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Abstract: Production system modeling (PSM) for quality propagation involves mapping the princi-
ples between components and systems. While most existing studies focus on the steady-state analysis,
the transient quality analysis remains largely unexplored. It is of significance to fully understand
quality propagation, especially during transients, to shorten product changeover time, decrease
quality loss, and improve quality. In this paper, a novel analytical PSM approach is established
based on the Markov model, to explore product quality propagation for transient analysis of serial
multi-stage production systems. The cascade property for quality propagation among correlated
sequential stages was investigated, taking into account both the status of the current stage and the
quality of the outputs from upstream stages. Closed-form formulae to evaluate transient quality
performances of multi-stage systems were formulated, including the dynamics of system quality,
settling time, and quality loss. An iterative procedure utilizing the aggregation technique is presented
to approximate transient quality performance with computational efficiency and high accuracy.
Moreover, system theoretic properties of quality measures were analyzed and the quality bottleneck
identification method was investigated. In the case study, the modeling error was 0.36% and the calcu-
lation could clearly track system dynamics; quality bottleneck was identified to decrease the quality
loss and facilitate continuous improvement. The experimental results illustrate the applicability of
the proposed PSM approach.

Keywords: production systems; transient analysis; quality; bottleneck; Markov models

1. Introduction

Production system modeling (PSM) is the process of mapping system principles
between fundamental component-level elements (e.g., machine reliability, quality fail-
ure, and repair probability) and their impacts on system-level performance measures
(e.g., quality and throughput). PSM is critical for analysis, disclosure, and understanding
of production procedure principles for quality improvement. For example, General Motors
implemented PSM at more than 30 plants, such as system performance estimation, bot-
tleneck identification, and resource allocation optimization. As a result, General Motors
improved revenue and saved more than USD 2.1 billion.

The literature on PSM, regarding quality propagation, mainly consists of two research
lines. Traditionally, the research line focuses on the fundamental physical law. For in-
stance, the state space models are established in a pioneering paper by Jin and Shi [1],
linking the engineering knowledge for sources of variations with final product quality
measures. More extensions of state space models are introduced to the three-dimensional
assembly system [2] and machining system [3–5]. Although state space models are still
popular, essential problems exist for this research. Namely, the state space models rely on

Sensors 2022, 22, 2409. https://doi.org/10.3390/s22062409 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22062409
https://doi.org/10.3390/s22062409
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8721-9755
https://doi.org/10.3390/s22062409
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22062409?type=check_update&version=2


Sensors 2022, 22, 2409 2 of 23

complex production process kinematics and only apply to dimension errors that impede
further applicability.

In another research line, there arises a prevailing trend of mapping the correlation
between production systems and quality propagation based on Markov analytical models.
Related studies indicate that the production system has a strong impact on system quality
performance. Zhao et al. [6] introduced a Markov model of flexible production lines with
setups using recursive procedures. Du, Xu, and Li [7] expanded a discrete Markov model
to multi-type product systems with calculations of transition probabilities to obtain quality
probability. Şahin et al. [8] applied the Markov model to capture the incoming batch
quality and they predicted the future arrival quality. Goswami, Kumar, and Ghadge [9]
determined steady-state probabilities using the Markov model and discussed the guidance.
Guo and Gu [10] formulated a mixed Markov model of production and maintenance
to evaluate the system quality under optimal policies. Yaghoubi et al. [11] introduced
quantitative tools using the Markov method and improved the quality of the oil product
line. The Markov model applications also include battery production systems [12], machine
tool modeling [13], k-out-of-n systems [14,15], reconfigurable production systems [16],
maintenance policy [17], re-entrant production systems [18], primary care [19], rolling
bearing monitoring [20], industrial network models [21], assembly assistance systems [22],
laser-based manufacturing process [23], and the steel production process [24,25].

In spite of the above efforts, it should be noted that most existing studies of PSM for
quality are focused on steady-state analyses, which characterize long-term system quality
behavior. Unlike these results, where a large amount of papers have been devoted to
steady-state analysis, transient analysis for system quality receives much less attention and
still needs further development. After the product changeover or maintenance activities,
transients of system quality are typically encountered because of undesired initial system
circumstances, such as relocating errors of flexible fixtures when a fresh process starts
up. The system quality operates either partially or even entirely in transient regimes,
which depicts the behavior of system quality before reaching steady-state at the desired
criteria for quality and cost. The specific characteristics of the transient phase differ from
steady-state phase significantly, resulting in associated quality loss. The management
techniques appropriate for stable production cannot perform well in unstable transients.
Similar scenarios also exist for many other production systems, for example aerospace,
automobiles, vehicles, appliance, and electronics systems [26]. It is of significance to fully
understand quality propagation during transients to shorten product changeover time,
decrease quality loss, as well as improve quality. This paper intends to contribute to
this end.

In the framework of transient analysis, some preliminary results have been reported
in PSM of transient analysis for throughput. The main results of a transient throughput
analysis can be categorized into two groups: computer simulation and analytical methods.
Representative results of simulation can be found in [27,28]. The computer simulation
approach is accurate, to capture system throughput during transients. However, high de-
velopment costs, low flexibility, and long execution times of simulation models limit its
capabilities. Representative results of analytical methods can be found in the paper by Wang,
Huang, and Li [29], which investigated transient throughput properties of flexible systems
with the finite buffer and Bernoulli machine. Further research includes a geometric serial
line [30], assembly systems [31], a serial Bernoulli production line [32–34], and Bernoulli
production systems with rework processes [35,36]. In contrast to computer simulation, ana-
lytical methods can inherently overcome the above drawbacks and disclose fundamentally
mathematical coupling between performance measures and system parameters.

To summarize, there is increasing concern about PSM for quality performance and
transient analysis of production systems. However, it is still needed to derive analytical
methods, which integrate the two issues together. With such motivation, a novel analytical
PSM approach was established to investigate product quality propagation for transient
analysis of serial multi-stage production systems having remote quality information feed-
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back (RQIF). Specifically, this approach overcomes the limited assumptions and restrictions
of conventional quality models. Both quality corrections and quality degradations are ad-
dressed, which is more practical and accurate in a real production environment. Transient
quality analyses were conducted to reveal the correlation between components and system
quality performance. System theoretic properties of quality measures were analyzed and
the quality bottleneck identification method was investigated.

The remainder of this paper is as follows. Problem assumptions are addressed and
the Markov model is formulated to investigate quality propagation during transients in
Section 2. In Section 3, the transient evaluation for quality performance of the two-stage
systems is derived. Section 4 investigates multi-stage production systems and introduces
an iterative procedure to approximate the transient quality performance. In Section 5,
system theoretic properties of quality measures are analyzed. In Section 6, a case study is
presented to verify the proposed PSM approach. Section 7 formulates the conclusions.

2. Problem Formulation and Modeling
2.1. Descriptive Models

Assumptions for quality characteristics, inspection and system states transition of
multi-stage production systems having RQIF are depicted (Figure 1).

1. The multistage production system is composed of n stages with the inspection station
in the final stage.

2. The slots of the time axis are equal to the machine cycle time. Consider the work-
ing times of the production systems while the machine breakdown is not under
consideration.

3. The product quality processed in stage Mi (i ≥ 2) depends on the quality state of
stage Mi and the incoming product quality from upstream stage Mi−1. Both quality
corrections and quality degradations exist in production systems. The product could
have better or worse quality after it is processed in a certain stage.

4. With respect to the quality state of stage Mi, denote stage Mi as in the defective state
di or in the good state gi when stage Mi produces a defective or good product in the
time slot t.

5. With respect to the incoming product quality for stage Mi, it relies on the upstream
stage Mi−1. Stage Mi−1 in the defective state di−1 or in the good state gi−1 produces
a defective or good product in the time slot (t− 1), indicating a defective or a good
incoming product for stage Mi in the time slot t, respectively.

6. When in the defective state d1, stage M1 may transition into a good state g1 with a
probability β1 or transition into a defective state d1 with (1− β1). When in a good state
g1, stage M1 may transition into a defective state d1 with probability α1 or transition
into a good state g1 with (1− α1) (see Figure 2). 
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Figure 1. Multi-stage production systems having RQIF. 

  

Figure 1. Multi-stage production systems having RQIF.

In case of a good incoming product, when in a defective state di, stage Mi (i ≥ 2) may
transition into a good state gi with probability µi or transition into a defective state di with
(1− µi); when in a good state gi, stage Mi may transition into a defective state di with
probability γi or transition into a good state gi with (1− γi) (Figure 2).

In case of a defective incoming product, when in a defective state di, stage Mi (i ≥ 2)
may transition into a good state gi with probability θi or transition into a defective state di
with (1− θi); when in a good state gi, stage Mi may transition into a defective state di with
probability ηi or transition into a good state gi with (1− ηi) (Figure 2).
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Figure 2. Diagrams of state transitions in multi-stage production systems.

Figure 2 depicts the diagrams of the state transition in multi-stage production sys-
tems. The solid lines with arrow between stages reflect good incoming products while
the dashed lines reflect defective incoming products. Note that probabilities α1, γi, ηi are
denoted as quality failure probabilities, and β1, µi, θi quality repair probabilities. Systems
with RQIF reflect the situations in which most, rather than all, operations are reliable for
quality, while defective products are identified in the final stage. Such system examples
are seen in semiconductor production, assembly systems, engines, and aircraft horizontal
stabilizer assemblies.

2.2. Mathematical Models

Under assumptions 1–6, system transients and transient quality performance measures
are derived for the two-stage systems and extended to multi-stage systems. The two-stage
production system is described with four quality states as follows. (1) State g1g2 indicates
that both M1 and M2 produce good parts; (2) state g1d2 indicates that M1 produces good
parts while M2 produces defective parts; (3) state d1g2 indicates that M1 produces defective
parts while M2 produces good parts; (4) state d1d2 indicates that both M1 and M2 produce
defective parts.

The ergodic Markovian chain model of quality states above describes two-stage pro-
duction systems having RQIF. The quality state matrix for the Markovian chain is denoted
at time t.

S2(t) = [P(g1g2, t) P(g1d2, t) P(d1g2, t) P(d1d2, t)]T (1)

Production systems transition between the quality states based on transition probabil-
ity. All of the state transition probabilities among these four states are calculated and then
put into a matrix to construct the state transition probability matrix.
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C2 =


(1− α1)(1− γ2) (1− α1)µ2 β1(1− η2) β1θ2

(1− α1)γ2 (1− α1)(1− µ2) β1η2 β1(1− θ2)
α1(1− γ2) α1µ2 (1− β1)(1− η2) (1− β1)θ2

α1γ2 α1(1− µ2) (1− β1)η2 (1− β1)(1− θ2)

 (2)

The final product quality is the probability by which M2 is in a good state g2 and
produces a good product. Define P(g2, t) as the probability of producing a product with
good quality.

P(g2, t) = P(g1g2, t) + P(d1g2, t) (3)

Define the probability of producing a product with defective quality.

P(d2, t) = P(g1d2, t) + P(d1d2, t) (4)

The linear constrained equation describes the evolution of S2(t).

P(g1d2, t) + P(d1d2, t) + P(d1g2, t) + P(g1g2, t) = 1 (5)

S2(t + 1) = C2S2(t) (6)

The evolutions for P(g2, t) and P(d2, t) are described below.

y2(t) =
[

P(g2, t)
P(d2, t)

]
= FS2(t) =

[
1 0 1 0
0 1 0 1

]
S2(t) (7)

The above expressions depict system transients and quality measures during transients.

3. Transient Quality Performance Evaluation of Two-Stage Production Systems
3.1. Two-Stage Production Systems with Constant Parameters

For the two-stage systems with constant parameters, the mathematical model indi-
cates that matrix C2 is the state transition probability matrix determined by the ergodic
Markovian chain. The eigenvalues of C2, including the unique largest eigenvalue one, can
be arranged as follows.

1 = λ1 > λ2 ≥ |λ3| ≥ |λ4|

According to the matrix theory, transform matrix C2 to a diagonal matrix with non-
singular matrix Z.

ZC2Z−1 = diag
[

1 λ2 λ3 λ4
]

Substitute the following equation to Equations (6) and (7).

S̃2(t) = ZS2(t) (8)

Transform Equations (6) and (7) as.

S̃2(t + 1) = C̃2S̃2(t) (9)

y2(t) = F̃S̃2(t) (10)

where
C̃2 = ZC2Z−1 = diag

[
1 λ2 λ3 λ4

]
The evolution of the system states can be calculated based on Equation (9).

S̃2(t) = C̃2
tS̃2(0) = diag

[
1 λt

2 λt
3 λt

4
]
S̃2(0) (11)
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It is shown in Equation (11) that the Markovian chain of S̃2(t) reaches steady-state
according to the exponential function of parameters λi as time t evolves. With the largest
eigenvalue among all four eigenvalues of matrix C2, the second largest eigenvalue (SLE) λ2
dominates the system transient duration. A large SLE approximately describes the long
duration and slow convergence of the system transients.

According to Expression (10), evolutions for P(d2, t) and P(g2, t) are calculated.[
P(g2, t)
P(d2, t)

]
=

[
F̃11 F̃12 F̃13 F̃14
F̃21 F̃22 F̃23 F̃24

]
diag

[
1 λt

2 λt
3 λt

4
]
S̃2(0) (12)

The probabilities for producing good or defective products in steady-state are denoted
as P(g2)SS or P(d2)SS, respectively.

P(g2)SS = lim
t→∞

P(g2, t) = F̃11

P(d2)SS = lim
t→∞

P(d2, t) = F̃21
(13)

We have

[
P(g2, t)
P(d2, t)

]
=

 P(g2)ss

(
1 + F̃12

F̃11
S̃2,2(0)λt

2 +
F̃13
F̃11

S̃2,3(0)λt
3 +

F̃14
F̃11

S̃2,4(0)λt
4

)
P(d2)ss

(
1 + F̃22

F̃21
S̃2,2(0)λt

2 +
F̃23
F̃21

S̃2,3(0)λt
3 +

F̃24
F̃21

S̃2,4(0)λt
4

)  (14)

It is shown in Equation (14) that transients of system quality P(g2, t) and P(d2, t) are
described by both eigenvalues λi of the transition probability matrix C2 and pre-exponential

factors (PEFs).
F̃ij

F̃i1
. Corresponding to the SLE λ2, the PEFs F̃12

F̃11
and F̃22

F̃21
are most important.

Φ1 =

∣∣∣∣∣ F̃12

F̃11

∣∣∣∣∣, Φ1 =

∣∣∣∣∣ F̃22

F̃21

∣∣∣∣∣ (15)

Factors of Φ1, Φ2 describe the extent of the effects of SLE on product quality transients.
Large factors describe large effects and, thus, slow transients.

3.2. Two-Stage Production Systems with Time-Varying Parameters

When the parameters of a production system change over time, the system is described
using the inhomogeneous Markovian chain. Assumption 6 in Section 2.1 should be mod-
ified to incorporate system properties of time-varying parameters. Let α1(t), γ2(t), η2(t)
and β1(t), µ2(t), θ2(t) denote system quality repair and failure probability. State transition
probability matrix V2(t) of this Markovian chain at time t can be calculated.

V2(t) =


(1− α1(t))(1− γ2(t)) (1− α1(t))µ2(t) β1(t)(1− η2(t)) β1(t)θ2(t)

(1− α1(t))γ2(t) (1− α1(t))(1− µ2(t)) β1(t)η2(t) β1(t)(1− θ2(t))
α1(t)(1− γ2(t)) α1(t)µ2(t) (1− β1(t))(1− η2(t)) (1− β1(t))θ2(t)

α1(t)γ2(t) α1(t)(1− µ2(t)) (1− β1(t))η2(t) (1− β1(t))(1− θ2(t))

 (16)

The evolutions for system state S2(t) are given by.

P(g1g2, t) + P(d1d2, t) + P(g1d2, t) + P(d1g2, t) = 1 (17)

S2(t + 1) = V2(t)S2(t) (18)

Considering the substitution,

Z(t)V2(t)Z−1(t) = diag
[

1 λ2(t) λ3(t) λ4(t)
]

S̃2(t) = Z(t)S2(t)
(19)
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it follows that
S̃2(t + 1) = Ṽ2(t)S̃2(t) (20)

y2(t) = F̃(t)S̃2(t) (21)

The evolution for state S̃2(t) is expressed by

S̃2(t) =
t

∏
k=0

Ṽ2(k)S̃2(0) = diag
[

1 ∏t
k=0 λ2(k) ∏t

k=0 λ3(k) ∏t
k=0 λ4(k)

]
S̃2(0) (22)

According to Expression (21), the evolutions for P(g2, t) and P(d2, t) are calculated.

[
P(g2, t)
P(d2, t)

]
=

 P(g2)ss

(
1 + F̃12

F̃11
S̃2,2(0)∏t

k=0 λ2(k) +
F̃13
F̃11

S̃2,3(0)∏t
k=0 λ3(k) +

F̃14
F̃11

S̃2,4(0)∏t
k=0 λ4(k)

)
P(d2)ss

(
1 + F̃22

F̃21
S̃2,2(0)∏t

k=0 λ2(k) +
F̃23
F̃21

S̃2,3(0)∏t
k=0 λ3(k) +

F̃24
F̃21

S̃2,4(0)∏t
k=0 λ4(k)

)  (23)

In the following section, we will use the results of the two-stage systems with time-
varying parameters to describe the transient quality behavior for multi-stage produc-
tion systems.

4. Transient Quality Performance Evaluation of Multi-Stage Production Systems
4.1. Aggregation-Based Approach for Multi-Stage Systems

To generally establish the quality propagation model of multi-stage production sys-
tems during transients, consider the three-stage system and bring in the idea of the equiva-
lent aggregation technique. In the three-stage system, calculate the probability by which M3
produces a good product. The product quality of M3 is characterized by both the current
state in M3 and the incoming product quality from the upstream stage M2. Moreover,
the output quality in stage M2 is equivalent with the final product quality of the two-stage
system M1 − M2. The quality of system M1 − M2 can be calculated in Section 3. It is
possible to construct a single virtual stage M′2 to represent the aggregated quality behavior
of the two-stage system, M1 −M2. In other words, we can view the incoming parts for
stage M3 as processed by a modified version of M2 with consideration of the effects of
both M1 and M2. Thus, the approach to calculate final quality of the three-stage system is
depicted as follows. Firstly, merge stages M1 and M2 to a merged stage M′2. Then construct
the model of the new two-stage system M′2 −M3 and calculate the final product quality
using the method for the two-stage systems described above.

Next, we will obtain the parameters of the virtual stage M′2. For the two-stage system
M′2 −M3; the system has six transition probability parameters. γ3, η3, µ3, θ3 are the param-
eters of stage M3, α′2(t) and β′2(t) are the parameters of the merged stage M′2. The quality
failure probability α′2(t) defines the probability of M′2 transiting from the good state g′2 to
the defective state d′2. Thus, it equals with probability of the two-stage system M1 −M2,
transiting from the states g1g2 or d1g2 to the states g1d2 or d1d2 during the time slot t.
It follows that:

α′2(t) =
P(g1g2, t)γ2 + P(d1g2, t)η2

P(g1g2, t) + P(d1g2, t)

Similarly,

β′2(t) =
P(g1d2, t)µ2 + P(d1d2, t)θ2

P(g1d2, t) + P(d1d2, t)

With the quality repair and failure probability of M′2 calculated, we are able to calculate
the transient quality performance. Define P(g3, t) as the probability of producing a good
product in a three-stage system.

P(g3, t) = P(g2g3, t) + P(d2g3, t)
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The general recursive process for a multi-stage production system is described in
Figure 3. The final quality for a multi-stage system is obtained by conducting iteration
procedures and solving a series of the two-stage system. Using the Markovian model
developed in Section 3, the quality of the two-stage system M1 −M2 is obtained. Moreover,
stages M1 and M2 are aggregated to the aggregated stage M′2. Establish the system quality
of the model for the new two-stage system M′2 − M3, after that, stages M′2 and M3 are
aggregated to the aggregated stage M′3. Carry out the recursive procedures, and the
previous (n− 1) stages are aggregated to the aggregated stage M′n−1. Finally, establish the
product quality of the model for the last two-stage system M′n−1 −Mn.
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Six fundamental system parameters, in total, for any two-stage system M′i − Mi+1
exists. Parameters γi+1, ηi+1, µi+1, θi+1 reflect the characteristics for stage Mi+1. Parameters
α′i(t), β′i(t) reflect the characteristics for the new aggregated stage M′i .

α′i(t) = Prob[M′i in defective state at time slot t + 1
∣∣ M′i in good state at time slot t]

= Prob[ ith stage produces a defective part at time slot t + 1 |
ith stage produces a good part at time slot t]

=
P(di−1gi ,t)ηi+P(gi−1gi ,t)γi

P(di−1gi ,t)+P(gi−1gi ,t)

(24)

β′i(t) = Prob[M′i in good state at time slot t + 1
∣∣ M′i in defective state at time slot t]

= Prob[ ith stage produces a good part at time slot t + 1 |
ith stage produces a defective part at time slot t]

=
P(di−1di ,t)θi+P(gi−1di ,t)µi

P(di−1di ,t)+P(gi−1di ,t)

(25)

Secondly, put the state transition probability into the matrix to establish the transition
probability matrix.

Ci+1(t) =


(
1− α′i(t)

)
(1− γi+1)

(
1− α′i(t)

)
µi+1 β′i(t)(1− ηi+1) β′i(t)θi+1(

1− α′i(t)
)
γi+1

(
1− α′i(t)

)
(1− µi+1) β′i(t)ηi+1 β′i(t)(1− θi+1)

α′i(t)(1− γi+1) α′i(t)µi+1
(
1− β′i(t)

)
(1− ηi+1)

(
1− β′i(t)

)
θi+1

α′i(t)γi+1 α′i(t)(1− µi+1)
(
1− β′i(t)

)
ηi+1

(
1− β′i(t)

)
(1− θi+1)

 (26)

The system states matrix at a certain time can be defined.

Si+1(t) =
[

P(gigi+1, t) P(gidi+1, t) P(digi+1, t) P(didi+1, t)
]T (27)

The evolution for Si+1(t) is depicted by the following linear equations.
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P(gigi+1, t) + P(gidi+1, t) + P(digi+1, t) + P(didi+1, t) = 1
Si+1(t + 1) = Ci+1(t)Si+1(t)

(28)

The product quality of stage Mi+1 through the multi-stage production system is the
probability by which Mi+1 is in state gi+1 to produce a good product. Define P(gi+1, t) as
the probability to produce a good product in stage Mi+1 through the system.

P(gi+1, t) = P(digi+1, t) + P(gigi+1, t) (29)

Define P(gn, t) as the final product quality for a multi-stage production system.

P(gn, t) = P(gn−1gn, t) + P(dn−1gn, t) (30)

Consider a five-stage production system with the following quality repair and failure
probabilities; α1 = 0.1, β1 = 0.8, γi = 0.1, ηi = 0.5, µi = 0.8, θi = 0.2, i = 2, 3, 4, 5.
The evolution of product quality with a comparison between calculation and simulation is
presented in Figure 4. The solid line depicts the simulated performance while the shaded
region indicates 95% confidence interval. The dashed line depicts the calculation using
the analytical method derived. The simulation result and analytical calculation are close
during the entire production time. The calculated product quality can clearly track system
dynamics during transients, which illustrates the effectiveness of the transient quality
analysis of multi-stage production systems.
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4.2. Model Accuracy Investigation

To quantitatively evaluate the accuracy of the derived methods, comparisons are
made between the approximate analytical calculation and simulation results. Simulation
parameters are selected equiprobably and randomly from the pre-defined value range sets.
Regarding every setting of the parameters, one thousand replications were conducted for
each simulation. The experiment process for each setting of parameters is presented.

1. Generate a setting of system parameters equiprobably and randomly among the
following value sets.

(1) The size–number of stages belong to [2, 10].
(2) The quality failure probability in case of an incoming product with good

quality has a relatively small value, i.e., α1 ∈ [0, 0.1], γi ∈ [0, 0.1].
(3) The quality repair probability in case of an incoming product with good quality

has a relatively large value, i.e., β1 ∈ [0.6, 0.9], µi ∈ [0.6, 0.9].
(4) The quality repair probability and failure probability in case of an incoming

product with a defective quality, ηi ∈ [0, 0.6] and θi ∈ [0, 0.4].
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2. Conduct simulations for 200 time slots.
3. Quality performance P(gn, t) is unknown. Since the simulated performance measure is

unbiased, the performance measure in the simulation is utilized for reflecting P(gn, t).
4. Calculate the average value for performance measure during last 100 time slots.

Moreover, the average is denoted as the simulated value of the steady-state quality.

P̃(gn)SS =
1

100

T

∑
t=T−99

P̃(gn, t)

The error metric to investigate the accuracy is denoted as:

δP(gn) =
1
T

T

∑
t=1

∣∣∣P̃(gn, t)− P(gn, t)
∣∣∣

P̃(gn)SS
× 100%

A total of 10,000 parameter settings randomly generated were investigated using
both simulation and analytical models. The accuracy results for each experiment are
presented in Figure 5. The quality performance measure calculated by analytical methods
have small errors and are rather close to the simulation results. Specifically, the mean
error of δP(gn) is 0.57%. The maximum value of δP(gn) among the 10,000 experiments is
1.26%. The analytical model and the aggregation-based iterative procedure can deliver
high accuracy in a transient quality analysis of a multi-stage production system.
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5. Analysis of the System Theoretic Properties
5.1. Analysis of Settling Time

The settling time defines the time necessary of a system quality P(gn, t) approaching
and maintaining in ±3% ranges of the steady-state values.

tS = inf

{
t

∣∣∣∣∣
∣∣P(gn, t)− P(gn)SS

∣∣
P(gn)SS

<=3%

}
(31)

To justify the accuracy of the settling time (31), we conducted a numerical analysis by
randomly selecting system parameters from range sets in Section 4.2. The tS is solved using

an analytical calculation and
ˆ

tS is solved using a simulation. The accuracy is quantitatively
evaluated.

δtS =

∣∣∣∣tS −
ˆ

tS

∣∣∣∣ (32)
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In approximately 89% of all cases investigated, the calculated tS is within two time

slots from the simulated value
ˆ

tS, which proves the accuracy of the analytical calculation.
Under assumptions 1–6, settling time tS is the function of system parameters, quality

failure probabilities α1, γi, ηi, and quality repair probabilities β1, µi, θi, as well as the number
of stages n. To investigate properties of tS, extensive numerical experiments are imple-
mented through selections of the system parameters equiprobably and randomly from
value range sets. For simplicity, consider the cases in which transition probability parame-
ters are identical of each stage, with good and defective incoming products, respectively,
defined as equal stage cases.

γi = α1, µi = β1, ηi = η2, θi = θ2 (33)

We firstly explore property of tS in terms of α1 and β1 and then in terms of η2 and θ2.
In terms of α1 and β1, three examples are typically presented in Figure 6 due to

space limits, instead of presenting all multi-stage production systems investigated exten-
sively. Examples are (a) three-stage systems, (b) five-stage systems, (c) ten-stage systems.
The monotonic property of tS regarding system parameters α1 and β1 is presented for three
examples while η2 = 0.5, θ2 = 0.2. As illustrated in the figure, settling time tS decreases in
α1 and decreases in β1. It increases in n.
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Figure 6. Settling time as a function of α1 and β1 for (a) three-stage, (b) five-stage, and (c) ten-stage
production systems.

Numerical result 1: settling time tS in multi-stage production systems is a decreasing
function in α1 and β1. It is an increasing function of n.

Remark 1: it should be noted that the three examples of Figure 6 are shown as
illustrations. In fact, numerical result 1 can be observed on a general basis in a multi-stage
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production system under the consideration of assumptions 1–6, which is not only in the
examples illustrated. This remark also applies regarding numerical results 2 to 5.

Similarly, in terms of η2 and θ2, three typical example systems are presented in Figure 7,
while α1 = 0.1, β1 = 0.8. tS decreases in η2 and decreases in θ2. It increases in n.
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Figure 7. Settling time as functions of η2 and θ2 for (a) three-stage, (b) five-stage, and (c) ten-stage
production systems.

Numerical result 2: settling time tS in a multi-stage production system is a decreasing
function in η2 and θ2. It is an increasing function of n.

Remark 2: as shown in numerical results 1 and 2, if α1, β1, η2 or θ2 increases, the settling
time in the multi-stage production system is generally reduced, which leads to a shorter
transient duration. With the number of stages n increasing, the system suffers slower
convergence. As the direct metric of the system transient duration, settling time is actually
the joint impact for system properties, including the SLE and PEF, on quality transients.

5.2. Analysis of Quality Loss

The initial conditions of the production systems have significant effects upon system
quality transients. In a fresh restart production after product changes or preventive mainte-
nance, the production system usually operates in a defective quality state determined by
frequent fixture relocating errors. Typically system quality converges towards steady-state
from below its steady-state measure, leading to system quality loss during transients.

The actual system quality for T time slots is the integration of system quality perfor-
mance P(gn, t) from 0 to T. The expected system quality is the integration of steady-state
quality P(gn)SS. Quality loss of multi-stage production systems for a period T is defined as.
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LQ(Sn(0)) =
T

∑
t=0

[P(gn)SS − P(gn, t; Sn(0))] (34)

Define QLR(t) as the quality loss rate, which is the percentage of quality loss compared
with steady-state over time t.

QLR(t) =
LQ(Sn(0), t)
t× P(gn)SS

× 100% (35)

In terms of α1 and β1, the monotonic property of quality loss is presented as in Figure 8
for the examples, while η2 = 0.5, θ2 = 0.2. Quality loss monotonically decreases in α1 and
decreases in β1. It increases in n.
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Figure 8. Quality loss as a function of α1 and β1 for (a) three-stage, (b) five-stage, and (c) ten-stage
production systems.

Numerical result 3: the quality loss of a multi-stage production system during tran-
sients monotonically decreases in α1 and β1. It increases in n.

In terms of η2 and θ2, monotonic property of quality loss is presented as in Figure 9.
Quality loss monotonically decreases in η2 and decreases in θ2. It increases in n.



Sensors 2022, 22, 2409 14 of 23

Sensors 2022, 22, x FOR PEER REVIEW 9 of 14 
 

 

 

  
(a) (b) 

 

 

(c)  

Figure 9. Quality loss as a function of 𝜂  and 𝜃  for (a) three-stage, (b) five-stage, and (c) ten-stage 
production systems. 

  

0.2
0.4

0.6
0 0.1 0.2 0.3 0.4

1

1.5

2

2.5

3

3.5

η2
θ2

L Q

0.2
0.4

0.6
0 0.1 0.2 0.3 0.4

1

1.5

2

2.5

3

3.5

4

η2
θ2

L Q

0.2
0.4

0.6
0 0.1 0.2 0.3 0.4

1

2

3

4

5

η2θ2

L Q

Figure 9. Quality loss as a function of η2 and θ2 for (a) three-stage, (b) five-stage, and (c) ten-stage
production systems.

Numerical result 4: quality loss of a multi-stage production system during transients
monotonically decreases in η2 and θ2, and increases in n.

Remark 3: as shown in numerical results 3 and 4, if α1, β1, η2, or θ2 increases, quality
loss during transients is practically reduced. The settling time and quality loss shown in the
figures indicate that quality loss LQ has a strong relationship with settling time tS. A long
duration of transients results in a large quality loss, in general.

5.3. Steady-State Quality and Continuous Improvement Analysis

In this subsection, we show that quality performance of steady-state operates in a
different manner from the transient phase. Quality performance still needs to be comprehen-
sively explored in both transient and steady-state frameworks to provide directions, to plan
continuous improvements. As an illustration, the monotonic property of steady-state
quality with respect to parameter α1 and β1 is presented in Figure 10a,b; η2 = 0.5, θ2 = 0.2.
Steady-state quality monotonically decreases in α1 and increases in β1. The monotonic
property for steady-state quality regarding parameter η2 and θ2 is presented in Figure 10c,d;
α1 = 0.1, β1 = 0.8. Steady-state quality monotonically decreases in η2 and increases in θ2.

Numerical result 5: steady-state quality of a multi-stage production system monotoni-
cally decreases in α1 and η2 and increases in β1 and θ2. The monotonicity property—that
the steady-state quality is expected to be a decreasing function of the number of stages
n—may not hold.
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Figure 10. Steady-state qualities as functions of α1 and β1 for (a) three-stage and (b) ten-stage systems,
as functions of η2 and θ2 for (c) three-stage and (d) ten-stage systems.

Remark 4: intuitively, we may expect that the final quality will decline as the size
of the production system increases. However, such properties may not hold in multi-
stage production systems with RQIF. As shown in Figure 10a,b, steady-state quality only
shows a slight decrease for a wide range of (α1, β1) as the number n increases from three-
stage to ten-stage. It shows a steep decline when α1 is large and β1 is small, at the same
time. In Figure 10c,d, this property also applies in case of defective incoming products.
This phenomenon is just a representation of the characteristics of quality propagation
of multi-stage production systems with RQIF. In such systems, product quality depends
on both the incoming product quality and the states of stages. Incoming products have
defective or good qualities before processed at each stage. Both quality corrections and
quality degradations exist in production systems. A defective product may be corrected
by the downstream stage. Thus, the final quality does not necessarily decline in a longer
production line. Only in case of small quality repair probability and large failure probability
of long production lines will the steady-state quality performance drop sharply. For quality
improvement, we should avoid the situation where large quality failure probability and
small repair probability occur simultaneously in a multi-stage production system.

Remark 5: the impacts of quality failure probabilities α1 and η2 on transient quality
performance are qualitatively different from those on steady-state quality. Increase of
α1 and η2 can reduce quality loss during transients; however, it impedes quality in the
steady-state. On the other hand, an increase of β1 and θ2 can facilitate both quality loss
reduction and steady-state quality improvement. It is more favorable to improve β1 and θ2
than α1 and η2 for continuous improvement, providing practical guidance for operation
management to achieve better quality.
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5.4. Bottleneck Analysis

The final product quality is influenced by the variations accumulatively introduced
and propagated as the product moves along a multi-stage system. To improve the quality
more effectively, attention should be placed on the system parameter whose change will
result in the largest improvement of quality performance. The one certain stage or certain
transition parameter that impedes quality performance to the strongest extent is the denoted
quality bottleneck.

In context of quality loss during transients, denote the quality bottleneck stage as in
which stage quality loss possibly undergoes the largest increase. The quality loss in the i
stage of a multi-stage production system is defined as.

LQ(Si(0)) =
T

∑
t=0

[P(gi)SS − P(gi, t; Si(0))] (36)

Denote the quality loss change after stage Mi as

∆LQ(Si(0)) = LQ(Si(0))− LQ(Si−1(0)) (37)

The quality bottleneck stage will be the one with the largest positive value of quality
loss change.

max
{

∆LQ(Si(0))
}

(38)

In the next step, we will change a parameter in the bottleneck stage and see which
one brings in the maximum benefit to quality improvement of LQ(Si(0)). The special
parameter that impedes LQ(Si(0)) to the greatest extent is the quality bottleneck parameter.
This process can be regarded as a sensitivity analysis for LQ(Si(0)) regarding parameter
γi, ηi, µi, θi of stage Mi. Change only a parameter at one time while the other parameters
remain unchanged. Correspondingly, denote the changed parameters as γ′i , η′i , µ′i, θ′i , and
denote the changed quality loss in stage Mi as LQ

(
Si(0), γ′i

)
, LQ

(
Si(0), η′i

)
, LQ

(
Si(0), µ′i

)
,

LQ
(
Si(0), θ′i

)
. The quality bottleneck parameter for stage Mi regarding γi is the QBN-γi

formulated as ∣∣LQ
(
Si(0), γ′i

)
− LQ(Si(0))

∣∣/LQ(Si(0))∣∣γ′i − γi
∣∣/γi

(39)

Similarly, the quality bottleneck parameter for stage Mi regarding ηi is the QBN-ηi,
formulated as ∣∣LQ

(
Si(0), η′i

)
− LQ(Si(0))

∣∣/LQ(Si(0))∣∣η′i − ηi
∣∣/ηi

(40)

The quality bottleneck parameter for stage Mi, regarding µi, is the QBN-µi, formu-
lated as ∣∣LQ

(
Si(0), µ′i

)
− LQ(Si(0))

∣∣/LQ(Si(0))∣∣µ′i − µi
∣∣/µi

(41)

The quality bottleneck parameter for stage Mi, regarding θi, is the QBN-θi, formu-
lated as ∣∣LQ

(
Si(0), θ′i

)
− LQ(Si(0))

∣∣/LQ(Si(0))∣∣θ′i − θi
∣∣/θi

(42)

The above quality bottleneck parameters QBN-γi, QBN-ηi, QBN-µi, QBN-θi form
the QBN set for the quality bottleneck stage Mi. Among the QBN set, the largest quality
bottleneck parameter is denoted as the primary QBN (P-QBN). Thus, the P-QBN of a
multi-stage production system will be the one satisfying

max{QBN-γi, QBN-ηi, QBN-µi, QBN-θi} (43)

Improvements of parameter P-QBN in the quality bottleneck stage will bring in largest
improvements for product quality.
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6. Case Study

A case study in the production line of the valve shell was implemented to verify
effectiveness. For data confidentiality, system parameters introduced to this case have
modifications, while the “nature” for system parameters and structural properties hold.
(1) Experimental setup: definition of system quality states, data collection, and calcula-
tion of quality transition probability. (2) Modeling: evaluation of quality performance
and validation with measured data. (3) Structural property analysis and quality improve-
ment: monotonicity and sensitivity analysis of system parameters, identification of quality
bottleneck, and guidance for quality improvement.

6.1. Experimental Setup

The three-dimensional profiles of the valve shell are presented in Figure 11. OP 10 is
the operation of processing Excircle Φ39 and Hole Φ21; OP20 processing Hole Φ10 and
Hole Φ14; OP30 processing Hole Φ8 and Hole Φ12; OP40 processing Excircle Φ30, Hole
Φ6.5, and Slot Φ9.6; OP50 processing Hole Φ8, Slot Φ14, and Slot Φ26, respectively.
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These five stages are correlated and interconnected. For instance, the quality of the
hole processed at OP10 may be corrected or degrade at downstream OP50. Moreover,
flatness variations for the shell end face processed by upstream OP10 may influence the
accuracy of clamping in stage OP20 and the downstream stage OP30. The product quality
processed after stage Mi(i ≥ 2) depends on not only states in Mi, but also incoming product
quality from upstream Mi−1. The incoming product before processing for every stage is of
defective or good quality. Both quality corrections and quality degradations exist at the
production system.

By implementing processing data analysis, state transition probability data are esti-
mated on the factory floor. Record the quality of a certain product k before processing in
stage Mi, and mark it as defective or good. After it is processed in stage Mi, again, record
the product quality, and mark it as defective or good. For product k manufactured in stage
Mi−1, it may be a defective or good incoming product for downstream Mi. The last product
(k− 1) after manufactured in Mi may also be defective or good. In case of a good or
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defective incoming product, after product k is manufactured in Mi, there are four possible
situations of stage Mi.

(1) Last product (k− 1) after manufactured in Mi is good, and product k is good.
(2) Last product (k− 1) after manufactured in Mi is good, and product k is defective.
(3) Last product (k− 1) after manufactured in Mi is defective, and product k is good.
(4) Last product (k− 1) after manufactured in Mi is defective, and product k is defective.

In case of a good incoming product, the percentage for situation (2) defines transition
probability α1 for M1 or γi for Mi(i ≥ 2). The percentage for situation (3) defines transi-
tion probability β1 for M1 or µi for Mi(i ≥ 2). In case of a defective incoming product,
percentages for situations (2) or (3) will be defined as ηi or θi respectively. Calculate the
percentage of change from one state to another, and quality repair and failure probabilities
are obtained.

6.2. Modeling of Quality Performance

The transition probability data are illustrated, of quality repair probability and qual-
ity failure probability, statistically. α1 = 0.05, β1 = 0.9, γi = [0.05, 0.1, 0.05, 0.05],
ηi = [0.5, 0.5, 0.4, 0.5], µi = [0.8, 0.8, 0.9, 0.9], θi = [0.4, 0.3, 0.2, 0.4].

Using the probability data and the developed transient quality analysis method, the
evolutions for system quality performance, quality loss, settling time, and steady-state
quality are calculated. The steady-state quality at every two-stage aggregated system
through the production line is, respectively, 91.37%, 84.86%, 88.24%, 89.06%. The final
product quality of the measured data is 89.42%. The modeling error is 0.36%. Settling
time is eight time slot. The dynamics for product quality P(gi, t) at every two-stage system
during the transients is presented in Figure 12a. The dynamics for system quality states at
the last two-stage system M′4 −M5 is presented in Figure 12b. The calculation can clearly
track system dynamics during transients. The results are consistent with measured data
and validate the effectiveness of the developed approach.
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Figure 12. The evolutions for system quality performance during transients in the case: (a) product
quality through the system, (b) system quality states at the last stage.

QLR(t) curve of the five-stage system is plotted over 150 time slots in Figure 13,
where the red dashed line is the benchmark of 5%. QLR(t) is quite significant during
warming, which cannot be neglected. It diminishes gradually as time evolves. QLR(t)
will approximately diminish to zero when the production time horizon is sufficiently long.
Moreover, the speed of convergence is much slower when the time is longer. Generally,
in a practical production environment, a quality loss rate of 5% is considered as the upper
limitation. Figure 13 also depicts that QLR(t) decreases to below the 5% benchmark after
37 time slots, indicating that production system meets the criterion when the planned
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production time horizon is beyond 37 time slots. The effects of the quality loss rate should
be taken into consideration when designing short-term production tasks in a practical
production environment.
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6.3. Structural Property Analysis and Quality Improvement

We first identify the quality bottleneck stage and then figure out the primary quality
bottleneck parameter. The quality loss through each stage of the system is calculated as
0.8763, 1.0438, 1.5282, 1.7821, and 1.5539, respectively. The quality loss change after stage
Mi is calculated.

∆LQ(S1(0)) = LQ(S1(0))− LQ(S2(0)) = −0.1675
∆LQ(S2(0)) = LQ(S2(0))− LQ(S1(0)) = 0.1675
∆LQ(S3(0)) = LQ(S3(0))− LQ(S2(0)) = 0.4844
∆LQ(S4(0)) = LQ(S4(0))− LQ(S3(0)) = 0.2539

∆LQ(S5(0)) = LQ(S5(0))− LQ(S4(0)) = −0.2282

OP30 with the largest positive value is identified as the quality bottleneck stage since
quality loss undergoes the largest increase in this stage. In the next step, we investigate
which parameter will bring the maximum quality benefit to OP30 by changing only a
parameter in the bottleneck stage at one time and keeping other parameters unchanged
through the monotonic and sensitivity analyses.

The parameters of OP30, i.e., γ3, η3, µ3, θ3 decrease or increase with defined percent-
ages. In particular, these parameters will be changed with ±10%, ±15%, ±20%. Quality
loss, settling time, and steady-state quality corresponding to the parameter changes are
calculated respectively and presented in Figure 14.

(1) From Figure 14a, the monotonic property for quality loss is in accordance with numer-
ical results 3–4. Quality loss is decreased when system parameters of OP30 increase.
According to the sensitivity analysis in the quality bottleneck stage, parameters QBN-
γ3, QBN-µ3, QBN-η3, QBN-θ3 form the QBN set for OP30 with values {0.3900, 0.3285,
0.0510, 0.4947}. QBN-θ3 is denoted as the P-QBN. Quality loss in OP30 is most sensi-
tive regarding quality repair probability in case of a defective incoming product θ3.
Proper changes of θ3 will bring the largest reduction to quality loss LQ(S3(0)) and
prevent OP30 from being the quality bottleneck stage.

(2) From Figure 14b, monotonic property for settling time is consistent with numerical
results 1–2. The settling time will be reduced when the system parameter increases.
As shown in Figures 6 and 7, since settling time is eight or seven time slots in the
range sets of transition probability given above, the four curves regarding parameters
overlap in this case study.
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(3) From Figure 14c, monotonic property for the steady-state quality is consistent with nu-
merical result 5. Steady-state quality will improve when µ3 or θ3 increases, and when
γ3 or η3 decreases. In the sensitivity analysis, µ3 is the most sensitive parameter.
Improving quality repair probability in case of a good incoming product µ3 achieves
a better steady-state quality.

The most sensitive parameter of steady-state quality is viewed as the quality bottleneck
parameter in a steady-state phase. Correspondingly, the QBN set and P-QBN are viewed as
quality bottleneck parameters in the transient phase. In some cases, the transient bottleneck
parameter and steady-state bottleneck parameter are just the same parameter. However, in
other cases, the two parameters may be different. As shown in the case study, they are θ3
and µ3 respectively.

(4) When transient and steady-state quality bottleneck parameters fall in the same pa-
rameter, there is a desire to improve this particular parameter to facilitate quality
performance in both the transient and steady-state regime. When they fall in different
parameters, we can attempt to seek a balance between transients and the steady-state.
Firstly, if production time horizon is relatively long, or when designing long-term
production systems, we should focus on the steady-state quality bottleneck parameter
since transients can be neglected compared with the overall production; on the contrary,
we may focus on the transient quality bottleneck parameter. Secondly, if the criterion
of quality loss rate is high, focus on the transient bottleneck parameter to prioritize
reduction in quality loss; contrarily, focus on the steady-state bottleneck parameter.
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To summarize, transient analysis of quality in a five-stage production line provides
insight in regard to improving product quality. Increase of θ3 of OP30 will shorten the
transient duration and decrease quality loss during transients, while increasing µ3 is
favorable for steady-state quality.

7. Conclusions

A novel analytical PSM approach was established based on the Markov model, to
explore product quality propagation for transient analysis of serial multi-stage production
systems with RQIF. The cascade property for quality propagation among the correlated
sequential stages was investigated, taking into account both the status of the current stage
and quality of the outputs from upstream stages. Closed-form formulae to evaluate tran-
sient quality performances of multi-stage systems were formulated. An iterative procedure
utilizing the aggregation technique was presented to approximate the transient quality
performance with computational efficiency and high accuracy. Moreover, system theoretic
properties of quality measures were analyzed and the quality bottleneck identification
method was investigated. In the case study, the modeling error was 0.36% and the calcu-
lation could clearly track system dynamics, quality bottleneck was identified to decrease
quality loss and facilitate continuous improvement. The experimental results illustrate
the applicability of the proposed PSM approach. This paper paves the way for modeling,
analyses, and improvements for the system quality performances of serial multi-stage
production systems in transient phases.

The contributions of the proposed approach are summarized from these aspects.
Firstly, compared to conventional Markov models and quality flow models, this approach
overcomes the assumption that stages are independent, and the restriction that each stage
has an inspection and repair station. Both quality corrections and quality degradations
were addressed, and they are more practical and accurate in a real production environment.
This enables PSM to be more promising with wide applicability for quality modeling
of production systems. Secondly, existing analytical PSM research can only deal with
a steady-state performance, while the proposed approach can characterize both steady-
state and transient quality behavior. Based on the Markov model and probability theory,
a transient quality analysis was conducted to reveal the correlation between the components
and system quality performance. Thirdly, system theoretic properties of critical quality
measures during transients were thoroughly analyzed. The quality bottleneck identification
method was derived in terms of the quality bottleneck stage and parameter. A numerical
analysis provides directions pertaining to resource optimization and continuous quality
improvement for plant managers.

Future research can focus on the following issues: (1) the extension of the proposed
method to assembly systems and other production systems with more complicated struc-
tures. (2) The investigation of a real-time quality performance feedback control to meet the
demands on energy efficiency in current smart production trends. (3) Transient analysis of
multi-type product production systems.
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Notations

Mi ith stage of multi-stage production systems
Mi
′ the merged stage from the first i stages of multi-stage production systems

gi Mi or Mi
′ produces a good product

di Mi or Mi
′ produces a defective product

α1 probability of M1 transiting from g1 to d1
β1 probability of M1 transiting from d1 to g1
αi
′ probability of Mi

′ transiting from gi to di
βi
′ probability of Mi

′ transiting from di to gi
γi in case of good coming product, probability of Mi transiting from state gi to di
µi in case of good coming product, probability of Mi transiting from state di to gi
ηi in case of defective coming product, probability of Mi transiting from state gi to di
θi in case of defective coming product, probability of Mi transiting from state di to gi
gigi+1 Mi or Mi

′ produces good product, Mi+1 produces good product
gidi+1 Mi or Mi

′ produces good product, Mi+1 produces defective product
digi+1 Mi or Mi

′ produces defective product, Mi+1 produces good product
didi+1 Mi or Mi

′ produces defective product, Mi+1 produces defective product
Si(t) state probability matrix with i stage at time slot t
Ci state transition probability matrix with i stage
P(git) probability of producing good product with i stage at time slot t
P(gi)ss probability of producing good product with i stage in steady-state
ts settling time for system quality to approach steady-state
LQ quality loss during transients
QLR(t) quality loss rate over t time slots
QBN– quality bottleneck parameters
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