hand below fingers, repeatably bend and
straighten in wrist.

Wrist and
fingers
extension

Place the affected hand and forearm flat on the
table, grasp fingers of the hand; repeatably gently
straighten fingers in joints and wrist, then place
the hand on the table.

Rolling

Bend both of your upper limbs in elbows, place
the elbows on the table, grasp the affected up-
per limb near the wrist, repeatably turn the af-
fected hand to see the palm—the back of the hand
should touch the table, then turn the hand to see
the back of it.

Hand up–
down

Bend both of your upper limbs at the elbows,
place the elbows on the table, put hands together,
repeatably bend the fingers in joints, and bend
and straighten upper limbs in elbows.

Hand
kneading

Place the affected hand and forearm flat on the
table, grasp its fingers, repeatably straighten the
wrist and bend all fingers, then bend the wrist
and put it on the table, then straighten fingers in
joints in the maximum range of motion.

Data classification should be performed online during the patient’s exercise for the
patient to achieve effective feedback. Short time frames and responsiveness, i.e., short
system reaction time to changes n patient behavior, is preferred. Therefore, we investigated
time frames of around 1 to 2 s. An example of systems behavior is shown in Figure 5. Based
on the sensor values, features are calculated from which machine learning system infers
whether exercise is being performed correctly.
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Figure 5. Data series from the sensor glove when the user is exercising correctly. Roll, pitch angles
and Sacc, Sflex are computed features. The bottom graph shows the anomaly classifications (anomaly
classification scores) using the neural network (ynn) and tree-based classifier (ytree). Shown is the
“wrist and fingers extension” exercise from the test set.

2.5.1. A Two-Criteria-Based Anomaly Classification

In our conference paper, we introduced a simple, decision-tree-based anomaly classifi-
cation using the two features Sflex and Sacc [18] (the features are described in Section 2.4).
Both of the features are combined using a decision tree, shown in Figure 6, to categorize the
patient exercise data. The tree is trained using ScikitLearn 1.0.2 (Class DecisionTreeClassi-
fier) implementation [22]. The max depth of the tree was set to three. Gini criterion was
used to measure the quality of a split, with the “best” splitting strategy.

SFLEX <= 125.15
gini = 0.5

samples = 459050
value = [222450, 236600]

SFLEX <= 84.35
gini = 0.213

samples = 185790
value = [163238, 22552]

True

SFLEX <= 203.75
gini = 0.339

samples = 273260
value = [59212, 214048]

False

SFLEX <= 67.05
gini = 0.1

samples = 137676
value = [130414, 7262]

SFLEX <= 103.85
gini = 0.434

samples = 48114
value = [32824, 15290]

gini = 0.06
samples = 105994

value = [102689, 3305]
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samples = 23261

value = [14174, 9087]

SACC <= 295.813
gini = 0.468
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Figure 6. Decision tree that is used on the device to categorize the session. “Gini” means the Gini
criterion split quality [22].
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2.5.2. Convolutional-Neural-Network-Based Category Classification

This is used for a data M matrix of size Ns × 10 where row i has a form M[i,:] =
v[n− Ns + i]. It is formed from the last Ns vectors v representing sensor data and angles.
A convolutional neural network with architecture shown in Figure 7 is used to produce an
output vector y of size 6.

Each column of the matrix is first preprocessed using a MinMax Scaler created using
training data. For xmin being the minimum value for all recorded data from a particular
feature x in the training dataset and xmax being the maximum value, we calculate xscaled
using Formula (6) [23]:

xscaled = (x− xmin)/(xmax − xmin) (6)

We form a matrix Mscaled that is used as an input to a convolutional neural network.

20x12

10x12

9x12

8x12

8x12

4x12

1x12

1x6

21x10

input

InputLayer

Conv1D

kernel〈2×10×12〉
bias〈12〉

ReLU

MaxPooling1D

Conv1D

kernel〈2×12×12〉
bias〈12〉

ReLU

Conv1D

kernel〈2×12×12〉
bias〈12〉

ReLU

BatchNormalization

gamma〈12〉
beta〈12〉
moving_mean〈12〉
moving_variance〈12〉

MaxPooling1D

GlobalMaxPooling1D

Dense

kernel〈12×6〉
bias〈6〉

Softmax

dense_1

Figure 7. Convolutional neural network for classification of exercise data. During training, categorical
cross-entropy loss function was used.

2.5.3. Anomaly Classification Based on a Convolutional Neural Network

On-device anomaly classification can be conducted using a convolutional neural
network similar to the one used in categorizing the exercise type. The last layer of the
network is replaced with a dense layer with a sigmoid activation (the structure of the
network is shown in Appendix A in Figure A1).

The input is the same data matrix Mscaled as in exercise classification, while the
output is a float scalar y between 0 (anomaly) and 1 (correct exercise). During train-
ing, the network can be initialized with weights learned from classification tasks for better
learning performance.
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2.5.4. On-Device Implementation of the Neural Network

Deep learning models were implemented and trained using TensorFlow 2.6. The mod-
els were converted to TensorFlow Lite format prepared for use with TensorFlow Lite Micro
inference framework [24].

We used ESP32 as a microcontroller with Python 3 as a programming language using
MicroPython as an interpreter. A custom MicroPython firmware by Michael O’Cleirigh
was used that integrates TensorFlow Lite for microcontrollers, ulab (a MicroPython imple-
mentation of a NumPy Library) to give access for TensoflowLite from MicroPython [25].

The compiled models (shown in Figures 7 and A1) have size of 11,360 bytes for exercise
classification and 10,160 bytes for anomaly classification. The models for time window
Ns = 21 samples take up around 34 kB (anomaly) and 35 kB of RAM (exercise categories).
Both fit ESP32 memory along with the rest of the data-processing software.

Using multiple runs of code fragments responsible for data processing and communi-
cation, we estimated the time required for the operations. Data preparation—data scaling,
memory operations, angle (pitch, roll) calculation with complementary filter update takes
529 (97) µs, reading IMU data through I2C takes 1.17 (0.31) ms, ADC input (flex sensors)
reading takes 143.5 (2.1) µs.

Neural network calculation on ESP32 takes 6.7 (0.53) ms for anomaly or 8.6 (0.56) s
for exercise classification. The Bluetooth Low Energy data transfer (UART) of each data
vector takes 9.4 (3.7) ms. The whole data acquisition, processing, and transfer of results take
less than 20 ms (around 18.5 ms). It is possible to achieve a 50 Hz sampling/data-update
frequency, although a lower frequency was used in the evaluation study.

It is possible to use a model with a larger time window. Models with a time window
of Ns = 42 samples take 5 kB RAM memory more while processing time grows to around
9.3 (0.59) ms and 13.2 (4.1) ms for anomaly and exercise classification.

2.6. Patient and Therapist Interfaces

The Przypominajka v1 interface consisted of an OLED screen and buttons placed
directly on the user’s wrist. However, therapists that we have interviewed pointed out that
such placement makes it very difficult to see the screen during the training, while small
buttons and small size of the screen make the device difficult to use by persons with poor
sight and low dexterity.

Therefore, in the current device version, controls and presentation of instructions for
the exercises are carried out using a tablet application placed on a 10-inch Android tablet
device. The sensor glove has a Bluetooth Low Energy UART connection to the tablet during
the exercise session. The application was built using AppInventor. Screens from a training
session with Przypominajka v2 are shown in Figure 8.

An additional element supporting the supervision of the patient’s exercises is an
interface for the therapist. The interface enables therapists to access patient data remotely.
It allows the specialist to observe the user’s exercise performance level and select which
exercises the patient should perform and for how long—shown in Figure 9 is the interface
build in Streamlit Python Framework.

Figure 8. List of screens displayed on the device.
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Results of exercises

Setup

Choose exercises:

basket

hand kneading

hand up-down

rolling

wrist and fingers extension

wrist flexion extension

Choose exercises duration in minutes:

*exercises duration in minutes

0 60

Figure 9. View of the prototype web application for therapists and family.

2.7. Training Exercises

We selected six exercises beneficial for patients with paresis of the upper limb with
Prof. Elzbieta Miller from Dr. Charles Jonscher Municipal Hospital in Lodz. The selected
exercises and their descriptions are shown in Table 1. Exercises focus on particular muscle
groups of the hand and forearm, and particular joints such as wrist or finger joints. Per-
forming such joint mobilization/manipulation exercises has numerous rationales, such
as increasing range of motion, decreasing pain, promoting muscle relaxation, increasing
muscle strength, improving joint nutrition, and overall promoting neuroplasticity through
various systemic physiological effects [26].

2.8. Motivational and Cognitive Aspects of the Przypominajka

The Przypominajka enhances hand self-training by motivating patients and reduc-
ing their cognitive load. It also improves the therapists’ ability to understand patient
progress and guide patients further. The relationship between the patient and the therapists
when using Przypominajka is shown in Figure 10. The patient trains and interacts with
Przypominajka, receiving direct feedback from the device in the form of a score but also
receiving feedback from the therapist based on the recordings of the interaction stored on
Przypominajka’s servers. Therapists can analyze the patient data to guide the patient and
further personalize the interaction.

The main goal of the Przypominajka system design was to motivate patients while
considering their possible post-stroke cognitive issues. This influenced form and function
of its multiple parts.

The central aspect of Przypominajka is reminding about exercising. As shown in
the interaction flowchart (Figure 11), according to a schedule, the patient is reminded
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about training in the form of an alarm. This is helpful for patients that could otherwise
forget about training. The length of the activity and its frequency can be set together with
therapists to fit patient abilities and needs. Additionally, after the training, during a break
time, the interface shows the remaining time so that the patient can choose to have other
activities. Patients see the instructions before each training session (with the ability to skip).
Each training session can have a different exercise, preselected by the therapist.

The second motivational aspect of Przypominajka is the scoring system. The details of
the score are described in Section 2.9. During the exercise, patients have real-time feedback
so that they have an opportunity to understand whether he performs the exercise correctly
and more motivation to continue. In a simple gamification scheme, the patient’s task is to
collect a set of (five) stars during the exercise. Each star relates to a particular threshold of a
sum of scores given by the scoring algorithm.

Motivation is also provided through the recording of the activity. Patient scores and
raw interaction data are saved to the server so that after the exercises the therapist can see
patient activity. Therapists can motivate patients to train further or reward them when
more effort is seen. In the case of patients with difficulty, the graphs that are shown in the
therapists’ interface (see Figure 9) can help with the understanding of patient abilities and
improve personalization of the therapy.

Przypominajka shows animated instructions for exercises on the tablet screen
(Figure 8). The instructions are shown while the patient prepares to exercise and puts
on the sensor glove. The patient can still see the particular key-frames (hand poses) of the
exercise during the training. To help the patient remember the exercise, clear instructions
about the selected exercise are shown each time after reminding the patient.

The patient interface was designed for ergonomics and clearness. The lettering and
buttons are large and contrastive. Screens (Figure 8) have single activity and meaning. Ex-
ercises are selected randomly from the pool available to the patient to reduce the monotony
of training. Additionally, patients can skip the exercise or postpone it to remain in control
and have some flexibility.

Tra
ining

and

interactio
n

Medical
feedback

Excercise
 

setup

Trainingdata

Przypominajka
elements and

actors

Figure 10. Diagram of the relationship between the patient, device, application, and rehabilita-
tion specialist.

turn on
 the device

setup/ load
 the training

 schedule

reminder
alarm

prepare
hand excercise

show
 results

set up 
next alarm

show
final results
 for the day

Figure 11. Flowchart of interaction between the patient and the device.

2.9. Machine Learning-Based Scoring Mechanism

The main motivational aspect of Przypominajka v2 is the real-time scoring of the
user activity during the exercise sessions. For each second of the interaction, user actions
are classified into a binary value: 1 meaning correct and 0 meaning incorrect, using the
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anomaly classifiers described in Section 2.5. We calculate a value between 0 and the number
of stars using Equation (7) to show the score in the form of stars (as shown in Figure 12):

SCORE(n) =
n

∑
t=Ns

anomalyclass(t)

N_STARS_SHOWN(n) = f loor(
numstars

fs ∗ p ∗ Tmax
SCORE(n))

(7)

where numstars is maximum number of stars (five), fs is sampling rate, Tmax is a length of a
training session in seconds, and anomallyclass(t) is an output of an anomaly-classifying
function. An additional parameter p = 0.8 is a margin of error. The user will receive a
perfect score (five stars) if, during the training, 80% of interaction time actions would be
classified as correct. During the training session, consecutive stars will be shown, with the
number of stars calculated using N_STARS_SHOWN(n) function.

Figure 12. Main motivational aspect of Przypominajka—during the exercise, correct training is
awarded with stars.

3. Experiments for Evaluating the Przypominajka System

We conducted a series of experiments to understand Przypominajka’s ability and po-
tential in inpatient care. A multi-user, multi-day study was conducted for evaluating Przy-
pominajka’s machine-learning models’ classification quality, during the October–December
2021 period.

The user study with a patient with paretic hand was conducted in December 2021,
to understand the performance of the integrated Przypominajka system and collect patient
and therapist opinions.

3.1. Evaluating the Przypominajka System Classification Performance

The goal of this study was to understand the effectiveness of the sensor setup in provid-
ing information for classification and understanding possible limits of using training data
for new patients and in new settings. We conducted data collection to evaluate the possible
performance of our system in two tasks: classification performance in classifying the type
of exercise being executed (six types explained in Table 1) and classifying/distinguishing
between good/wrong (anomalous) exercising. Two machine learning models were evalu-
ated: a decision tree with Sflex and Sacc features as inputs, and a model with convolutional
neural network (CNN) architecture. Both of these can fit the microcontroller as described
in Section 2.5.4.

3.1.1. Data Collection and Preparation

The data were collected from four healthy participants who used the Przypominajka
Sensor Glove on their right hands. Participants were all female and between the ages
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of 20–22. We obtained informed consent from all participants. Data were acquired and
processed as described in Section 2.3.

In all, 292 training sessions were recorded, of which 96 were recordings of incorrect
(anomalous) exercising. Each recording (file) consisted of around 1 min of training for a
chosen exercise, an average of 79 s. A total of 21,733 s of exercises were recorded, of which
12,233 s were of correct exercising and 9500 s were of anomalies.

The whole file was labeled with a particular exercise category (see Table 1) and
additionally with an anomaly flag. Participants were asked to place or move their hands
in a way that actual patients could use—for example, lay hands on the table or make
only small movements to simulate incorrect training. Table A1 in Appendix A shows all
such behaviors.

Recorded data frames were divided into fragments with time window Ns. Each
such fragment was labeled with a particular exercise category and/or anomaly (incorrect
training) label. Different time windows Ns = 10, Ns = 21, and Ns = 42 were investigated.

For the training deep learning model, from a set of training recordings (separate files
were used for training and testing set), a batch was collected and each training matrix in
a batch was constructed by randomly sampling a file from a training set from a random
starting point. Python custom script written with pandas software library was used for
this purpose.

For training a decision tree, input data consisted of consecutive, non-overlapping
fragments of each exercise file from a set of training files. For each such fragment, Sacc and
Sflex features were calculated.

For testing, overlapping (single sample shifted) fragments of exercise files were used,
forming 701,707 pairs (input matrix, output label), and 243,575 pairs representing anoma-
lous exercises. As cross validation was used, all data was used in testing.

3.1.2. Evaluation Method

Two evaluation cases were explored: leave-one-subject-out (LOSO-CV) cross val-
idation, where all data from a single participant were used for testing while all other
participants’ data were used for training, and five-fold cross validation, where data from
all participants were used in both training and testing sets.

For five-fold cross validation, for each fold, a different 20% of the files were selected for
testing while 80% of the files were selected for training. For leave-one-subject out, for each
of the four participants, training files for a particular participant were selected for a testing
set, while all other files with exercise data were used for training.

CNN models were optimized with Adam optimizer, with a learning rate of 0.001.
The binary cross-entropy (log loss) loss function was used for anomaly classification.
For the exercise classification, categorical cross-entropy loss was used in training.

TensorFlow 2.6 was used for implementing and training the model. Models were
trained on Ubuntu Linux System with 32 GB of RAM and Nvidia 2080Ti Graphics Card.

For the random-tree model for anomaly classification, the scikit-learn implementation
of the model was used [23].

An ablation study was also conducted. For both five-fold-CV and LOSO-CV mod-
els, selected columns of the data matrix were removed, simulating a simplified glove
construction or data processing structure.

The evaluated cases for ablation study were following:

• Normal: all features were used.
• Noflex: flex sensor data ( f1 and f2) was removed.
• Nogyro: rotational velocity features were removed ( fx, fy, fz).
• Noaccel: acceleration values were removed (ax, ay, az).
• Noangles: calculated rollpitch angles were removed from the feature vector .
• Noimu: all data originating from IMU (gx, gy, gz, ax, ay, az, roll, pitch) was removed.

For each model, four scores were calculated using the test data: precision, recall, f1,
and accuracy.
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For anomaly classification task, the scores were calculated using Equations (8)–(11):

PRECISION =
TP

TP + FP
(8)

RECALL =
TP

TP + FN
(9)

f1 =
2 ∗ PRECISION ∗ RECALL

PRECISION + RECALL
(10)

ACCURACY =
TP + TN

TP + TN + FP + FN
(11)

where TP is the number of true positives, TN is the number of false negatives, FP is the
number of false positives, and FN is the number of false negatives.

For the exercise category classification task, a weighted average of the scores were
used. The weight was the number of true instances for each label (support).

Confusion matrices were calculated for the exercise classification task. Each matrix
cell was normalized by the cardinality of the (true) category (row).

4. Results
4.1. Machine-Learning-Based Classification
4.1.1. Exercise Classification

Using the proposed convolutional neural network and all the features, we achieved
accuracy of 0.923 (std 0.02) for Ns = 42, precision of 0.935 (0.0136), recall of 0.923 (0.02), and
f1 score of 0.925 (0.02) for five-fold cross validation, while using data from all participants
in both training and testing data-set. Figure 13c shows that the time window Ns = 42 gives
best results in both five-fold and leave-one-out cross validation experiments. The overall
best result for five-fold cross validation was achieved in the ablation study when roll and
pitch angle features were omitted: accuracy 0.933 (0.02) and f1 of 0.935 (0.0187). Figure 13a
shows the results of ablation study for five-fold cross validation. The worst results were
achieved when no imu-based features were used (noimu), with accuracy dropping to 0.641
(0.0373).

For leave-one-person-out cross validation, the mean accuracy, for normal case, dropped
to 0.632 (0.2), recall 0.632 (0.201), and f1 0.63 (0.193), with significantly larger standard
deviation (see Figure 13b).

Confusion matrices (Figure 14) show that the classes hand-kneading, wrist and fingers
extension, and wrist flexion–extension have the poorest performance. Hand kneading had
the poorest performance for new users and was frequently misclassified as hand up–down.

Detailed results are presented in Table A5 for five-fold cross validation and Table A3
for leave-one-out cross validation.

4.1.2. Anomaly Classification

For anomaly classification in five-fold cross validation, best results were achieved for
convolutional-network-based model with accuracy of 0.913 (0.0235)%, precision of 0.901
(0.0962), recall of 0.94 (0.0398), and f1 score of 0.916 (0.0401). The tree-based classifier had
accuracy of 0.836 (0.00596) and similarly poorer other results (see Table 2 and Figure 15).
For leave-one-person-out, all scores dropped for both types of models, with the CNN model
achieving poorer accuracy 0.78 (0.107) vs. 0.79 (0.0632) but better f1 score 0.814 (0.0756) vs.
0.767 (0.105), (also, see Table 3).



Sensors 2022, 22, 2414 18 of 33

normal noflex noangles noaccel nogyro noimu
experiment_name

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

va
lu

e

accuracy
f1
precision
recall

(a)

normal noflex noangles noaccel nogyro noimu
experiment_name

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

va
lu

e

accuracy
f1
precision
recall

(b)

5FCV
10

5FCV
21

5FCV
42

LOOCV
10

LOOCV
21

LOOCV
42

cross validation type
length

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

va
lu

e

accuracy
f1
precision
recall

(c)

Figure 13. Results for exercise classification using convolutional neural networks. (a) Bar plots
of exercise classification values for five-fold cross validation. Ns = 42. (b) Bar plots of exercise
classification values for leave-one-out cross validation. Ns = 42. (c) Exercise classification results for
five-fold cross validation (5FCV) and leave-one-out cross validation (LOOCV) for different length of
time window Ns and using all features (normal).
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Figure 14. Confusion matrices for classification task (normalized by category cardinality). (a) Con-
fusion matrix from five-fold cross validation. (b) Confusion matrix from leave-one-subject-out
cross validation.

Ablation results (shown in Figure 16 and in Tables A2 and A4) show similar behavior
for all cases other than noimu. The results may suggest that similar learning capability may
be achieved through a subset of features; particularly, the removal of flexion sensors would
not worsen the results much.
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Figure 15. Results for anomaly classification: cnn—convolutional-neural-network-based anomaly
classification; dt—decision-tree-based anomaly classification. Numbers below represent the time
window length, Ns. (a) Five-fold cross validation results. (b) Leave-one-out validation results.

Table 2. Comparison of five-fold cross validation results for deep-learning-based anomaly classifica-
tion using all features as input and tree-based classifier.

Ns Precision Recall f1 Accuracy
Convolutional Neural Network

10 0.829 (0.111) 0.817 (0.117) 0.813 (0.0639) 0.808 (0.0368)
21 0.863 (0.101) 0.911 (0.0398) 0.883 (0.058) 0.878 (0.0374)
42 0.901 (0.0962) 0.94 (0.0398) 0.916 (0.0401) 0.913 (0.0235)

Decision tree

10 0.804 (0.0239) 0.683 (0.0509) 0.738 (0.0379) 0.78 (0.0541)
21 0.828 (0.0163) 0.751 (0.0609) 0.786 (0.0356) 0.813 (0.0553)
42 0.864 (0.0165) 0.774 (0.0555) 0.816 (0.0372) 0.836 (0.0596)
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Figure 16. Results for anomaly classification using convolutional neural network. Best case: Ns = 42.
(a) Bar plots of anomaly classification values for five-fold cross validation. (b) Bar plots of anomaly
classification values for leave-one-out cross validation.

Table 3. Comparison of leave-one-subject-out cross validation results for deep-learning-based
anomaly classification using all features as input and tree-based classifier (four persons).

Ns Precision Recall f1 Accuracy
Convolutional Neural Network

10 0.758 (0.147) 0.867 (0.115) 0.801 (0.106) 0.74 (0.131)
21 0.885 (0.0818) 0.743 (0.149) 0.805 (0.121) 0.79 (0.125)
42 0.865 (0.0867) 0.772 (0.0842) 0.814 (0.0756) 0.78 (0.107)

Decision tree

10 0.763 (0.179) 0.719 (0.135) 0.726 (0.0956) 0.76 (0.0596)
21 0.788 (0.159) 0.768 (0.148) 0.761 (0.0699) 0.785 (0.0483)
42 0.78 (0.189) 0.785 (0.145) 0.767 (0.105) 0.79 (0.0632)

5. Case Report

In May of 2019, the patient was admitted to the Department of Neurology in Łódź with
massive paresis of the left limbs due to an ischemic stroke. On the same day, she left the Gen-
eral Surgery Department (7–8 May 2019), where she had a planned surgery—the removal of
the tumor in the right submandibular region. In the afternoon, the condition of the patient
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worsened. In the Department of Neurology, the patient was treated with thrombolytic
therapy but without improvement. At the end of May 2019, she was discharged.

From July to September 2019, the patient was admitted to the MCM Neurological
Rehabilitation Department. Dr. K. Jonscher in Łódź and began the process of comprehen-
sive rehabilitation.

Rehabilitation included kinesiotherapy, physical therapy, occupational therapy, and psy-
chological therapy.

Since the end of the rehabilitation cycle, the patient has improved gait efficiency and
quality, while the hand muscle tone has remained. Detailed patient history is shown in
Table 4.

Table 4. Case study patient’s history.

Scale Type (Norm–Max Symptoms) Neurological Rehabilitation Phase
Admission to Hospital At Hospital Discharge At Two Years

Barthel ADL (20–0) 12 15 20
Rankin (0–5) 4 4 2/3
Ashworth (0–4) 1+ 1+ 2

In December 2021, the patient took part in the test of the “Przypominajka” device.
The Przypominajka was set up to remind every 15 min. All Przypominajka exercises were
selected as applicable.

She carried out the test twice for 1 h, followed by an interview. The use of Przypomi-
najka was recorded (see Figure 17 and Supplementary Video S1. The patient was able to
follow all exercises; however, some additional explanation was needed from the therapist.

During the interview, the patient described the following advantages of the device:

• The patient enjoyed the “stars” element of the interface and felt motivated to continue
exercising so more stars appear.

• The patient felt motivated by the device reminder to start exercising. She understood
to stop other activities and start preparing for exercise sessions.

• She understood that recording whether and how the patient exercises allows for
checking whether the patient performs the tasks entrusted to them.

• The patient suggested that user registration might help personalize the rehabilitation
cycle individually to the patient’s needs.

• The patient stated that the possibility of choosing or skipping exercises was also valuable.

The patient described the following shortcomings:

• A patient with spastic paresis would have difficulty putting on the device; help was
needed from the therapist (see Figure 17).

• The material was uncomfortable. The patient also noticed that it was delicate. Sensor
position could change during the hand movement.

• Patient said that some of the instructions were difficult to follow and more description
(possibly by attaching an audio file) is needed. Particularly, the patient wanted to
know whether a particular exercise should be performed in “365 degrees” (meaning
in the air) or while keeping the hand on a table.
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(a)

(b)

Figure 17. Photographs from a trial session with a Przypominajka user. (a) Patient training with
Przypominajka v2. (b) Patient putting on the Przypominajka v2.

6. Discussion and Conclusions

In this paper, we have described a Przypominajka v2 sensor-glove-based system for
reminding and motivating patients with plegic or paretic hands to self-exercise. The tablet-
based interface is capable of reminding them during preprogrammed hours, instructing
them about the exercises, and motivating them using a score-based award system. Com-
pared to Przypominajka v1 described in our previous paper [18], the main changes are
in the patient interface and an online (during the exercise) scoring system based on a
convolutional neural network. The microcontroller was changed from Arduino to a more
powerful ESP 32, which enabled us to keep the on-device convolutional neural network
inference through the use of TensorFlow Lite.

6.1. Comparison of Przypominajka v2 to Przypominajka v1 and Other Devices

Current Przypominajka patient interface functions are moved to a separate tablet
application. This allows for a much more ergonomic interface (larger buttons and images,
animated instructions) and more sophisticated interaction. Patients and therapists can set
the therapy details and can see the score history directly on the tablet, while in the previous
version, this could be achieved only through a web interface or an SD card text file. Tablet
computers are widely available, and other applications for stroke survivors are available,
which could also be loaded to the tablet [27]. Regarding future device use, the change to
a tablet interface also gives a better perspective to commercialization and use on a larger
scale. The sensor glove which would have to be manufactured would have a smaller bill
of materials, and electronics would be simplified. Using a web application for therapists
means that therapists have a centralized way to monitor possibly multiple patients and
can use their own devices (smartphones, laptops) to access the system. A similar system
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architecture was used by Adamovitch et al. in a virtual reality-based exercise system for
hand rehabilitation in which a web portal was set up for patient-database remote access,
while patients used a VR-based application set up on a PC computer [10]. A current version
of the system, described by Qiu et al., uses a LeapMotion controller with a series of games
with real-time feedback by a virtual therapist while a remote web portal is set up for the
clinicians and scientists to collect the data, guide patients, and select adequate exercises [28].
Authors reported high adherence to the training regime and improved patient scores in
Fugl–Meyer assessment. In the case of our device, the focus was on patients with lower
hand function, but motivational enhancement by scoring, virtual support, and remote
therapist access is possible in such a setup.

The signal processing and machine-learning-based inference were kept on the Przy-
pominajka v2 mainboard. This enables the use of other devices connected to the wearable
glove to form different, possibly more simplified, or personalized interfaces. The architec-
ture of the system uses the Internet of Medical Things concept [29]. The sensor glove is a
machine-learning-enabled remote sensor (with Bluetooth and possibly WiFi connectivity); a
tablet app forms an embedded user interface with another web interface for therapists using
a remote database and server. This approach has multiple benefits: scalability, dynamicity,
and genericity. The sensor glove and its tablet interface can be a part of a larger network of
connected devices for post-stroke therapy with a unified user interface for therapists. It also
has its typical challenges: reliability, meaning in this case mainly correctness of collected
information and instructions. The device has onboard sensor validity checks, but some
therapist supervision is required. Due to the lack of actuators, the system is inherently
safe. The challenge in scaling the system and providing an internet-accessible interface is
safety. The patient rehabilitation data is sensitive and private, so robustness to data leaks
and hacker attacks is necessary.

The access to the data can also be extended further, particularly to provide web ac-
cess for family members. Family can play a significant role in post-stroke rehabilitation,
and therapists are recommended to engage patient families [30]. The current web appli-
cation version is limited mainly to therapist use. A simplified and secured interface for
the family (with patient consent) would allow family members to support therapy and
motivate patients, for example, through monitoring and encouraging patient progress.
Interaction with family members could also limit patients’ loneliness during the hospital
stay. In general, by aiming at after-hours patient activity with the Przypominajka, we hope
to influence the issues described by Luker et al.: patients’ boredom, loneliness, and need
for physical activity, knowledge, and control [2].

Other sensor-glove-based devices that are currently available for rehabilitation, such
as Raphael or Music Glove, encourage patients to use and exercise control over the affected
limb. This is achieved by a set of engaging games (controlling the direction of a plane by
supination and pronation, wiping a table with the hand movement) or challenges (creat-
ing music) [8,9]. The main difference in our approach is in the type of exercises and the
patient’s condition. In the case of these and other smart-glove-like devices, patients must
have some level of control over the hand, which they can further improve by exercising.
Additionally, the devices are to be used in (daily) sessions while being assisted by the ther-
apist. In contrast, the Przypominajka is to be used by patients with plegic or paretic hands
where the other hand is needed to move the affected limb. The goal of the exercise is also
different. Przypominajka offers a set of exercises and helps to perform flexion and extension
movements in the elbow, wrist, metacarpophalangeal, and phalangeal joints of a paretic
hand and supination and pronation of the forearm and flexion of the arm. All exercises
are assisted by an unaffected upper limb. The main aim of Przypominajka is to motivate
patients to self-train their affected upper limb. Moreover, selected exercises can enable
preserving the full range of motion in exercised joints, can prevent joint contracture and
muscle atrophy, can improve blood and lymph circulation, and can decrease spasticity and
edema of the paretic hand. Considering that the time of upper limb rehabilitation during
standard hospital rehabilitation is usually limited, our additional device can significantly
improve the chances of functional recovery of the upper limb after stroke.
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There are also other devices intended to be used for patients with paretic or plegic
hands providing passive (i.e., where external force actuates the limb) exercises. Continuous
passive motion machines can move selected joints (usually wrist or fingers) through a
preset range of motion. Hands are actuated through electric or pneumatic actuators with
force transmitted through cables, linkages, or through direct-drive setups [31]. The Przy-
pominajka v2 does not have any actuators and requires the patient to self-actuate the hand.
This significantly simplifies the construction. Moreover, by actively participating in the
exercises and observing their own hand movement, brain neuroplasticity is promoted.
However, patient self-training during this phase of after-stroke recovery is difficult, as
neuropsychiatric complications and cognitive impairments require special care [15]. Partic-
ipating in an engaging game or a fast-paced challenge may be too difficult and fatiguing,
but reminding about training, giving clear commands, and assigning a score that checks
if the patient is training may fit the state of many patients in the subacute phase with
plegic/paretic hands.

6.2. Scoring System Evaluation

The main motivational element of the system is a score based on a machine-learning
model inference. The quality of correctly classifying patient actions may directly influence
patient motivation and trust in the system.

The current model has the form of an “anomaly classification” in which we achieved
maximum accuracy of 91.3% (precision of 90%, recall of 94%, and f1 score of 91%) while
using the best CNN model and 83% accuracy for tree-based classifier. For categorization,
the model achieves an accuracy of 92%. The result is comparable to other systems for action
recognition based on sensor gloves; Ahmed et al., in a review of gesture recognition systems
for sign language recognition, found results from 80% to 98% accuracy [32]. The large range
may come from the number, type, and quality of sensors, type and size of classifier (large
CNN based on transfer learning vs. linear models), and dataset size. There is also a strong
influence of the relation of the training set to test set (i.e., whether it was tested and trained
on the same person or group of persons).

There was a considerable drop in results, particularly in exercise classification between
five-fold and leave-one-out cross validation (92.3% to 63.2%). It suggests high individuality
in the way participants performed the exercises. Additional verification of training on only
one participant’s data showed that models can achieve near-perfect accuracy of 98.5% for
exercise categorization (see Table A6 and Figure A2). In papers reviewed by Ahmed et al.,
best results were also reported in studies where testing and training were carried out on
the same person’s data, such as Tubaiz et al.’s study [33].

Changes in performance for a new user for anomaly classification were smaller,
from 91.3% to 78%. For the noacell case, the change was even smaller, from 90.6% to
82%. Therefore, even for new users, the system behaves acceptably. That is, with the
additional margin of error scaling parameter on the scoring function (see Equation (7)),
the user can still achieve maximum points (stars) during training even when there will be
false negatives. Interestingly, when training and testing on a single user’s data, anomaly
classification accuracy was smaller (77.9%) than when training on the general set. Investi-
gation of this phenomenon and possible methods of rapid learning for new users are the
next steps of this research.

The processing times and RAM requirements of the inference programs with CNN
models proposed on the microcontroller show that it is feasible to have near-real-time
(around 10 ms processing time) on-device inference. While during the data gathering,
the update loop was set to 21 Hz, in the future, a faster loop of 50 Hz is possible. This
would give a sampling/update rate comparable to commercially available devices, such as
5DT (75 Hz) or VMG (10–100 Hz) [34]. While hand exercises for plegic hands are performed
slowly, a faster sampling rate would allow registration of faster movements and reduce the
chances of possible undersampling issues.
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6.3. Limitations of the Current Study and Further Steps

There are important limitations to this study and the current solution. As patients
self-exercise, it is important to educate them at the beginning about the details of exercises
to avoid adverse effects of wrong exercise training. This was also noted by Qiu et al., where
patients were instructed directly or remotely before sessions and could ask for help while
training remotely [28]. Clear and simple exercise instructions, short and direct commands
displayed during use, and graphics containing emotions with supportive texts improve
the chances that the patient will conduct exercises properly and motivate them to perform
exercises systematically. However, in the case study, the patient had some difficulty in
understanding the details of the exercise, and further improvements in this area are needed.

The patient’s condition may limit the usability of the device. Vision impairment (e.g.,
homonymous hemianopsia) and reduced cognitive functions may cause difficulties with
reading information from the screen and problems with understanding instructions to
exercise. Severe pains, increased spasticity, and edema in the upper limb after stroke may
make it impossible to exercise, similar to lack of ability to sit up unaided or supported (all
exercises are preferably performed in a sitting position). Another question that needs to be
answered is whether patients with affected dominant upper limb, disturbed superficial and
deep sensation, or hemispatial neglect can use the device. We cannot determine without
further study to what extent the impairments mentioned above may influence the usage of
our device.

In our preliminary test, we observed that patients, such as the person in our case study,
had difficulty putting on and taking off Przypominajka on their own. This serious problem
needs to be solved before proceeding with further studies.

In conclusion, we present a new way in which sensor systems can support the reha-
bilitation of after-stroke patients with an on-device machine-learning-based classification
that can accurately score and contribute to patient motivation. A further, larger group of
post-stroke individuals with well-defined inclusion criteria is needed to test our device to
evaluate the effectiveness of Przypominajka in motivating hand training in patients with
paretic hands.
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Appendix A. Types of Anomalies Used in Training the Anomaly Classification Models

Table A1. Variety of anomalies used in anomaly classification training.

Hand hanging down Hand hanging from the edge Hand laying on flat

Hand laying flat (different po-
sition)

Hand still in a position Hand still in a different posi-
tion

Little wrist movement up-
down

Little hand tilt Slight finger movement
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Appendix B. Detailed Tables of Cross Validation Results

Table A2. Leave-one-out cross validation results for anomaly classification.

Experiment Name Precision Recall f1 Accuracy

Ns = 10
noaccel 0.806 (0.192) 0.816 (0.0909) 0.801 (0.12) 0.753 (0.147)
noangles 0.805 (0.129) 0.717 (0.131) 0.751 (0.0959) 0.714 (0.111)
noflex 0.808 (0.167) 0.607 (0.248) 0.648 (0.0798) 0.624 (0.047)
nogyro 0.799 (0.163) 0.824 (0.111) 0.805 (0.117) 0.759 (0.143)
noimu 0.737 (0.1) 0.812 (0.138) 0.765 (0.0724) 0.703 (0.0576)
normal 0.758 (0.147) 0.867 (0.115) 0.801 (0.106) 0.74 (0.131)

Ns = 21
noaccel 0.865 (0.121) 0.761 (0.0796) 0.809 (0.0907) 0.784 (0.094)
noangles 0.809 (0.0853) 0.808 (0.112) 0.805 (0.0749) 0.764 (0.0932)
noflex 0.82 (0.153) 0.822 (0.062) 0.812 (0.0583) 0.767 (0.0732)
nogyro 0.857 (0.116) 0.769 (0.0775) 0.809 (0.0871) 0.776 (0.115)
noimu 0.838 (0.137) 0.762 (0.171) 0.782 (0.0875) 0.751 (0.0895)
normal 0.885 (0.0818) 0.743 (0.149) 0.805 (0.121) 0.79 (0.125)

Ns = 42
noaccel 0.892 (0.0968) 0.817 (0.183) 0.839 (0.112) 0.82 (0.113)
noangles 0.832 (0.0981) 0.825 (0.169) 0.82 (0.1) 0.783 (0.129)
noflex 0.923 (0.0448) 0.775 (0.194) 0.834 (0.132) 0.822 (0.142)
nogyro 0.896 (0.079) 0.693 (0.207) 0.773 (0.149) 0.762 (0.163)
noimu 0.84 (0.128) 0.734 (0.144) 0.772 (0.0875) 0.742 (0.0875)
normal 0.865 (0.0867) 0.772 (0.0842) 0.814 (0.0756) 0.78 (0.107)

Table A3. Leave-one-out cross validation results for type of training classification.

Experiment Name Precision Recall f1 Accuracy

Ns = 10
noaccel 0.447 (0.0827) 0.396 (0.0703) 0.388 (0.0583) 0.396 (0.0703)
noangles 0.564 (0.151) 0.536 (0.114) 0.528 (0.13) 0.536 (0.114)
noflex 0.578 (0.128) 0.521 (0.134) 0.515 (0.128) 0.521 (0.134)
nogyro 0.513 (0.0641) 0.459 (0.08) 0.456 (0.0687) 0.459 (0.08)
noimu 0.342 (0.0762) 0.366 (0.0578) 0.324 (0.0689) 0.366 (0.0578)
normal 0.577 (0.0591) 0.513 (0.0737) 0.508 (0.0706) 0.513 (0.0737)

Ns = 21
noaccel 0.588 (0.135) 0.523 (0.116) 0.516 (0.11) 0.523 (0.116)
noangles 0.647 (0.0908) 0.595 (0.0867) 0.592 (0.0926) 0.595 (0.0867)
noflex 0.658 (0.148) 0.608 (0.14) 0.592 (0.134) 0.608 (0.14)
nogyro 0.611 (0.123) 0.578 (0.115) 0.575 (0.119) 0.578 (0.115)
noimu 0.425 (0.0771) 0.402 (0.0556) 0.393 (0.0644) 0.402 (0.0556)
normal 0.656 (0.0627) 0.606 (0.0762) 0.604 (0.0746) 0.606 (0.0762)

Ns = 42
noaccel 0.609 (0.16) 0.561 (0.171) 0.559 (0.167) 0.561 (0.171)
noangles 0.718 (0.154) 0.688 (0.14) 0.681 (0.141) 0.688 (0.14)
noflex 0.683 (0.131) 0.626 (0.136) 0.607 (0.138) 0.626 (0.136)
nogyro 0.754 (0.123) 0.692 (0.133) 0.69 (0.124) 0.692 (0.133)
noimu 0.433 (0.105) 0.412 (0.0767) 0.4 (0.085) 0.412 (0.0767)
normal 0.696 (0.183) 0.632 (0.201) 0.63 (0.193) 0.632 (0.201)
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Table A4. Five-fold cross validation results for anomaly classification.

Experiment Name Precision Recall f1 Accuracy

Ns = 10
noaccel 0.794 (0.11) 0.865 (0.0903) 0.819 (0.036) 0.799 (0.0304)
noangles 0.737 (0.158) 0.896 (0.0615) 0.8 (0.102) 0.766 (0.0921)
noflex 0.804 (0.152) 0.723 (0.182) 0.734 (0.0596) 0.724 (0.0795)
nogyro 0.811 (0.119) 0.867 (0.0273) 0.835 (0.0712) 0.822 (0.0567)
noimu 0.801 (0.11) 0.734 (0.0813) 0.76 (0.0624) 0.757 (0.0415)
normal 0.829 (0.111) 0.817 (0.117) 0.813 (0.0639) 0.808 (0.0368)

Ns = 21
noaccel 0.856 (0.118) 0.906 (0.0469) 0.875 (0.0627) 0.869 (0.0401)
noangles 0.813 (0.14) 0.923 (0.0413) 0.857 (0.0734) 0.841 (0.0573)
noflex 0.893 (0.0799) 0.855 (0.0573) 0.87 (0.0278) 0.864 (0.0294)
nogyro 0.863 (0.111) 0.905 (0.0418) 0.879 (0.0577) 0.874 (0.0345)
noimu 0.816 (0.142) 0.827 (0.0987) 0.809 (0.0471) 0.795 (0.0272)
normal 0.863 (0.101) 0.911 (0.0398) 0.883 (0.058) 0.878 (0.0374)

Ns = 42
noaccel 0.933 (0.0415) 0.893 (0.0581) 0.911 (0.021) 0.906 (0.0273)
noangles 0.887 (0.135) 0.93 (0.0534) 0.901 (0.07) 0.897 (0.0571)
noflex 0.94 (0.0337) 0.904 (0.0565) 0.921 (0.0332) 0.916 (0.0405)
nogyro 0.897 (0.0321) 0.933 (0.0236) 0.915 (0.0138) 0.906 (0.0203)
noimu 0.847 (0.15) 0.808 (0.125) 0.81 (0.0503) 0.803 (0.0298)
normal 0.901 (0.0962) 0.94 (0.0398) 0.916 (0.0401) 0.913 (0.0235)

Table A5. Five-fold cross validation results for type of exercise classification.

Experiment Name Precision Recall f1 Accuracy

Ns = 10
noaccel 0.766 (0.0494) 0.731 (0.0463) 0.736 (0.043) 0.731 (0.0463)
noangles 0.81 (0.0171) 0.754 (0.0486) 0.755 (0.0512) 0.754 (0.0486)
noflex 0.774 (0.0591) 0.757 (0.0608) 0.756 (0.062) 0.757 (0.0608)
nogyro 0.797 (0.0176) 0.767 (0.0264) 0.767 (0.0284) 0.767 (0.0264)
noimu 0.572 (0.046) 0.508 (0.0326) 0.5 (0.0345) 0.508 (0.0326)
normal 0.786 (0.04) 0.754 (0.0353) 0.756 (0.0405) 0.754 (0.0353)

Ns = 21
noaccel 0.864 (0.0201) 0.847 (0.0252) 0.848 (0.0259) 0.847 (0.0252)
noangles 0.892 (0.0198) 0.868 (0.0316) 0.871 (0.0295) 0.868 (0.0316)
noflex 0.847 (0.0467) 0.821 (0.0307) 0.823 (0.0362) 0.821 (0.0307)
nogyro 0.876 (0.0196) 0.853 (0.0249) 0.855 (0.0242) 0.853 (0.0249)
noimu 0.641 (0.0468) 0.604 (0.0436) 0.605 (0.0438) 0.604 (0.0436)
normal 0.885 (0.0156) 0.867 (0.0246) 0.868 (0.0255) 0.867 (0.0246)

Ns = 42
noaccel 0.93 (0.0172) 0.917 (0.0249) 0.918 (0.0258) 0.917 (0.0249)
noangles 0.945 (0.0174) 0.933 (0.02) 0.935 (0.0187) 0.933 (0.02)
noflex 0.916 (0.0255) 0.897 (0.0304) 0.899 (0.0302) 0.897 (0.0304)
nogyro 0.925 (0.0201) 0.911 (0.0283) 0.912 (0.0276) 0.911 (0.0283)
noimu 0.693 (0.0529) 0.641 (0.0373) 0.647 (0.0397) 0.641 (0.0373)
normal 0.935 (0.0136) 0.923 (0.02) 0.925 (0.0188) 0.923 (0.02)
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Figure A1. Convolutional neural network for classification of anomalies. During learning, a binary
cross entropy (log loss) loss function was used.

Table A6. Single user study results for anomaly classification and exercise classification.

Ns Precision Recall f1 Accuracy

Anomaly classification

10 0.738 (0.166) 0.808 (0.0971) 0.76 (0.112) 0.708 (0.141)
21 0.842 (0.19) 0.8 (0.0316) 0.809 (0.1) 0.786 (0.104)
42 0.824 (0.15) 0.814 (0.123) 0.808 (0.0969) 0.779 (0.118)

Exercise classification

10 0.935 (0.0432) 0.909 (0.032) 0.919 (0.0291) 0.909 (0.032)
21 0.961 (0.0407) 0.953 (0.0374) 0.955 (0.04) 0.953 (0.0374)
42 0.987 (0.0232) 0.985 (0.0263) 0.985 (0.0272) 0.985 (0.0263)
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Figure A2. Results for learning on a single user’s data and classifying the same user’s data. (a)
Bar plots for anomaly classification for a single user, length is Ns = 42. (b) Bar plots for exercise
classification for a single user, length is Ns = 4.2.
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18. Dominik, I.; Prączko-Pawlak, E.; Zubrycki, I. Motivating wearable device for plegic hand rehabilitation. In Proceedings
of the 2021 Signal Processing Symposium (SPSympo), Lodz, Poland, 20–23 September 2021; pp. 52–57,
https://doi.org/10.1109/SPSympo51155.2020.9593912.

19. Yu, D.T. Shoulder Pain and Other Musculoskeletal Complications. In Stroke Recovery And Rehabilitation; Richard, L., Harvey, M.,
Macko, R.F., Eds.; Demos Medical Publishing: New York, NY, USA, 2008.

20. Saggio, G.; Riillo, F.; Sbernini, L.; Quitadamo, L.R. Resistive flex sensors: A survey. Smart Mater. Struct. 2015, 25, 013001.
21. Narkhede, P.; Poddar, S.; Walambe, R.; Ghinea, G.; Kotecha, K. Cascaded Complementary Filter Architecture for Sensor Fusion in

Attitude Estimation. Sensors 2021, 21, 1937, https://doi.org/10.3390/s21061937.
22. Scikit-Learn Developers. Decision Trees: Mathematatical Formulation. 2021. Available online: https://scikit-learn.org/stable/

modules/tree.html#mathematical-formulation (accessed on 1 February 2022).
23. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
24. David, R.; Duke, J.; Jain, A.; Reddi, V.J.; Jeffries, N.; Li, J.; Kreeger, N.; Nappier, I.; Natraj, M.; Regev, S.; et al. TensorFlow Lite

Micro: Embedded Machine Learning on TinyML Systems. arXiv 2020, arXiv:2010.08678.
25. O’Cleirigh, M. Tensorflow Micropython Examples. 2021. Available online: https://github.com/mocleiri/tensorflow-

micropython-examples (accessed on 1 January 2022).
26. Edmond, S.L. Joint Mobilization/Manipulation; Elsevier: Amsterdam, The Netherlands, 2006. https://doi.org/10.1016/b978-0-323-

02726-7.x5001-0.
27. Pugliese, M.; Ramsay, T.; Johnson, D.; Dowlatshahi, D. Mobile tablet-based therapies following stroke: A systematic scoping

review of administrative methods and patient experiences. PLoS ONE 2018, 13, e0191566.
28. Qiu, Q.; Cronce, A.; Patel, J.; Fluet, G.G.; Mont, A.J.; Merians, A.S.; Adamovich, S.V. Development of the Home based Virtual

Rehabilitation System (HoVRS) to remotely deliver an intense and customized upper extremity training. J. Neuroeng. Rehabil.
2020, 17, 155. https://doi.org/10.1186/s12984-020-00789-w.
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