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Abstract: This paper presents an approach and a case study for threat detection during human–
computer interaction, using the example of driver–vehicle interaction. We analyzed a driver moni-
toring system and identified two types of users: the driver and the operator. The proposed approach 
detects possible threats for the driver. We present a method for threat detection during human–
system interactions that generalizes potential threats, as well as approaches for their detection. The 
originality of the method is that we frame the problem of threat detection in a holistic way: we build 
on the driver–ITS system analysis and generalize existing methods for driver state analysis into a 
threat detection method covering the identified threats. The developed reference model of the op-
erator–computer interaction interface shows how the driver monitoring process is organized, and 
what information can be processed automatically, and what information related to the driver be-
havior has to be processed manually. In addition, the interface reference model includes mecha-
nisms for operator behavior monitoring. We present experiments that included 14 drivers, as a case 
study. The experiments illustrated how the operator monitors and processes the information from 
the driver monitoring system. Based on the case study, we clarified that when the driver monitoring 
system detected the threats in the cabin and notified drivers about them, the number of threats was 
significantly decreased. 
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1. Introduction 
Human–computer interaction (HCI) has been an important topic of research and de-

velopment in recent years. Unfortunately, such interaction creates a lot of vulnerabilities 
for both sides. On one side, a computer system can expose a human to various threats, 
while the human can exposure the computer system to various threats. Let us consider 
the interaction in the example of driver monitoring in an intelligent transportation system 
(ITS). Such systems can have viruses or some unpredictable behavior that creates vulner-
abilities for the driver (human). Alternatively, the driver (human) can be in a fatigued or 
inattentive state, which creates vulnerabilities for the ITS. 

Together with this, a human operator plays an important role in many information 
and control systems. Therefore, it is crucial to ensure that, on the one hand, the operator 
is vigilant and is focused on his/her task, and on the other hand, he/she performs actions 
relevant to the situation (e.g., follows some existing procedure). This confirms the im-
portance of operator behavior monitoring. 

We show a general scheme of the driver and operator interaction in the driver mon-
itoring system in Figure 1. An in-cabin driver monitoring system is responsible for the 
detection of threats caused by a driver in the vehicle cabin. The detected threats are sent 
to the cloud server that is responsible for server-side processing, collecting, and visuali-
zation of the threats in a convenient for the human operator form. On the other hand, the 
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operator is also monitored by the local operator monitoring system for threat detection. 
The detected threats are sent to the cloud server, where the information is also processed, 
accumulated, and analyzed. 

 
Figure 1. General scheme of the driver and operator interaction in the driver monitoring system. 

There are existing research efforts aimed at the analysis of the state of a vehicle driver 
or of a computer operator [1–3]. They are either concentrated on data processing or ma-
chine learning model training/development. However, there is no a systematic method 
covering all stages related to this process and integrating various approaches for the de-
tection of possible threats related to the human state. We cover this gap in the case of a 
human–computer interaction in a driver monitoring system. The originality of our ap-
proach is that we frame the problem of the threat detection in a holistic way: we build on 
the driver–ITS system analysis performed in an earlier paper [4], and generalize existing 
methods for driver state analysis into a threat detection method, covering the identified 
threats. In the paper, we concentrate on the threats related to the human (driver and op-
erator). In our previous paper we proposed a threat classification in the area of intelligent 
transportation systems [4]. In this paper, we propose a threat detection method that con-
siders how to detect threats in vehicle cabin, as well as a reference model for operator–
computer interaction. Based on the proposed method and reference model, we imple-
mented experiments that allowed us to estimate the impact of the driver monitoring sys-
tem on traffic safety. 

The structure of the paper is as follows. In Section 2, we present the related work on 
the topic of HCI-related threats, and threat identification approaches (in ITS and beyond) 
in general. We present the threat detection method in Section 3. The reference model of 
the operator–computer interaction interface is presented in Section 4. Experiments are 
presented in Section 5. The conclusion summarizes the paper. 

2. Related Work 
This research on threat detection during human–computer interaction touches on 

three lines of related work. The first line is dedicated to controlling and monitoring the 
process of human–computer interaction (to ensure that it is adequate to the situation). The 
second line is aimed on leveraging human–computer interaction elements, as a source of 
information to detect threats. Finally, as the majority of state-of-the-art methods rely on 
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machine learning and artificial intelligence, the third line of related research is represented 
by general methodologies, to organize the machine learning process. In this section, we 
briefly characterize important results in each of these lines of research. 

The papers [5,6] propose EYE-on-HCI; an approach and framework for monitoring 
human–machine interaction during human control of a cyber-physical system (with the 
example of a nuclear power plant control room). The proposed EYE-on-HCI framework 
is poised to provide an independent closed-loop validation of human-in-the-loop CPS, by 
visually gathering data from HCI. Successful data logging of temporal HCI events can be 
used by an expert supervisory system to correlate real-time plant process data obtained 
from the plant information system. Finally, EYE can generate cross-validation overview 
displays and reports for a human supervisor to monitor operator command response in 
relation to the live control room HCI state. The authors claim that the approach helps to 
reduce human-in-the-loop errors inherent in feedback control systems and improve over-
all safety. The proposed framework could be translated to various industrial applications. 

A widely used method for identifying and screening vulnerabilities is system net-
work analysis. A network-based model of the system is built, and the effect of denial of 
each node is propagated through this network, to understand the consequences. Further-
more, the detected vulnerabilities may be ranked and organized using some external cri-
teria to prioritize countermeasures (e.g., [7]). We performed a similar analysis for a vehicle 
control scenario in our earlier paper [4] and found that abnormal driver states pose severe 
safety risks, both to the driver and to the whole transportation system. Therefore, a 
method to identify such driver states needs to be developed. 

Most of the modern approaches to analyzing driver state and identifying abnormal 
behavior are based on machine learning [8–10]. There is a large body of knowledge on 
different machine learning approaches; however, the basic schema of applying machine 
learning to solve a real-world problem is refined in the MLOps field (the AI domain has 
some fundamentally different aspects from both software development [11] and data min-
ing [12] and, therefore, requires its own specific process). For example, the paper [12] pro-
poses a process model for the development of machine learning applications, which co-
vers six phases, from defining the scope, to maintaining the deployed machine learning 
application. The process model expands on CRISP-DM, a data mining process model that 
enjoys strong industry support but lacks the ability to address machine learning specific 
tasks. It is an industry and application neutral process model tailored to machine learning 
applications with a focus on technical tasks for quality assurance. 

A study by software teams at Microsoft developing AI-based applications [11] iden-
tifies a nine-stage workflow process. This process is based on experiences of developing 
AI applications (e.g., search and NLP) and data science tools (e.g., application diagnostics 
and bug reporting). 

The paper [13] provides a comprehensive survey of the state of the art in the assur-
ance of ML, i.e., in the generation of evidence that ML is sufficiently safe for its intended 
use. The survey covers the methods capable of providing such evidence at different stages 
of the machine learning lifecycle; i.e., of the complex, iterative process that starts with the 
collection of the data used to train an ML component for a system, and ends with the 
deployment of that component within the system.  

The presented literature analysis has shown that most of the existing methods of 
driver analysis are aimed at detecting a particular effect/state. A holistic approach of treat-
ing a driver as a part of an intelligent transportation system is missing. At the same time, 
a driver is an inextricable element of such systems, introducing various vulnerabilities. To 
fill this gap, this paper proposes a holistic method to detect driver-associated threats in 
real-time. 

Furthermore, emerging process structures for AI-driven solutions suggest several 
processes that have to be included into the threat detection method, in order to make it 
effective and reliable: separating model preparation activities, from model application ac-
tivities, and from background model monitoring processes, aimed at evaluating how a 
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model functions in changing real-life environments (and possibly shifting data distribu-
tions). 

3. Threat Detection Method 
The proposed method of threat detection during human–computer interaction in 

driver monitoring systems is shown in Figure 2. The method integrates findings related 
to both the driver state analysis and the computer operator state analysis. Both working 
with a PC or driving are often monotonous processes that require significant attention. As 
a result, identifying threats such as fatigue, inattention, or irritation can be of high im-
portance. Only analyzing time of work is not applicable, since there are numerous factors 
affecting the state of the human. In this regard, the method systematizes existing ap-
proaches to human state evaluation and applies these, both to the driver and PC operator. 
This is possible due to the fact that physiological parameters of a human related, for ex-
ample, to the level of fatigue do not depend on the activity. In fact, the corresponding 
referenced works analyzed human states in different environments and circumstances. As 
a result, in this method they can be equally applied to both the driver and PC operator. 

 
Figure 2. Proposed threat detection method. 

The proposed method integrates two main parts: the threat detection sequence, and 
the supporting loop. 

The threat detection sequence (top part, indicated by double lines) consists of the 
following stages: (i) Capture (represented by ‘Capturing’), (ii) Process/Compute analyzed 
parameters (represented by ‘Pre-processing’ and ‘Parameter Computing’), (iii) Analyze 
(represented by ‘Driver State Identifying’). 

Capturing. At this stage, which source data is captured and how it is captured 
(method/device) is defined. For example, ECG can be used to capture heart rate, or a cam-
era can be used to capture images (video) of the driver. This stage takes place inside the 
vehicle. Depending on the computational complexity and type of threat, the other three 
stages may take place either in a vehicle or in a computing cloud. 
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Parameter computing. Threat identification is usually based on the comparison of 
certain numeric values to some pre-defined or dynamic thresholds. The numeric values 
to be compared (the computed parameters) are usually not the data directly captured, so 
certain data processing is required. This stage is normally presented by a formula. For 
example, the standard deviation of the intervals of instantaneous heart rate values can be 
calculated based on the ECG data, or PERCLOS can be calculated if it is known when the 
driver’s eyes were closed and when opened. However, in many cases (e.g., those where 
the data is obtained via computer vision), the computed parameter cannot be obtained by 
a simple formula (there is no a straightforward formula to define if the driver’s eyes in the 
image are closed or open. For this purpose in some cases data pre-processing is required. 

Pre-processing. The stage is responsible for converting the source data into a form 
that can be directly used for the analyzed parameter calculation. 

Driver state identifying. This is the final stage, where the computed parameters are 
compared to corresponding thresholds, in order to identify the presence or absence of a 
threat arising from driver–vehicle interaction. 

The supporting loop is aimed at improving the threat detection sequence, via updat-
ing the machine learning models used in the pre-processing stage and thresholds used at 
the analyzing stage. This is done in a manner similar to the classical machine learning 
pipeline. 

Building machine learning models requires datasets that contain information in the 
same form as used in the capturing stage. The dataset is usually split into three subsets: 
training set (used for training machine learning models and identifying threshold values), 
validation set (used for validating machine learning models and threshold values), and 
test set (used for evaluating the quality of the trained models and threshold values). Both 
validation and test sets are in some ways used to evaluate the quality of the model. The 
difference, however, is that the validation set is also used to empirically choose the struc-
ture of the model, the architecture of the neural network, learning hyperparameters, etc. 
In other words, it can be used to fully specify a learning-based solution of the problem. 
The test set is used only to evaluate the quality of the fully-specified model on unseen 
data. 

In machine learning, the validation stage is usually integrated with selecting hy-
perparameters of machine learning models. It can be considered as an intermediate test, 
which is used to check which of the developed/trained alternative ML models is better. 
This means that the validation set is available to the model developers. On the contrary, 
the test set is used only to check if the final selected model achieves the desired quality, 
and normally it is available to the quality assurance department/team, and to the devel-
opers. 

A supporting loop is required, since during the driver monitoring system operation, 
new data is accumulated that can be used to improve the machine learning models and 
threshold values, increasing the accuracy of the threat detection. 

Table 1 represents the technologies underlying the stages of the threat detection se-
quence of the developed method, collected via the literature analysis. The first column 
identifies the type of the threat (defined in our previous paper [4]), and the other columns 
correspond to the threat detection sequence stages. Three types of threats are considered: 
fatigue, inattention, and irritation. 

The pre-processing is presented by the most popular techniques. However, in some 
works, other computer vision technologies can be found. A more detailed review of com-
puter vision approaches was presented in [14]. 

Since this paper is not aimed at presenting a comprehensive state-of-the-art review 
of all human state identification approaches, the thresholds presented in the last column 
are also examples from frequently referenced works. Obviously, all of the technologies 
presented here could be widely used by drivers; however, we consider the technical pos-
sibility of driver state identification. 
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Irritation detection was proposed in [4]. However, it is still under research, and no 
particular technologies can be mentioned. 

Table 1. Technologies for stages of the threat detection method. 

Threat 
Capturing 

Pre-Processing Parameter Computing Driver State Identifying 
What How 

Fatigue 

Heart rate 

ECG (electrocardio-
gram) 

- 

Heart rate variability 
(HRV) evaluated as stand-
ard deviation of the inter-
vals of instantaneous heart 

rate values (SDNN) 

Fatigue is detected if SDNN < 
141 +/− 39 ms [9].  

fNIRS (near-infrared 
functional spectros-

copy) 
- 

Oxygenated hemoglobin 
HbO2 

Fatigue is detected if HbO2 > 2 
[15] 

Muscle Fatigue 
EMG (electromyog-

raphy) 
- 

Peak coefficient of the 
EMG signal 𝐹 = 𝐴𝑥  

Fatigue is detected if Fc > 0.15 
[16] 

Macroscopic activity 
of the surface layer 

of the brain 
EEG - 

Specific bursts in the alpha 
rhythm 

Fatigue is detected if specific 
bursts are present [17] 

Eyes 
Camera 

Neural net-
works/Haar 

cascades 

Blinking frequency (Vb) 
Fatigue is detected if Vb >13 

times/minute 
PERCLOS (closing time of 
the eyelids by more than 

80%) 

Fatigue is detected if the PER-
CLOS >28% of the time within 

one minute [9]. 
Neural net-

works 
ELDC (distance between 

the eyelids) 
Fatigue is detected if ELDC >0.5 

[18] 
EOG (electrooculog-

raphy) sensor 
- Voltage U 

Fatigue is detected if U >50 µV 
[9] 

Mouth Camera 
Neural net-

works 

Mouth PERCLOS (closing 
time of the mouth by more 

than 50%) 

Fatigue is detected if the mouth 
PERCLOS <30% [9,11] 

Face Camera 
Neural net-

works Skin temperature 
Fatigue is detected if skin tem-

perature drops by 0.1 °C [9] 
Body IR Thermometer - 

Body Camera 
Neural net-

works  
Breath rate (Tbr) 

Fatigue is detected if Tbr < 16 
times/min [19] 

 Car dynamics GPS CatBoost 
No specific parameter or threshold. The machine learning 
classification model identifies the presence/absence of the 

treat. [10,20] 

Inattention 

Face/Head Camera 
Neural net-
works/Haar 

cascades 

Driver head’s Euler angles 
(yaw, pitch, roll) detection 

(RMAX) 
Inattention is detected if RMAX 
≥ 15° for longer than 2 s [21] 

Eyes Camera 
Neural net-

works 
View direction (RMAX) 

Driver Camera 
Neural net-

works 

Presence of the pre-de-
fined objects (food/drink, 
mobile phone, cigarette) 

Inattention is detected if a pre-
defined object is present for X 

seconds [22]. 

Irritation 

Noise Microphone 
To be re-
searched 

Noise level To be researched [4] 

Talking Microphone 
To be re-
searched 

Time of talking To be researched [4] 

Irritating sounds Microphone 
To be re-
searched 

e.g., repeating noise To be researched [4] 
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4. Reference Model of Operator–Computer Interaction Interface 
We propose a reference model of the operator–computer interaction interface that 

describes the main processes that the interface supports (see Figure 3). The presented pro-
cesses allow the operator to automate the processes of driver monitoring (see the driver 
list and trip processes). To monitor the fatigue state of the operator, we present the oper-
ator fatigue detection process, which monitors the operator fatigue level using an RGB 
camera and alerts him/her, as well other operators, to prevent dangerous situations. 

The driver list process allows the operator to see all important information about the 
drivers the operator should monitor. This information includes driver name, vehicle type, 
vehicle number, driver status related to traffic violations (detected by driver monitoring 
system [21]), number of trips, distance traveled, last trip start time, amount of threats de-
tected for the driver, and current status, which is calculated based on the detected threats 
for the last few minutes. The information provides the operator with the context that char-
acterizes each driver and helps him/her to identify which driver should be monitored 
more carefully. 

Trip process presents the following information to the operator: vehicle route, threats 
list detected by the driver monitoring system, in-cabin and outside videos related to each 
threat, and the possibility to mark each threat as wrong or correct, as well as to mark 
videos applicable for retraining dataset formation. Vehicle route is a graphical visualiza-
tion on the map of the GPS/GLONASS data (telemetry) acquired from the vehicle in a 
map. Vehicle route is a convenient representation of the threats detected by the driver 
monitoring system. We propose to show each identified threat on the route. Therefore, in 
this case, the operator easily understands where the threat has been detected. Moreover, 
we propose to supplement each threat with in-cabin and outside videos, to help the oper-
ator to understand the situation when the threat was registered. In-cabin and outside vid-
eos are 20-s videos that include the situation when the threat was registered. Together 
with the vehicle route information the operator has the possibility to analyze the in-cabin 
as well as outside videos recorded during the whole trip (video registration). In the scope 
of the proposed reference model, we implemented the possibility for the operator to per-
form actions (mark every threat with labels) with detected threats. 

We also propose actions for the detected threats, for driver monitoring system en-
hancement. The operator has the ability to mark threats as rightly or wrongly detected, as 
well as to add undetected threats. For the wrongly detected, as well as undetected, threats 
we provide the operator with an interface that enables him/her to mark images applicable 
for machine learning model training/fine-tuning (see Section 3). Together with each im-
age, the system stores metainformation that characterizes the threat the image belongs to, 
as well as parameters related to the image. 

In addition, we propose an operator fatigue detection process to monitor his/her state 
of fatigue. If the operator is tired, his/her productiveness is reduced and the quality of 
work is decreased. As such, in this case, his/her involvement in the driver monitoring is 
not productive. 
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Figure 3. Reference model of operator–computer interaction interface. 

5. Case Study 
To test the proposed method and reference model, we developed a prototype for 

threat detection for vehicle driver and a dispatcher interface based on the reference model 
presented in Section 4. The right side of Figure 4 shows a vehicle route and detected 
threats. The left side of Figure 4 shows (1) some important information about the trip, 
including the number of threats detected and such characteristics as overall trip distance, 
average speed, duration, maximum speed, and maximum acceleration; (2) information 
about the selected threat in the map. In the presented example we show the inattention 
threat (see Table 1) that is detected, based on the driver’s head Euler angles [23,24]. 

 
Figure 4. Screenshot example: vehicle route, threat lists, in-cabin, and outside videos. 

The presented threat is accompanied by two videos (in-cabin and outside) that help 
the operator to understand if the threat was detected correctly or not. 

Figure 5 shows an example of a prototype implemented for dataset retraining. The 
operator has possibilities to choose an image for retraining of the machine learning model. 
The operator chooses the appropriate images that are extracted automatically from the 
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video. We propose taking five random images from the video sequence. The operator 
chooses the image and annotates it with additional information (see Figure 6). 

 
Figure 5. Screenshot example: choosing images for dataset retraining. 

 
Figure 6. Screenshot example: rejecting of the detected threat by a dispatcher. 

Figure 6 shows an example of threat rejection. If the operator decides to reject the 
detected threat, he/she specifies the reason in the system. 

Based on the presented method and reference model, we conducted in-the-wild ex-
periments with 14 drivers and several operators and estimated our driver monitoring sys-
tem (presented earlier in papers). The main purpose of the experiments was to evaluate 
the proposed method and estimate how the driver behavior changes if he/she receives 
notifications about the detected threats. During the experiment, drivers used their cars 
with the built in driver monitoring system developed based on the proposed method. Us-
ing the driver monitoring system, all detected threats were accumulated in the cloud 
server, and operators checked the videos to accept or reject them. We implemented anal-
ysis of the data obtained, based on the experiments that are shown in Table 2. The table 
shows the results of the experiments for participants that drove for more than 100 km. We 
conducted experiments in passive and active modes. Passive mode means that the driver 
monitoring systems detects threats and sends them to the cloud server, but does not in-
form the driver about them. Active mode means that the system notifies the driver about 
the detected threats. We show the distance of the overall driver trips, the amount of de-
tected threats, threat frequency for 10 km, and frequency change when the system 
switched from passive to active mode during the experiment. Based on the experiments, 
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we obtained positive results, showing that active mode significantly decreased the num-
ber of threats (e.g., for driver 1 and driver 14, it was more than 50%) compared to the 
passive mode. 

Table 2. In-the-wild experiments. 

Drivers 
Trips, km Threats Threat Frequency (pc. on 10 km) Frequency Change 

Passive 
Mode 

Active 
Mode 

Passive 
Mode 

Active 
Mode Passive Mode Active Mode Pc. on 10 km % 

Driver 1 64 49 86 25 13.4 5.1 −8.3 −62.0 
Driver 6 562 440 438 190 7.8 4.3 −3.5 −44.6 
Driver 7 605 253 424 168 7.0 6.6 −0.4 −5.3 
Driver 13 243 147 292 20 12.0 1.4 −10.7 −88.7 
Driver 14 220 250 109 59 5.0 2.4 −2.6 −52.4 

6. Conclusions 
This paper proposes an approach and underlying method for detecting threats 

caused by the drivers and operators of an intelligent transportation system. The threats 
include fatigue, inattention, and irritation. The method integrates a threat identification 
sequence consisting of ‘capturing’, ‘pre-processing’, ‘parameter computing’, and ‘driver 
state identifying’ stages; as well as the supporting loop, aimed at the fine-tuning of un-
derlying machine learning models, thresholds, and other parameters used in the threat 
identification sequence stages. The method was implemented in a prototype driver mon-
itoring system that enables both driver and operator monitoring, although most attention 
was devoted to driver monitoring. The prototype does not only implement the threat 
identification sequence, but also a supporting loop, providing operators with instruments 
to mark ill-identified treats and to extend the training datasets to improve detection in the 
future. The carried out experiments showed that the identification of threats by the devel-
oped method and informing the driver about them significantly reduced the number of 
threats regarding the driver. The main limitation of the experiments was that we evalu-
ated only the part of the method related to driver monitoring. At the moment, the operator 
monitoring part is not ready for evaluation; which is our future work. In addition, future 
work is planning to address two main directions. The first direction is related to finalizing 
the mentioned dataset and making it publicly available. It will contain, not only videos, 
but also recordings of various physiological parameters, such as heart rate or breathing 
rate. The other direction is related to the development of approaches and models for de-
tecting threats related to the distraction of a driver or computer operator. Currently, they 
are only mentioned in the presented method as ‘to be developed’. Based on the current 
findings and the collected dataset, we plan to develop corresponding machine learning 
models and perform experiments to analyze their efficiency. 
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