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Abstract: Fiber-optic dynamic interrogators, which use periodic frequency scanning, actually sample
a time-varying measurand on a non-uniform time grid. Commonly, however, the sampled values
are reported on a uniform time grid, synchronized with the periodic scanning. It is the novel and
noteworthy message of this paper that this artificial assignment may give rise to significant distortions
in the recovered signal. These distortions increase with both the signal frequency and measurand
dynamic range for a given sampling rate and frequency scanning span of the interrogator. They may
reach disturbing values in dynamic interrogators, which trade-off scanning speed with scanning
span. The paper also calls for manufacturers of such interrogators to report the sampled values
along with their instants of acquisition, allowing interpolation algorithms to substantially reduce
the distortion. Experimental verification of a simulative analysis includes: (i) a commercial dynamic
interrogator of ‘continuous’ FBG fibers that attributes the measurand values to a uniform time grid;
as well as (ii) a dynamic Brillouin Optical time Domain (BOTDA) laboratory setup, which provides
the sampled measurand values together with the sampling instants. Here, using the available
measurand-dependent sampling instants, we demonstrate a significantly cleaner signal recovery
using spline interpolation.

Keywords: fiber-optic sensing; non-uniform sampling; harmonic distortion; post-processing
technique; distortion mitigation

1. Introduction

Fiber-optic sensors have become indispensable ingredients in many applications, too
wide and diverse to enumerate [1–5]. They can directly measure strain, temperature, electric
and magnetic fields, as well as rotation, and indirectly many other measurands in both
static and dynamic scenarios. The latter include, for example, the measurement of the
temporally varying strain fields in structural health monitoring (SHM) of flying airplanes,
traffic carrying bridges and other civil structures, under dynamic loading [6]. Aiming at
the detection of a damage at its embryonic stage, it is of prime importance to obtain an
accurate and undistorted dynamic signature of the relevant strain field.

A leading sensor for these applications is the Fiber Bragg grating (FBG) [7,8], for which
the wavelength (or frequency) of peak reflection, λB (or νB), is directly related to the local
strain and temperature (henceforth, the ‘measurand’). For sensing purposes, FBGs are
written along the fiber, either at discrete locations, or continuously inscribed along the
fiber during the manufacturing process [9]. For interrogation, a few techniques have been
developed to accurately extract the λB of the tested FBG. A common technique, applicable to
both the discrete and continuous cases (though of different complexities, [7,8,10]), involves
periodic wavelength scanning of a range of wavelengths, which encompasses the values
that λB may acquire under the anticipated loading conditions. During each scan and
provided that the scan rate is fast enough (with respect to the temporal bandwidth of the
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measurand), the interrogator correctly measures the instantaneous reflection spectra of
the various concatenated FBGs. These peaks which determine the sought-after λ′B occur,
however, at instants dictated by the actual values of the measurand under study, and
are generally not time-synchronized with beginning/end of the scan. For example, let
the periodic scan cover a wavelength range which includes the λ′Bs of interest, starting
at λstart and ending at λend. Clearly, a low strain value will have its corresponding λB
occur near λstart, i.e., near the beginning of the scan, while a large strain value will have
its λB measured only towards the end of the scan. Thus, despite the periodic nature of the
scan, the resulting λ′Bs are actually obtained on a non-uniform temporal grid. Nevertheless,
commonly available frequency-scanning interrogators report their obtained measurand
values (the λ′Bs in the case of FBG interrogation) on a uniform time grid, either at the
beginning of the scan or at its end.

In this paper, we show for the first time to our knowledge, that reporting the obtained
measurand values on a uniform time grid, while they were actually obtained on a non-
uniform one, results in both harmonic distortion and time-domain errors. These errors
grow in significance: (i) as the dynamic range of the measurand (in terms of its induced
wavelength/frequency variations) fills the scanning span; and (ii) as the temporal band-
width of the measurand approaches the Nyquist bound (i.e., half the scanning frequency).
This type of harmonic distortion and time-domain errors may be of particular concern for
dynamic frequency-scanning fiber sensing techniques, characterized by a tight trade-off
between the scanning rate and scanning span. Following an exposition of the problem via
simulations in Section 2, a simple post-processing technique appears in Section 3, where
knowledge of the instants of sampling (when available) leads to a significant decrease in
both the spurious harmonic levels and time-domain errors (since information on the exact
time evolution of the scan is generally not made available, the instants of sampling can be
estimated from the reported data). Section 4 presents an experimental corroboration of the
simulation’s main predictions, utilizing the frequency-scanning technique of Fast Brillouin
Optical Time Domain Analysis (F-BOTDA, [11]). Here, a fully controllable laboratory setup
measures the strain of an optical fiber under longitudinal and quite pure sinusoidal vibra-
tions (independently measured by a temporally uniform sampling interrogator). Based
on a known digitally generated frequency-scanning waveform, the setup augments the
reported sampled strain values with the instants at which they were obtained for different
values of scan rate and span. Attributing the sampled values to a uniform temporal grid
allows us to compare the measured harmonic distortion with the simulation results of
Section 2. Moreover, feeding the measured strain values together with their instants of
acquisition to the post-processing technique of Section 3, results in a significantly purer
signal recovery. Section 5 investigates the performance of a commercial frequency-scanning
dynamic interrogator of ‘continuous’ draw-tower FBGs [9,10], which reports the measured
strain values only on a temporally uniform grid. This interrogator trades-off scan rate
and scan range: the faster the scan, the narrower the span. As expected, the experimental
results show that for a fast scan rate and its associated constrained span, the harmonic
distortion worsens with increasing signal frequency and/or strain amplitude. Note that
when the instants of sampling are not reported, they cannot be deduced from the measured
values without a full knowledge of the scan parameters, which are most often not available.
Section 6 discusses the findings and provides valuable conclusions.

2. Simulations: Strain Interrogation with Periodic Frequency Scanning

The reflection from an FBG [7,8], as well as the probe gain in Brillouin-based sens-
ing [1–13], are frequency dependent, having a characteristic spectral shape, generically
denoted here by S(ν). In both cases, and for a given time t, S(ν) peaks at a frequency, which
is a unique function of the value of the measurand at that instant. Let νsignal(t), of sinu-
soidal shape, amplitude νsignal−amp, and frequency fsignal , Figure 1a (solid blue), represent
that peak frequency, which is the local Brillouin frequency shift (BFS) in Brillouin-based
sensing (see Section 4), and c/λB for an FBG (as in Section 5).
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simulated temporal range of [−550 549]𝑇௦௖௔௡. 

Figure 1. (a) A sinusoidal measurand signal of a normalized temporal frequency of fsignal/ fscan = 0.23
(50 Hz/220 Hz) and filling factor of νsignal−amp/ν

span
scan = 0.3 (solid-blue sinusoidal curve), is scanned

by a periodic (every Tscan ) saw-tooth waveform (green). (b) The saw-tooth scanning results in a
time-dependent detected power (FBG reflection [7,8], or Brillouin probe amplification [11–13]: red
dot curves (arbitrary units). The purple X’s designate the intersection of the signal with the saw-tooth
waveform, also indicating the instants where the detected power reaches it maximum. The black
filled circles are the measurand sampled values (the ordinates of the X’s), attributed to the beginning
of the corresponding scan periods. Only the middle ~6 scan periods are shown from a simulated
temporal range of [−550 549] Tscan.

The commonly used saw-tooth-type frequency-scanning signal, νscan(t) in Figure 1a
(solid green curve), is assumed to be ideal, having a perfect linear ramp and abrupt return,
a scan rate of fscan (= 1/Tscan) and peak-to-peak scanning span of ν

span
scan (for optimum

coverage, the signal mean value is placed at the center of the frequency scan, 〈νscan〉).
Both the normalized frequency, ξ = fsignal/ fscan, and filling factor, η = νsignal−amp/ν

span
scan ,

can range from near zero (for dense sampling and very small signal amplitude) to below
0.5 (the Nyquist limit, and a meaurand peak-to-peak dynamic range that fills the scan
span). The simulation assumes that the signal mean value perfectly aligns with that of the
scan, Figure 1. This is optimal for best utilization of the scan span. Anyway, the simulation
results are independent of the signal mean, as long as the full dynamic range of the signal
lies within that scan span.

As the optical frequency of the interrogator’s source is periodically scanned, either con-
tinuously or in small frequency steps, a photodetector measures the frequency-dependent
reflected power from the FBG [7,8], or the frequency-dependent power of the Brillouin-
amplified probe [11–13]. In the simulation, S(ν) is assumed to have a Lorentzian shape,
1/[(ν− νpeak)

2 + (∆ν3dB)
2], characterized by maximum value at νpeak, and a (scaled) full
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width half maximum of ∆ν3dB/νscan = 0.6. The time-dependent detector power, P(t). can
then be expressed by:

P(t) ∝
1

[νsignal(t)− νscan(t)]2 + (∆ν3dB)
2 (1)

The simulated detector power in the neighborhood of its local peak at each of the scan
periods is represented by the red-dot curves in Figure 1b (in arbitrary units). The vertical
purple lines in Figure 1b cut the time axis at those instants, {τn}N−1

n=0 , at which the detector
power vs. time records attain their maxima at each scan cycle (see the n = 4, fifth period in
Figure 1b), where N is the total number of scan cycles. Ideally, in the absence of noise and
other perturbations, these maxima occur at the intersections of the signal and the saw-tooth
scanning curves (purple X’s in Figure 1b). Mathematically, {τn}N−1

n=0 are the solutions of:

νsignal(τn) = νscan(τn), nTscan ≤ τn < (n + 1)Tscan, n = 0, . . . , N − 1 (2)

Once the intersection points are found, their ordinates are the desired measurand
values (see the 5th period):

sn ≡ νsignal(τn) = νscan(τn), n = 0, . . . , N − 1 (3)

Note that the actual shape of the detector record is not fixed but rather depends on
the signal dynamics, and specifically on the slopes of the signal and scan waveform near
the instant of intersection. The more parallel the signal and waveform are, the wider the
recorded shape and vice versa (cf. the red-dot curves in the second and fifth periods).

In the simulated scenario of Figure 1, sampling rate is more than four times the
signal frequency, seemingly more than sufficient for accurate recovery of the signal from
its samples.

However, since the signal varies in time from scan period to another, it is clear from
the ramp-type nature of the scanning, as well as from the nonlinear characteristics of
Equation (2) and graphically, from Figure 1b, that the sampling instants have variable
signal-dependent distances from the beginning of the scan cycles that encompass them. For
example: while in the first period of Figure 1 sampling occurs towards the end of the scan,
it is just the opposite at the fourth period. Yet, as already mentioned in the introduction, it
appears, that frequency-scanning interrogators report their acquired measurand values at
uniformly spaced instants, associated with either the beginning, {sn, nTscan }N−1

n=0 or end
of the relevant scan period, {sn, (n + 1)Tscan}N−1

n=0 . This is bound to result in erroneous
reconstructions of the sampled signal. Indeed, high-granularity sinc-reconstruction based
on the sampled measurand values, {sn}N−1

n=0 (the ordinate values of the purple X’s)), when
attributed to the beginnings of the scans (black full circles in Figure 1b), produces the
red curve of Figure 2, which is not only (tolerably) time-shifted, but also a distorted
reconstruction of the true signal (blue curve). Note that sinc-based reconstruction of the
sine wave from its true signal values at the scans’ starting points, {nTscan}N−1

n=0 , rather than
from the quite different {sn}N−1

n=0 , results in a curve indistinguishable from the blue curve
of the figure.

Assigning the sampled measurand values to a uniform temporal grid makes it possible
to spectrally analyze them using DFT/FFT (which implicitly attributes these values to a
uniform time-grid). Figure 3 shows the power spectrum of the signal of Figure 1, based
on its obtained samples values, {sn}N−1

n=0 . Here, the sampling rate is more than twice the
Nyquist rate, ξ = 0.23 < 0.5, and the signal variations are well within the scan limits,
η = 0.3 < 0.5. Yet, instead of a single peak at the signal frequency, ξ = 0.23, the spectrum
shows many harmonics, where the one at ξ = 0.46 is a very strong second harmonic,
only −13.73 dB below the signal. All other peaks are folded harmonics (e.g., the peak
at ξ = 0.318 is the third harmonic at −23.96 dBc, while the one at ξ = 0.136 is the fifth
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harmonic at −40.69 dBc, etc.). The total harmonic distortion lies at −13.27 dBc. Clearly, the
second harmonic is the dominant one. Power leakage to all these harmonics also lowers
the peak at the signal frequency by 0.27 dB.
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Figure 3. Hamming-weighed FFT-based spectrum of the signal acquired from its per-period intersec-
tions with the saw-tooth scanning waveform (Figure 1), exhibiting significant harmonic distortion.
The highest harmonic at ξ = 0.46 is the signal’s second harmonic, whereas the other peaks are folded
ones (see text). The time record was 1100·Tscan long, starting at−550 Tscan. Incidentally, using the true
signal values on the same temporal grid of period Tscan, gives rise only to a single peak at ξ = 0.23.

Our simulation assumed an ideal saw-tooth waveform, as well as highly precise
determination of the measurand sampled values {sn}N−1

n=0 and their instants of acquisition,
{τn}N−1

n=0 . In practice, however, these values are only estimated from the reflection/gain
measurements (red-dot curves in Figure 1) with accuracy affected by (i) the estimation
algorithm; (ii) the scanning granularity (the frequency steps); (iii) scan calibration; and
(iv) noise. Simulations that include these sources of inaccuracies still exhibit the same
strong harmonics in the calculated spectra, quite similar to those of Figure 3. The only
exception is the presence of an elevated floor, which masks some of the weaker harmonics
(Note that our analysis does not consider the effect of fiber length, since the round-trip time
of light in the fiber is assumed to be negligibly small with respect to the scan period).

Figure 4 displays simulation results for the dependence of the second harmonic
(scaled by the signal power) on fsignal/ fscan, and νsignal−amp/ν

span
scan for a sinusoidally varying

measurand. Clearly, the larger the measurand amplitude the higher the required scanning
frequency for a prescribed amount of harmonic distortion. Conversely, the closer the
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scanning frequency to the Nyquist rate, the smaller the allowed dynamic range to maintain
a maximum permissible level of the second harmonic. Finally, harmonic distortion is a sign
of nonlinear behavior of the interrogation process, indicating, for example, that the output
of the sum of two inputs will not equal the sum of the individual outputs. Indeed, when
the sum of two signals is sampled, the actual sampling instances of the sum are generally
different from the actual sampling instances of each of these signals alone; therefore, the
sampled values of the sum are generally different from the sum of sampled values of each
of the signals. Attributing all samples to the same time grid therefore gives rise to an
apparent non-linearity of the sampling mechanism, whereas if all samples are attributed to
their correct time instances, linearity is implicitly maintained.
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Figure 4. The power (magnitude-squared value) of the second harmonic of an originally pure
sinusoidal signal, when acquired from its temporally non-uniform per-period intersections with
the linear (instantaneous fly back) saw-tooth scanning waveform of Figure 1. Simulated results are
shown for a range of scaled signal frequencies (ξ-legends box) and filling factors (η -abscissa). The
higher ξ and/or η, the worse the harmonic distortion. The corresponding total harmonic distortion
curves lie within half a dB from the displayed second harmonic ones. The black squares represent
experimental results for the Brillouin setup of Section 4. Note that a different scan pattern, such as a
triangular one, will result in different curves.

3. Distortion Mitigation Based on the Availability of the Sampling Instants

Let us assume that the interrogator reports the sampled values of the measurand,
{sn = s(τn)}N−1

n=0 , together their non-uniformly spaced instants of acquisition, {τn}N−1
n=0 ,

Equations (2) and (3). While accurate signal recovery from non-uniformly time-spaced sam-
ples is not generally possible [14,15], yet, a sharp increase in the fidelity of the reconstructed
signal can be achieved using interpolation.

Looking back at Figure 1a, we note that since the mean value of our example signal
coincides with the mean of the scan, the sampling instants, {τn}N−1

n=0 , also gather around
the (temporal) middle of the scan: {(n + 0.5)Tscan)}N−1

n=0 . More generally, let us define a
shifted uniform temporal grid by:

τ̂n = nTscan + mean
n

(τn − nTscan), n = 0, . . . , N − 1 (4)

Interpolation algorithms can now be applied to the measured data pairs, {sn, τn}N−1
n=0 ,

in order to estimate the signal values on the uniform grid of Equation (4): {ŝn = s(τ̂n)}N−1
n=0 .

Thus, spectral analysis and time-domain recovery of the measured signals will now be
based on {ŝn, τ̂n}N−1

n=0 , rather than on {sn, nTscan}N−1
n=0 . The results of processing the full

data behind Figure 1 in this manner, using Spline interpolation, are shown in Figure 5
(time domain, where, again, sinc-based reconstruction was used to obtain the much denser
displayed granularity), and in Figure 6 in the frequency domain. The benefits of having
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access to the sampling instants are obvious: the folded third harmonic (ξ = 0.318) is now
the dominant one but at a level 37 dB below that of the signal. As for the time traces, the
standard deviation of the difference between the true signal values at {τ̂n}N−1

n=0 of Equation
(4) and their spline interpolated values, {ŝn}N−1

n=0 , normalized by the standard deviation of
the signal, is a mere 0.02.
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Figure 5. The sinusoidal green curve represents sinc-based reconstruction of the signal from
{ŝn, τ̂n}549

n=−550, where {ŝn}549
n=−550 are the spline-interpolated signal values on the computable uni-

form time grid {τ̂n}549
n=−550, Equation (4). The blue pluses (+) represent a few values of the original

sinusoidal signal, and their very tight proximity to the recovered green curve attests to the high quality
of the reconstruction. The red curve is the one from Figure 2, representing sinc-based reconstruction
from {sn}N−1

n=0 , being attributed to the uniform time grid at the start of the scans.
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4. Frequency Scanning Interrogation with Brillouin Fiber-Optic Sensing
4.1. Brillouin Optical Time Domain Analysis (BOTDA)

In BOTDA [11–13], a pump pulse of optical frequency υpump propagates against
a continuous wave (CW) probe of frequency υprobe in a standard single-mode optical
fiber. Mediated by an acoustic field, induced by these two waves via interference and
electrostriction, the pump pulse can amplify the counter-propagating probe through the
coherent process of stimulated Brillouin amplification. Brillouin gain experienced by the
probe, Figure 7, exists only in a narrowband of frequencies centered at an optical frequency,
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downshifted from the pump frequency by a characteristic value, υBFS, called the Brillouin
Frequency Shift (BFS). Its value is around 11 GHz for standard single-mode fibers near
1550 nm. It is the linear dependence of υBFS on the local strain (50 MHz/1000 micro strains)
and temperature (1 MHz/◦C), that makes Brillouin sensing such a useful technique.
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Figure 7. Brillouin amplification in single-mode fibers. Pump light at an arbitrary fre-
quency/wavelength, e.g., λB = 1550 nm, propagating in one direction in the fiber core generates
narrowband gain for light propagating in the opposite direction. Gain is maximized when the
frequency difference, υpump − υprobe, equals the so-called Brillouin Frequency Shift, υBFS. For silica-
based single-mode fibers around 1550 nm, υBFS is ~11 GHz and the Brillouin gain bandwidth is
~30 MHz for pulses longer than ~40 ns. Of crucial importance for sensing applications is the fact
that υBFS is a function of both strain and temperature, mainly through the dependence of the local
acoustic velocity, VA, on these two measurands.

Similar to radar, localization is achieved by correlating the power of the emerging
probe at a given time with the moment of launch of the pump pulse. In standard BOTDA
setups the spatial resolution is of the order of half the pump pulse length. The BFS is
found by measuring the dependence of the local Brillouin gain on the scanning frequency
difference, υpump − υprobe, through periodic scanning of the latter, to produce the local
Brillouin Gain Spectrum (BGS) of Figure 7. Once the BGS is obtained, the frequency location
of its peak determines the BFS, from which the value of the relevant measurand is deduced.
For long distance Brillouin interrogation (~kilometers) many pulses are sent out for the
same pump-probe frequency difference to facilitate averaging for noise reduction. This
makes long-range BOTDA unsuitable for dynamic sensing. However, for short distances
(100’s of meters) fast Brillouin-based techniques (e.g., F-BOTDA [12], BOCDA [16]) are
the only currently available fiber-optic distributed sensing techniques that can achieve
many kHz of sampling rates (limited mainly by time of flight of light in the fiber) with
spatial resolution of the order of 10 cm [12,13] over short lengths (tens of meters) of fiber.
Brillouin sensing is an active research field with many variants other than BOTDA. For
recent reviews see [12,13].

4.2. Experimental Setup

The experimental setup for the Brillouin experiment is shown in Figure 8. The Fiber
Under Test (FUT) comprises a 3 m of polarization maintaining (PM) fiber, out of a of
~20 m of non-vibrating PM fiber leads. The FUT is longitudinally vibrated at 50 Hz by a
sinusoidally driven shaker, against an anchor point on its other end.

To ensure the vibrations are of high harmonic purity, an FBG, reflecting at 1528 nm, is
imprinted on the FUT end, near the fixed anchor, using a frequency-doubled Argon laser
and a phase mask. Being a PM fiber, the resulting FBG has slightly different reflection peaks,
λ′Bs, for the slow and fast axes of the fiber. A commercial, spectrometer-based interrogator
was used (shaded box in Figure 8), where the vibration-modulated reflected light from the
on-FUT FBG is spectrally analyzed (wavelength-wise) by a diffraction grating onto a fast
diode array. Uniformly triggered at a rate of 3 kHz, the diode array collected light for a very
short snapshot of 50 µs per trigger (The polarization controller following the white-light
source and the polarizer preceding the spectrometer are used to optimally get reflection
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only from the slow-axis grating of the PM fiber). The FBG interrogator then reports its
acquired, time-dependent λ′Bs on a uniform temporal grid in units of strain. FFT-based
spectral analysis of the FBG-measured vibrations, Figure 9, confirms that for vibration
amplitudes of up to the tested value of 330 microstrains, the longitudinal vibrations of
the FUT exhibit very low harmonics (highest one at 100 Hz is more than 37 dB below the
50 Hz peak).
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Figure 8. A longitudinally vibrating fiber is interrogated by either an all-polarization-maintaining
F-BOTDA setup, producing temporally non-uniform samples, or by a uniformly sampling white-
light spectrometer-based interrogator that measures the response of an on-fiber FBG. The λB of the
inscribed FBG is away from the Brillouin scanning region. AWG: Arbitrary Waveform Generator,
RF: Radio frequency, SOA: Semiconductor Optical Amplifier/switch, EDFA: Erbium Doped Fiber
Amplifier, ISO: Optical isolator, FBG: Fiber Bragg Grating inscribed on the FUT, PD: Photo diode, CIR:
Circulator, EOM: Electro-Optic Modulator, LD: Narrowband Laser Diode, DAQ: Data Acquisition,
VSG: Vector Signal Generator, ATT: Attenuator.
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Figure 9. Strain signal spectrum at 50 Hz longitudinal vibrations, interrogated by the spectrometer-
based temporally uniform interrogator. Highest harmonic (at 100 Hz) is >37 dB below the signal.

The frequency-scanning Brillouin interrogation is based on an F-BOTDA setup [11],
modified in the current setup so that all connecting fibers and components are polarization-
maintaining to avoid the need to deal with polarization fading. Here, the output of a
coherent < 15 kHz in linewidth) CW laser at 1550 nm is split into two arms. Light in
the bottom one (red) is carved by a high-extinction-ratio semiconductor optical amplifier
(SOA) to generate a 15 ns pump pulse (providing a spatial resolution of 1.5 m), which is
then amplified before feeding the FUT through the circulator. The top (blue) arm prepares
the probe wave, whose frequency is downshifted from that of the pump by a LiNbO3
EOM modulator, driven by a microwave generator (VSG), having I/Q inputs. To achieve
fast scanning with almost instantaneous transition between scanning frequencies, the I/Q
inputs of the VSG are fed by two-channels of an Arbitrary Waveform Generator (AWG).



Sensors 2022, 22, 2403 10 of 16

Frequency scanning around ~10.63 GHz (the static BFS of the slow-axis of the slightly pre-
tensioned FUT) is performed by [17]: (i) Setting the VSG center frequency a few hundred
MHz above the fiber static BFS; and (ii) feeding the I/Q inputs of the VSG with a Hilbert
pair of signals (sine and cosine), comprising a concatenation of sinusoidal segments, each
of a fixed frequency, stepping in value from segment to segment by the scan granularity
of ∆ f (2 MHz in our experiments). The length of each segment should be equal or longer
than twice the length of the fiber (from the isolator to the circulator, CIR1). The number
of such steps times ∆ f equals the scan dynamic range, νscan, which must encompass the
frequency range subtended by vibrating BGSs of the FUT. The result of this modulation
scheme is a time-efficient periodic, stepwise saw-tooth frequency scanning of a pre-chosen
rate, fscan [Hz], inherently limited by the fiber length and scanning granularity.

Following double sideband, suppressed carrier modulation, the probe wave enters
the FUT, where it is Brillouin amplified with a gain of 1.1–1.5 dB. Emerging from the FUT
through a circulator, CR1, the probe wave is optically filtered to remove the upper sideband,
as well as other unwanted signals. The probe power is then detected by a wideband
photodiode, whose output is digitized by a deep memory, 1 GSamples/s DAQ, capable
of storing seconds-long events. For each pump pulse, the DAQ records the Brillouin gain
along the FUT for one value of the pump-probe frequency difference, sampling the length
of the FUT every 1 ns (i.e., every 10 cm). One complete scan-cycle comprises enough pump
pulses and different probe frequencies, {νk, k = 1, . . . K}, to cover the scan span. Thus,
the recorded data for the n-th scan-cycle, contains all necessary information to calculate
the Brillouin gain, Gain(t = n/ fscan, {νk}K

1 , zm), for each scanning frequency, νk, and fiber
locations, {zm}, spaced by 10 cm for a DAQ sampling frequency of 1 ns (spatial resolution
is still 1.5 m for a pump pulse width of 15 ns). The time-varying Brillouin frequency shift,
BFS(t = n/ fscan, zm), is then estimated from Gain(t = n/ fscan, {νk}K

1 , zm) by: (i) fitting
a parabola to the top 30% values of the dependence of Gain(t = n/ fscan, {νk}K

1 , zm) on
{νk}K

1 [18]; (ii) estimating the instants, { τn(zm)}, along the n-th scan when the peak of
the parabola (i.e., maximum gain) was reached; and (iii) use the known AWG-governed,
precise slope of the saw-tooth scanning, to calculate BFS(t = n/ fscan, zm), which is the
pump-probe frequency difference at τn(zm). Converting BFS(t = n/ fscan, zm) to strain
values and collecting the results of many sequential scans, the value of the measurand can
be estimated as a function of time for all points along the FUT.

4.3. Brillouin Sensing Results

Before proceeding to the obtained results (preliminary version of them appeared
in [19]), we note that measurements under static conditions produced BFS values with a
standard deviation of less than 1 MHz. In addition, the vibration amplitude was measured
to be constant along the FUT (within the measurement accuracy), indicating a single-
longitudinal-mode behavior.

Figures 10 and 11 present FFT-based spectral analysis of the experimentally obtained
strain signals under 50 Hz of longitudinal vibrations, using BFS vs. time data, {sn} from
the middle of the FUT. Two different acquisition conditions are presented in the figures:
the case of relatively large values of ξ = fsignal/ fscan = 0.3 and η = νsignal−amp/ν

span
scan =

0.16 appear in Figure 10, while the case of lower values of ξ = 0.12 and η = 0.15 is shown
in Figure 11. Since our experimental setup is based on frequency scanning, the obtained
BFS values are actually measured on a non-uniform temporal grid, {τn}N−1

n=0 . FFT spectral
analysis, however, implicitly assumes the data sit on a uniformly spaced one.
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Figure 10. (Left) Hamming-weighed FFT spectrum of raw BFS vs. time 50 Hz vibration data,
obtained from the experimental setup of Figure 8. The scan rate is 164 Hz, the scan range is 108 MHz
and the vibration amplitude is 17 MHz, resulting in fsignal/ fscan = 0.3 and νsignal−amp/ν

span
scan = 0.16,

respectively. Note the strong (−16.3 dB) second harmonic (dotted square), occurring at the folded
frequency of 64 Hz (=164/2− (2× 50− 164/2)). It is due to the fact the FFT algorithm implicitly treats
its input temporally non-uniform data as uniform (The other peaks are folded higher harmonics).
(Right) Using the measured instants of acquisition, {τn}N−1

n=0 , and the procedure of spline interpolation
of Section 3, the second harmonic is significantly attenuated to −29 dB (dotted square). Record
duration is 9 s.
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Figure 11. (Left) Hamming-weighed FFT spectrum of raw BFS vs. time 50 Hz vibration data, obtained
from the experimental setup of Figure 8. Here, the scan rate is 412 Hz, the scan range is 112 MHz
and the vibration amplitude 17 MHz, resulting fsignal/ fscan = 0.12 and νsignal−amp/ν

span
scan = 0.15,

respectively. Note the −26 dB second harmonic peak at 100 Hz (dotted square). While lower than
the −16.3 dB one of Figure 10, it is still higher than the spectrometer-based measurement of below
−37 dB (The observed peaks are again folded high harmonics). (Right) Using the measured instants
of acquisition, {τn}N−1

n=0 , and the procedure of spline interpolation of Section 3, the second harmonic is
down to −44.7 dB (dotted square) but there is now a dominant harmonic at −31 dB. Record duration
is 3.6 s.

Therefore, two approaches are tried:

1. The easiest and, apparently, also the commonly followed approach: Artificially assign
the measured data to a uniform temporal grid, synchronized with the periodic scan-
ning, e.g., the starting or ending points of the scan. The result of treating the data as if
they represent uniform sampling appears on the left panels of Figures 10 and 11. The
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exhibited second harmonic levels are much higher than those present in the actual
vibrations, as verified by the much faster and uniformly triggered FBG interrogator,
Figure 9. Note that the observed second harmonic levels in these two scenarios (−16.3
and −26 dB, respectively), as well as in a few other scenarios, are in good agreement
with the simulation results of Figure 4 (superimposed black squares).

2. Take advantage of the availability in our experiment of the instants of sampling,
{τn}N−1

n=0 , and use interpolation to estimate the values of the measurand on a uniform
time grid. Employing the spline-based procedure of Section 3, the right panels of
Figures 10 and 11 show substantial attenuation of the second harmonic to −29 and
−44.7 dB, respectively (although other harmonics now become the dominant ones in
the right panels (at −24.8 dB in Figure 10 and −31.6 dB in Figure 11)).

Thus, the flexible laboratory setup of this section has allowed us to obtain access
to the sampling instants, thereby corroborating two aspects of the simulation results of
Sections 2 and 3: (i) assigning the temporally non-uniformly spaced measured values to a
uniform time grid results in errors; and (ii) these errors can be significantly mitigated using
interpolation techniques, but only if the sampling instants are made available.

5. Frequency Scanning Interrogation of Draw-Tower FBGs
5.1. ‘Continuous’ FBG Fibers and Their Interrogation

Modern technology enables the writing of Bragg gratings while the fiber is being
drawn [9]. Our experiment uses draw-tower ‘continuous’ FBG (CFBG) fiber of this type,
which comprises a periodic repetition of a 9 mm-long, very weak FBGs (reflectivity~0.0001),
with a gap of 1 mm. Since all gratings are nominally inscribed to have the same wavelength
of peak reflection, Optical Frequency Domain Reflectometry (OFDR) [10,20] is commonly
used to recover the λB’s (i.e., the wavelengths of peak reflection) of different spatial res-
olution cells along the fiber. In this technique, a highly coherent tunable laser frequency
periodically scans the CFBG fiber with light of complex amplitude, Ain(ν), and the reflected
light, Are f lected(ν), is made to interfere with a reference derived from the same laser. The
resulting measured power involves an interference term that contains all necessary infor-
mation needed in order to calculate the complex-valued (amplitude and phase) Optical
Transfer Function (OTF), T(ν) = Are f lected(ν)/Ain(ν), of the whole CFBG fiber over the
scanning span. Once measured, T(ν) can be Fourier transformed into the time domain
(where time is related to distance into the fiber, z) to obtain the impulse response of the fiber,
IR(z), representing the (complex-valued) return from the vicinity of z. Cutting a segment
from IR(z), say around z0, and inverse-Fourier transforming it back into the frequency
domain, gives us the reflection spectrum of the FBG at z0, from which the local wavelength
of peak reflection, λB(z), can be estimated. This illustrative procedure, or rather its propri-
etary commercial implementations, using modern powerful DSP processors, are then used
for the calculation of the measurand-induced shift for each spatial resolution cell along the
fiber (spatial resolution is governed by the width of the frequency span).

5.2. The FUT Tested by the Commercial Interrogator

The experiment reported below used a commercial dynamic and high spatial resolu-
tion (<1 cm) distributed strain/temperature interrogator, which trades-off scan rate with
scan range. While at low scan rates the instrument has an extremely wide scanning span,
at its highest scan rate the span is significantly narrower. Being a frequency-scanning
interrogator, the instrument actually captures the values of a dynamic measurand on non-
uniformly spaced instants, yet it reports the sampled values on a temporally uniform grid,
with no access to information about when, during the scan, those values occurred.

The experimental setup of Figure 12 uses a FUT, comprising a polyimide-coated
fused concatenation of three types of fibers: 3 cm of CFBG on its right, 3.5 cm (between
the anchor point and left splice) of SMF28 with a single FBG inscribed in its middle on
its left, and in-between 4 cm of a coreless fiber, providing optical isolation between the
two. This FUT allows simultaneous interrogation from its two sides: from the right with
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the CFBG interrogator and from its left with the spectrometer-based uniformly triggered
interrogator of Section 4. The coreless section, of a measured insertion loss of 34 dB, was
verified to prevent mutual interference between the two interrogators. The sampling rates
of both interrogators was set to be the same, 100 Hz, measurement time to 10 s and the
FUT was sinusoidally vibrated under four different combinations of scaled frequencies
ξ = fsignal/ fscan (0.1 and 0.2) and scaled amplitudes η = νsignal−amp/ν

span
scan (0.18 and 0.38).
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Figure 12. Setup for the CFBG experiment, using a polyimide-coated composite FUT. Taking ad-
vantage of the high spatial resolution of the CFBG interrogator (<1 cm), a very short CFBG fiber is
used. The coreless fiber segment, serving as a high insertion loss, bidirectional isolator, allows for the
CFBG interrogation to be augmented by an independent and simultaneous uniformly triggered FBG
interrogation of the FUT vibrations.

5.3. CFBG Interrogation—Results and Discussion

Table 1 displays the measured levels of the normalized second harmonic, obtained by
the two interrogators, for the four cases (the results of the uniformly triggered interrogator
appear in parentheses). Figure 13 compares spectra of measurements by the two instru-
ments for the high-frequency, high-amplitude case. Clearly, while the CFBG interrogator
exhibits fairly low levels of harmonic distortion, they are still higher than those of the
uniformly triggered interrogator, and, as expected, they grow with both ξ and η (in the
absence of detailed knowledge of the inner working of the instrument, comparison with
simulations could not be made).
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Figure 13. Hamming-weighed FFT spectra of the strain of the vibrating fiber in Figure 12, simulta-
neously measured by the two interrogators. The scaled vibration frequency and amplitude were
ξ = fsignal/ fscan = 0.2 and η = νsignal−amp/ν

span
scan = 0.38. (Left) Results from the uniformly triggered

interrogator of Section 4. (Right) Results from the frequency-scanning CFG interrogator. While its
noise level is higher, the peaks at 10 and 30 Hz are still barely seen (these <−60 dB peaks are not folded
harmonics, but are rather due to the insufficient spectral purity of the oscillator-shaker combination).
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Table 1. Normalized second harmonic levels (in units of dBc) of the longitudinally vibrating fiber
of Figure 12 for two scaled vibration frequencies and two scaled amplitudes. Main values are the
measurements of the CFG dynamic interrogator, while those in parentheses were obtained from the
uniformly triggered interrogator of the single, in-line FBG.

ξ = fsignal/fscan η = νsignal−amp/νspan
scan

0.18 0.38

0.1 −40.5 (−42) −30 (−40.5)
0.2 −38.5 (−41.5) −25.5 (−38.5)

6. Discussion and Conclusions

In dynamic measurand scenario, non-uniform sampling is unavoidable and inherent
in periodic frequency-scanning interrogators. Static signals are uniformly sampled, since
the scanning waveform always meets the signal at a constant time difference from the scan
start. However, as the signal frequency and span increase (with respect to the sampling
frequency and scan span, respectively), so does the non-uniformity in the sampling instants.
For example, in the BOTDA experiment, the normalized spread in the sampling instants,
std(τn)/Tsignal increases from 0.01 in Figure 11 (left) to 0.03 in Figure 10 (left), in line
with the increase in the second harmonic level from −26 dB to −16.3 dB. Many if not
all commercial frequency scanning fiber-optic interrogators report the sampled values of
the measurand on a uniform temporal grid, whereas they were actually obtained on a
non-uniform one. The sampling instants are not reported, nor is information about the
exact time evolution of the scan, from which the instants of sampling could be possible
estimated. We have shown by simulation and experiments that this common approach
leads to distorted reconstruction in both the frequency and time domains. Exposing the
erroneous nature of this approach is considered by us to be the main contribution of this
paper. Note also that the reconstructed signal is also temporally shifted from its true time
dependence, Figure 5, potentially leading to synchronization issues when the same physical
effect is simultaneously measured by different types of sensors.

It should be noted, though, that the widely used frequency-scanning interrogators of
discrete FBGs of non-overlapping reflection spectra, are normally much less affected by this
type of errors. In spite of the fact that it also involves non-uniform sampling, the common
scanning span is of the order of 40–100 nanometers (nm), while the dynamic range of the
tested strain/temperature rarely exceeds 10 nm (~8000 micro strain/1000 ◦C at 1550 nm).
Hence, the filling factor η = νsignal−amp/ν

span
scan is usually smaller than 0.1. Yet, Figure 4

indicates that even for such a small value of η, the scan rate must be carefully chosen to
meet a prescribed low level of harmonic distortion.

Nowadays, fiber-optic distributed sensing interrogators have become commercially
available, based on either Rayleigh backscattering from standard single-mode optical
fibers, or higher reflections from draw-tower ‘continuous’ FBGs. In some implementations,
the faster the scan, the smaller the span. Thus, users quite often work with distortion-
prone, very high filling factors, η. Section 5 has examined a commercial interrogator of
‘continuous’ FBGs, exhibiting harmonic distortion that grows with ξ and η. In principle, the
analysis of this paper also applies to Rayleigh-based, frequency-scanning interrogators [21].
Practically, however, the magnitude of errors critically depends on the values of ξ and η in
the relevant application.

Another worthy contribution of this work is a recommendation to the manufacturers
of frequency-scanning interrogators to report the sampled values, {sn}N−1

n=0 , together with
their sampling instants, {τn}N−1

n=0 . Section 4 demonstrated that obtaining that type of data
from the Brillouin setup allows the use of interpolation methods to obtain a much more
accurate estimation of the signal values on a uniform temporal grid. Indeed, the right panes
in Figures 10 and 11 exhibit a substantially lower level of harmonics in comparison with
their left counterparts.
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In conclusion, the reporting of non-uniformly obtained measured sampled values on
a uniform temporal grid results in erroneous harmonics in the frequency domain, and in
distortion in the time domain. A proposed and demonstrated mitigation approach, based
on the availability of the sampling instants in conjunction with post-processing algorithms,
provides a sharp increase in the fidelity of the reconstructed signal.
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