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Abstract: Mid-to-high altitude Unmanned Aerial Vehicle (UAV) imagery can provide important
remote sensing information between satellite and low altitude platforms, and vehicle detection
in mid-to-high altitude UAV images plays a crucial role in land monitoring and disaster relief.
However, the high background complexity of images and limited pixels of objects challenge the
performance of tiny vehicle detection. Traditional methods suffer from poor adaptation ability
to complex backgrounds, while deep neural networks (DNNs) have inherent defects in feature
extraction of tiny objects with finite pixels. To address the issue above, this paper puts forward
a vehicle detection method combining the DNNs-based and traditional methods for mid-to-high
altitude UAV images. We first employ the deep segmentation network to exploit the co-occurrence of
the road and vehicles, then detect tiny vehicles based on visual attention mechanism with spatial-
temporal constraint information. Experimental results show that the proposed method achieves
effective detection of tiny vehicles in complex backgrounds. In addition, ablation experiments are
performed to inspect the effectiveness of each component, and comparative experiments on tinier
objects are carried out to prove the superior generalization performance of our method in detecting
vehicles with a limited size of 5 × 5 pixels or less.

Keywords: mid-to-high altitude UAV images; tiny object detection; visual attention; spatial-temporal
information

1. Introduction

With the continuous development of computer vision technology and the improve-
ment of commercial UAV platforms, UAVs have been widely used in various scenarios
such as traffic detection, agriculture and forestry, and disaster prevention and relief. Due
to its flight characteristics of high altitude and long duration, the information collected by
mid-altitude UAVs, such as graphics, videos, and spectrum, is becoming increasingly abun-
dant. Moreover, UAVs can perform tasks in hazardous areas and bad weather conditions
with efficient data acquisition capability, playing an increasingly important role in civil and
military fields [1,2].

Object detection, one of the most important tasks in computer vision, aims to identify
different types of objects and mark their locations. With the development of deep learning
techniques, as well as the establishment of high-quality UAV image datasets [3–7], vehicle
detection in UAV images has become a research hotspot in recent years to accurately locate
and identify vehicle targets, which is of great significance for traffic monitoring, urban
planning, search and tracking, and other practical applications.

Remote shooting from long distances leads to high background complexity of images
and small size of objects. However, small object detection among a complex background
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presents a challenging problem to be solved in the field of image analysis and processing.
There are two typical ways to define small objects. In the COCO dataset [8], objects smaller
than 32 × 32 pixels are considered as small objects. According to the International Society of
Optical Engineering (SPIE), an object is defined as small if its size is less than 0.12% of the
original image [9]. Under the mid-to-high altitude conditions of long-distance and oblique
observation to the ground, the UAV image covers a wide range of area with a large number
of pixels, while the object of interest usually occupies only several hundred or even dozens of
pixels, which is far less than 0.12% of the image. Therefore, for mid-to-high altitude imaging
platforms, objects with less than 10 × 10 pixels in the image are defined as tiny objects.

Existing detection algorithms for small objects can be divided into two main categories:
traditional image processing and deep learning methods, which have certain limitations
for tiny object detection. Traditional image processing methods are mostly adopted in
infrared small object detection for infrared search and rescue systems [10,11], such as
morphology-based top-hat algorithm [12,13], wavelet transform [14,15], and visual saliency
detection [16–18]. However, traditional manual-designed features suffer from insufficient
representation and poor adaptability to complex backgrounds, which hinders their applica-
tions to visible images with complex backgrounds. Deep learning-based methods [19,20]
achieve excellent performance on general datasets but low accuracy for tiny objects with
finite pixels, whose feature is insufficient and even weakened after then common down-
sampling operations in DNNs. Moreover, the training of the DNNs requires a large amount
of annotated data that entails significant time and effort. Nevertheless, for the mid-to-high
altitude UAVs, there is currently a lack of such large-scale annotated image datasets for the
tiny object detection task.

In this paper, a series of video sequences are collected to establish a mid-to-high
altitude UAV images dataset. Different from low-altitude UAV images, the images collected
by us are fuzzy with low contrast. The comparison of UAV images at different heights
is shown in Figure 1. It can be found that objects in our image are smaller than in the
low altitude image, and the background interference is larger, which further increases the
difficulty of object detection.
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tion framework (MTVD) for mid-to-high altitude UAV images based on visual attention 

Figure 1. Comparison of UAV images at different heights. (a) An example of the low altitude UAV
image dataset UAVDT [7], and (b) is an example of the mid-to-high altitude UAV image we established.

To address the above problems, this paper develops a multi-stage tiny vehicle detec-
tion framework (MTVD) for mid-to-high altitude UAV images based on visual attention
and spatial-temporal information. The proposed method takes advantage of both deep
networks and traditional methods with a progressive integration of them. Considering the
strong dependence relationship between the road and vehicles in the ground scene, the
road areas in the image are extracted by segmentation networks to suppress the interference
of complex backgrounds. Then tiny vehicles on the road are detected by the improved
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RSS [21] algorithm that incorporates stability region and saliency detection to strengthen
the visual attention information. The motion information of vehicles is further employed
to enhance the detection results with spatial-temporal confidence.

The contributions of this work are summarized as follows:

(1) We propose a multi-stage tiny vehicle detection framework with deep segmentation
and traditional detection components to solve the problem that existing traditional
methods have difficulty in detecting tiny objects from complex backgrounds.

(2) We improve the RSS algorithm with both visual attention and spatial-temporal informa-
tion, termed as STRSS, to assist the detection procedure by designing a locally weighted
saliency decision, which can remove the false alarm and increase the detection precision.

(3) The proposed method achieves effective detection of tiny vehicles under complex
backgrounds with an F1 score of 78.32%. Moreover, our method is not limited by the
size of the objects, and comparative experimental results show that it outperforms the
advanced DNNs-based method for extremely tiny object detection with pixels smaller
than 5 × 5.

This paper is organized as follows. Section 2 summarizes relevant literature, and
Section 3 introduces the proposed methods of tiny object detection in detail. In Section 4,
the dataset, evaluation metrics, and experimental details and results are presented. The
conclusion is presented in Section 5.

2. Related Work

In this section, several traditional small object detection methods commonly for in-
frared weak and small object detection are introduced, including single-frame detection and
moving object detection. In addition, some algorithms based on DNNs are also mentioned.

2.1. Single Frame Detection

Single frame detection is suitable for imaging scenes with uniform backgrounds.
Classical methods include maximum mean or maximum median filter [22], morphology-
based top-hat algorithm [12,13], wavelet transform [14,15].

In recent years, algorithms based on human visual attention mechanisms have achieved
good performance which uses the difference between object and background to perform
background suppression and noise removal, to find the regions of objects. Laplacian of
Gaussian (LOG) filter [16] smooths the image through a Gaussian filter and then uses a
Laplacian filter to make the image contour clearer. Wang et al. proposed an automatic
detection algorithm based on visual attention, using the Difference of Gaussian (DOG)
filter [17] to generate saliency maps for purpose of enhancing the region of the object and
eliminating large areas of bright background. Achanta et al. [18] proposed a frequency
tuning method for salient region detection, which uses the features of color and brightness
to estimate the contrast between center and surrounding, so as to obtain the saliency map.

Since the object is locally uniform and has significant intensity differences from the
surroundings, J. Matas proposed the Maximally Stable Extremal Region (MSER) [23]
algorithm to perform binary segmentation of gray image by using continuous thresholds. In
the process of changing the threshold, the region with the smallest area change is extracted
as the maximally stable extremal region, to distinguish the object from the surrounding
background. RSS [21] combines stability region detection and saliency detection to achieve
small object detection in color images under simple background, but there are still problems
of false alarms and missing objects.

2.2. Moving Object Detection

Moving object detection mainly utilizes the spatial-temporal continuity of the image
sequence to improve detection accuracy by introducing more dynamic information. Spatial-
temporal continuity means that the trajectory of the object in adjacent frames is continuous
and the appearance change of it also has continuity in time. The method of detection-
before-trace (DBT) is usually adopted. Firstly, single-frame detection is carried out on the
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image sequence to obtain the candidate object, and then the candidate is judged by the
motion characteristics and other prior information to detect the real object.

Background estimation method [24,25] detects moving objects by modeling the back-
ground image and forming the difference between the original image and the background
image, and it is only applicable to imaging sequences with static backgrounds. The frame
difference method [26,27] obtains the moving object by forming a difference between
several frames that are continuous in time or have a certain interval.

Optical flow [28,29] is a classical motion estimation method, which calculates the
motion field through the optical flow characteristics of the moving object over time, and
then determines the motion trajectory of the object according to the motion field. Multi-
frame energy accumulation [30,31] averages the preprocessed multi-frame images, so
that the energy of moving small objects can be accumulated, while the random noise
accumulation is slow, and ultimately distinguishes them. However, the background noise
cannot be distinguished.

The basic idea of pipeline filtering [32–34] is that in a continuous N-frame image
sequence, the position of the candidate object in the previous frame is the center of the
pipeline, and the maximum distance that the object can move between frames is the radius
of the pipeline. The candidate object detected M times in the pipeline is considered as
the real object. Li et al. [32] improves the traditional pipeline filtering and proposed
the adaptive pipeline filtering algorithm. The center and radius of the pipeline filter are
updated adaptively according to the motion change of the target, so this algorithm has
strong robustness to noise interference and target motion variation.

In summary, traditional object detection methods have made good progress in infrared
weak and small object detection through visual attention mechanisms. In the task of
moving object detection, the spatial-temporal continuity of the image sequence is used to
introduce more information to improve detection accuracy. However, the above methods
are suitable for scenes with uniform and simple backgrounds and are difficult to apply to
tiny object detection task under complex backgrounds of visible images for mid-to-high
altitude platforms.

2.3. DNNs-Based Small Object Detection

In recent years, object detection based on DNN has become mainstream. Most of the
existing small object detection algorithms propose some improvement or optimization
strategies based on the general detectors. Multi-scale feature fusion [35,36] and context in-
formation enhancement [37,38] are used to generate high-quality feature representation, so
as to improve the robustness of the model to multi-scale objects. There are also certain meth-
ods to improve the detection performance of small objects such as designing appropriate
anchor size [39,40], introducing visual attention mechanism [41,42], and data augmenta-
tion [43,44]. Recently, transformer technology has been gradually applied to computer
vision, which provides a new solution to the problem of small object detection [45,46]

In the field of video object detection, the prediction effect of the current frame is
mainly enhanced by using the characteristics or detection results of other frames [47–49].
SpotNet [50] trained foreground/background segmentation as well as object detection
jointly via a multi-task learning approach to direct attention towards objective areas. The
labels of foreground/background segmentation are produced by applying background
subtraction or optical flow methods to video sequences.

DNNs extract different levels of features through multi-level structure, but down-
sampling will gradually weaken the feature information of small objects. The proposed
method avoids multi-layer feature extraction, and the detection effect is independent of the
object size.
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3. Materials and Method

In this section, the general framework of our method is shown in Section 3.1, RSS is
briefly introduced in Section 3.2, and the details of each part of the proposed algorithm are
presented in Section 3.3, which represents the key points of our improvement.

3.1. General Framework

For mid-to-high altitude UAV images, this paper proposes a multi-stage tiny vehicle
detection method. The overall process is shown in Figure 2. Firstly, the roads are extracted
from the original UAV image by the deep semantic segmentation network. Then, according
to the road area, we extract the stability regions and screen to obtain the candidate regions
of vehicles. Next, on the basis of spatial-temporal continuity and appearance similarity,
the candidate regions of the same vehicle in different frames are associated to generate a
probability weighting factor, which represents the probability of the occurrence of each
object in this period. Finally, the authenticity of the candidate region is judged by the locally
weighted saliency detection score. If the saliency score is greater than the threshold, it is
determined as the real object, otherwise, it is a false alarm.
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Figure 2. The framework of our method. Firstly, the original image and the segmentation information
are combined by multiplication to generate the road area. Then the processed image is sent to
the object detection network for stability region extraction, including gray-scale image conversion,
multi-level threshold binarization segmentation and other steps to obtain the candidate regions of
vehicles and a stability map. Then, we perform candidate region association based on the relative
position relationship and appearance similarity of candidate regions in different frames to generate
probability weighting factors. Both candidate regions and probability weighting factors are used for
locally weighted saliency decision to remove false candidate regions(such as the pink detection box
with score of 0.09 in the forth image) and obtain final detection results.

3.2. RSS Algorithm

RSS [21] is a small object detection algorithm of color images that combines regional
stability and saliency. It mainly includes three parts: stability region extraction, saliency
detection, and integration of stability and saliency results.

3.2.1. Regional Stability

In view of the fact that the object in the UAV image, especially the tiny vehicle,
generally has the mass effect and exhibits clustering specialty. The shape of the object
is relatively regular and there is a conspicuous gray difference between the object and
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the surroundings so that it can be regarded as a spot in the uniform background. These
characteristics are used to construct the object/background priors and obtain the candidate
region of the vehicle based on the stability region detection. The main steps are as follows.

(1) Multi-level threshold segmentation

Since the geometric and statistical invariance of objects during binarization, the multi-
level threshold segmentation is applied to extract the stability region of images.

Firstly, the three-channel color image is converted into a grayscale image, then a set of
thresholds with a grayscale range of [0, 255] and a step size of δ are used to perform binary
segmentation on the grayscale image to obtain several sets of connected regions and their
corresponding five structure descriptors. The five structural descriptors of each connected
area in the binary image are: (1) the number of pixels |r|; (2) geometric center point c; (3)
Minimum outer rectangle b; (4) filling rate f ; (5) aspect ratio a.

(2) Connected regions clustering

To describe the similarity between two adjacent connected regions u and v, four
stability measure criteria are defined as follows:

(a) area variation: Dr(u, v) =||u|−|v||;
(b) center distance: Dc(u, v) =||cu − cv||;
(c) fill rate difference: D f (u, v) = max( fu , fv)

min( fu , fv)

(d) aspect ratio difference: Da(u, v) = max(au ,av)
min(au ,av)

Taking the Euclidean distance between the geometric center points of each connected
region as the constraint, the connected regions obtained by binary segmentation are clustered
through the spatial relationship between them. It is judged whether the center distance of
two adjacent regions is less than the threshold. If so, the regions are in the same cluster.

The threshold ∆c is defined as:

∆c =
min2(bri ,w, brj ,w) + min2(bri ,h, brj ,h)

4
(1)

where the subscripts bri ,w, bri ,h indicate the width and height of the regions ri.

(3) Stability region post-verification

Fill rate difference and aspect ratio difference indicate the degree of difference in
the appearance of two connected areas. The smaller the difference between them, the
more stable the corresponding target region is. Therefore, among four connected regions
corresponding to the minimum difference of filling rate and aspect ratio, we select the region
with the largest number of pixels as the maximally stable region of the object and take the
minimum enclosing rectangle box of it as the optimal sub-image containing only one object.
Then, the Otsu method [51] is used to segment the optimal sub-image to maximize the
variance between the object and the background to obtain the optimal threshold ϑ. Next, the
second post-verification of regions is performed by taking two thresholds ϑ− δ/2, ϑ + δ/2
to segment the optimal sub-image again and obtain the corresponding segmentation result
Rϑ− , Rϑ+ . If the area change Dr(Rϑ− , Rϑ+) is less than the threshold Φr, the region is
determined to be a stable region; otherwise, it is directly discarded.

The threshold Φr is defined as:

Φr = ∆rφr (2)

φr =

{
max(

∣∣Rϑ−
∣∣, ∣∣Rϑ+

∣∣) if min(
∣∣Rϑ−

∣∣, ∣∣Rϑ+
∣∣) ≥ ts

ts otherwise
(3)

where ∆r is the weight coefficient, and ts is the size of the tiny object previously set.
Finally, the stability region corresponding to each clustering result is obtained and the

stability map MT of the original image is generated.
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3.2.2. Regional Saliency

The object has visual saliency in a certain area so that the human eye can often find it.
RSS utilizes the local contrast mechanism to highlight salient areas and suppress uniform
backgrounds. Firstly, the image is transformed into Lab space, and then the Gaussian filter
is used to extract saliency information from the Lab color channel by low-pass filtering.
The expression of two-dimensional Gaussian filter is:

G(x, y, σ) =
1

2πσ2 e−
x2+y2

2σ2 (4)

where σ is the standard deviation of the Gaussian function.
The saliency of each pixel in the image is expressed by the difference between the Lab

image and its Gaussian blur, and the saliency map obtained after filtering is normalized.
The saliency map is expressed as:

MA =|(L, a, b)− (LG, aG, bG)| (5)

where LG , aG , bG are the channel values of L , a , b after Gaussian blurring, respectively.

3.2.3. Integration of Stability and Saliency

The stability and saliency results are integrated by pixel-by-pixel multiplication, de-
noted as MT ×MA. The saliency of the candidate regions extracted by stability detection is
calculated and the saliency score is obtained to judge whether each candidate region is a
real object. If the saliency score is greater than the average value of all candidate regions in
the image, it is judged as a real object; otherwise, it is a false alarm.

3.3. STRSS Based on Visual Attention and Spatial-Temporal Information

RSS is only suitable for small object detection tasks with relatively simple and uniform
backgrounds while having weak adaptability to complex backgrounds. Furthermore, there
are a large number of false alarms and object missing problems for vehicle detection in
mid-to-high altitude UAV images. Therefore, an improved vehicle detection algorithm
(STRSS) based on visual attention and spatial-temporal information is proposed in response
to the above problems.

3.3.1. Road Segmentation

The background of mid-to-high altitude UAV images is relatively complicated. Most
of the shooting scenes contain roads and the road area has the characteristics of uniform
intensity and less interference. Considering the strong dependence relationship between
the road and vehicles in the ground scene, we first extract the road area in the image by
road segmentation networks to suppress the interference of complex backgrounds.

Most deep semantic segmentation networks are based on the encoder–decoder struc-
ture presently. The encoder is mainly responsible for feature extraction and context infor-
mation capture, and the decoder predicts the labels of pixels through the decoded feature
map. The network can capture semantic information of different scales by fusing the
high-level and the low-level feature maps, which improves the robustness to multi-scale
objects and recovers the loss of spatial information caused by the decline of resolution. At
the same time, the encoder–decoder structure can better take into account the accuracy
and efficiency of the network, making the end-to-end and pixel-level image segmentation
methods become the mainstream. Some methods use Atrous Spatial Pyramid Pooling
(ASPP) modules composed of convolutional layers of different atrous rates to expand the
receptive field to capture multi-scale context information or recursive neural network to
explore local dependencies to improve segmentation accuracy.

Deep semantic segmentation networks perform well in the road segmentation task of
street view image, so they can be applied to the UAV scene to extract the road area from the
mid-to-high altitude UVA image to generate a priori to guide the subsequent vehicle detection.
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3.3.2. Visual Stability Region Extraction

Candidate regions extracted by stability detection are the premise of saliency detection
and the basis of tiny object detection. Therefore, the stability region extraction stage is
further improved to obtain more effective candidate regions of objects.

(1) White objects processing

RSS believes that compared with the infrared scene, small objects obtained in the visual
band usually have a smaller intensity value. However, white vehicles are typical objects in
UAV images of mid-to-high altitude, whose intensity is greater than surroundings. RSS
algorithm can achieve relatively accurate detection for black objects with low gray value,
but will significantly miss white vehicles, as shown in Figure 3.
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Figure 3. Example of missed white vehicles. Detection boxes 1 and 2 in (a) only detect the black
cabin of the white truck or the black shadow around the white vehicle, while ignoring the real objects.
(b) demonstrates thatthe only white object is not detected.

Missing detection mainly occurs in the process of extracting the stability region. In the
process of multi-level threshold segmentation, a set of thresholds with a grayscale range
of [0, 255] and a step size of δ are used to perform binary segmentation on the grayscale
image. The pixels with grayscale values less than the threshold are binarized into 255, and
those with grayscale values greater than the threshold value are binarized into 0, and then
the white connected regions are extracted from the black background. With the continuous
increase of the threshold, the background area in the image becomes binarized into white,
while the white object with a higher gray value becomes black after binarization and cannot
be extracted. Therefore, we perform the inversion operation on the binary image with
a high threshold according to a certain proportion to ensure that the connected region
corresponding to the white objects can be extracted.

Additionally, white trucks have black cabins, and some vehicles will form black shad-
ows around them under certain lighting conditions, so there are always two overlapping
detection boxes of the real object and its shadow in the final detection result. When cluster-
ing the low threshold binary image and the inverted high threshold binary image, clustering
conditions are modified by doubling the centroid distance threshold to divide the object
and its shadow into the same cluster, and expand the overlapping stability region, so as to
obtain more precise detection results.

(2) Stability region discrimination based on Hu moment

After the second post-verification, the stability region of the object may correspond to
a real vehicle or noise. To distinguish them, Hu invariant moment is used to constrain the
shape of the binary stability region.

Hu invariant moment is a statistical feature of an image, which has rotation, translation,
and scale invariance. It contains seven eigenvectors constructed by the linear combination
of second and third-order normalized central moments.
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Since the shape of the vehicle targets bear rectangular characteristics, the stability
regions with irregular shapes, such as linear and triangular are removed by calculating the
Euclidean distance between the invariant moment of each stability area and the feature vec-
tor of the rectangular template and taking into account each invariant moment component,
so as to remove false alarms and improve the precision of detection.

3.3.3. Spatial-Temporal Information Assistance

Due to the influence of environmental factors such as illumination, shadow, and
occlusion, the stability detection results of different frames are inconsistent. This paper
introduces the inter-frame motion relationship of the image sequence to assist the detection
based on single-frame detection to improve the detection precision of tiny vehicles.

The specific method is as follows: the idea of data association in multi-object tracking
tasks is borrowed to associate the candidate regions in different frames so that the same
vehicle in different frames in a certain period has the same ID. Then, the number of occur-
rences of the candidate region corresponding to each ID in the whole image sequence is
respectively counted as a probability weighting factor. If a candidate region appears only
once in the image sequence, it is more likely to be a false alarm, so its corresponding proba-
bility weighting factor is lower. Conversely, the candidate area with a higher probability of
occurrence is more likely to be the real object. Therefore, the probability weighting factor is
used as the weight of the subsequent saliency detection to further remove false alarms and
improve the detection precision.

(1) Candidate region association

Spatial-temporal continuity means that the trajectory of the object in adjacent frames is
continuous and the appearance change of it also has continuity in time. Therefore, regions
in different frames are associated through the relative position relationship and appearance
similarity of them. The position measurement is used to calculate the distance between the
centroids of candidate regions, and the apparent similarity is measured if it is less than the
threshold. The appearance measurement is mainly carried out by converting the original
sub-image corresponding to the candidate region into Lab color space and performing
color quantization. Each color channel is quantized to 4 bit, so the color number after
quantization is reduced to 43, which is used to calculate the Lab color histogram.

The formula for calculating the appearance similarity between two adjacent candidate
regions is:

Sim(Ri
m, Rj

n) = 1− αχ2[Hi
m, Hj

n] (6)

where χ2[.] is the chi-square distance between the Lab color histograms, α is the weight
of the chi-square distance, and Hi

m represents the grayscale histogram of sub-image corre-
sponding to the candidate region m in the ith frame.

Then, the KM matching algorithm is used to perform the candidate region association
between adjacent frames, and the apparent similarity between them is used as the weight
of the KM algorithm. The object association problem is transformed into the problem
of finding the maximum weight perfect matching of the bipartite graph. Finally, the
probability weighting factor corresponding to each ID is obtained.

The main task of this paper is not real object tracking, but only the use of probability
weighting factors to modify the subsequent saliency detection within a certain time range,
so the problems of the disappearance of old objects and the emergence of new objects are
not considered.

(2) Locally weighted saliency decision

The saliency map is obtained after Gaussian filtering. In this section, we introduce
a probability weighting factor to weight the Gaussian filtering results and calculate the
final saliency score of the candidate regions extracted by stability detection. The stability
regions corresponding to the same ID have the same probability weighting factors. The
final saliency score is obtained to determine the authenticity of the candidate. If the saliency
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score is greater than the threshold, the candidate region is regarded as the true object
otherwise, it is judged as a false alarm.

The saliency score is calculated as follows:

Si
k = Pk ∑

(x,y)∈Ri
k

S(x, y) (7)

where Ri
k represents the ith stability region with the ID of k, Si

k represents the saliency score
corresponding to Ri

k, and Pk is the probability weighting factor of each stability region with
the ID of k.

4. Experiments and Results
4.1. Data Collection

We collect a series of video sequences with RGB data based on actual flight data with a
certain length of time under different atmospheric conditions, different flight altitudes, and
imaging distances. The videos are shot in a plain area in eastern China, containing multiple
different scenes such as cities, villages, and suburbs. Each scene is captured by the visible
light and infrared integrated camera on the medium-altitude UAV. The imaging device has
two degrees of freedom relative to the drone equipped with GPS (Global Positioning System),
INS (Inertial Navigation System), and altimeter at the same time. The flying height of the
UAV ranges from 3 to 7 km and the original resolution of each video frame is 1392 × 1040.

Decoding, storage, automatic calibration and annotation of the collected remote sens-
ing data are performed and a database of mid-to-high altitude UAV images containing
video images and metadata is established.

4.2. Dataset Description

The vehicle detection algorithm proposed in this paper requires prior segmentation
of the road area, so the mid-to-high altitude UAV image dataset we established is divided
into road segmentation set and tiny vehicle detection set. The main information is shown in
Table 1. The road segmentation set contains 413 original images with the size of 1392 × 1040,
and two categories of road and background are manually annotated. Both original and
binary label images are cropped into 512 × 512 for training on the Deeplabv3-plus network.

Table 1. Main information of the mid-to-high altitude UAV image dataset we established.

Dataset Road Segmentation Set Tiny Vehicle Detection Set

Number of images 413 160
Image size 1392 × 1040 1392 × 1040

Annotated category road and background vehicle
Number of objects - 827

Size of objects - 10 × 10–50 × 50

In order to construct the vehicle detection dataset of mid-to-high altitude UAV images,
we use LabelImg to annotate the vehicles. A total of 160 images in 4 scenes are labeled, of
which there are 827 object instances with a size range of 10 × 10 to 50 × 50 pixels, including
stationary vehicles and moving vehicles. To clarify, objects with 50 × 50 pixels are usually
large trucks, while most other vehicles in images are only 10 × 10 pixels.

4.3. Experimental Settings
4.3.1. Parameter Settings

RSS obtained a set of optimal parameters through a large number of experimental
analyses. This paper makes fine-tuning on the basis of the original parameters to adapt to
our mid-to-high altitude UAV image database. The step size of binary segmentation δ is
set to 17.2, and the range of the number of pixels of stability region is set to [10, 2000] to
ensure that our algorithm adapts to the changes of object size. The threshold of the second
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post-verification of the stability region ∆r = 20, and the weight of the standard deviation of
the Gaussian low-pass filter σ = 8.

4.3.2. Evaluation Metrics

Both semantic segmentation and object detection can be regarded as a multi-classification
task, and the confusion matrix can be used to compare the predicted output classification
results with the truth. The difference is that semantic segmentation compares the predicted
output results pixel by pixel, while object detection classifies the bounding box according
to intersection over union (IoU) between the ground truth box and predicted box. Both of
them can be evaluated by the precision, recall and F1 score. Furthermore, mean intersection
over union (mIoU) is usually used to determine the accuracy of the segmentation.

(1) Precision

Precision represents the proportion of the true positive in the sample that the prediction
is positive, which is defined as:

Precesion =
TP

TP + FP
(8)

If the IoU between the predicted box and ground truth box is greater than the threshold,
the detection box is true positive (TP), otherwise, it is false positive (FP). In addition, the
ground truth box that does not match any prediction box is false negative (FN).

Recall indicates how many positive samples are correctly predicted, which is defined as:

Recall =
TP

TP + FN
(9)

(2) F1 score

F1 score is obtained by the weighted average of precision and recall, which is defined as:

F1 =
2× P× R

P + R
(10)

(3) MIoU

MIoU is a commonly used evaluation metric for semantic segmentation, which calcu-
lates the ratio of intersection and union of two sets of real value and predicted value, and is
defined as:

MIoU =
1

k + 1

k

∑
i=0

TP
TP + FN + FP

(11)

where k represents the number of categories. MIoU reflects the degree of coincidence
between the predicted image and the real image. The closer the ratio is to 1, the higher the
degree of coincidence and the higher the quality of semantic segmentation.

4.4. Experimental Results
4.4.1. Evaluation of MTVD Algorithm

(1) Road segmentation

According to the UAV image and corresponding single-channel binary label, we train
the semantic segmentation model based on Deeplabv3-plus [52], and we use the trained
Deeplabv3-plus network to predict the images. Some of the prediction results are shown in
Figure 4. The precision reached 92.69%, the recall reached 92.93%, the F1 score was 92.81%,
and the MIoU was 87.18%. Experimental results prove that Deeplabv3-plus can effectively
extract roads from mid-to-high altitude UAV images.
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Figure 4. Visualization results of road segmentation. (a,c) Columns are the original images,
(b,d) columns are the corresponding segmentation results, respectively, and the red markings repre-
sent the road area.

(2) Vehicle detection

The proposed algorithm based on the vehicle detection dataset of mid-to-high altitude
UAV images is evaluated. In the mid-to-high altitude database we established, the quality
of the image is greatly affected by weather, light, platform speed and altitude, and the
surrounding environment, so the datasets have low contrast and poor clarity, and there
are large background differences between different sequences. In addition, there are also
certain differences between image backgrounds of different frames in the same scene,
mainly including rotation, scaling, translation and other transformations due to the motion
characteristics of UAV shooting, which further increases the difficulty of detection.

Figure 5 shows the detection results of two different frames in four scenes. It can be
seen that our proposed method can better realize the detection of limited pixel vehicles
in the complex background of mid-to-high altitude UAV images. The comparison of the
experimental results between RSS and our method is shown in Table 2.

Table 2. Comparison of the results between with RSS and our method.

Method Precision (%) Recall (%) F1 Score (%)

RSS 36.77 16.81 23.07
ours 71.26 86.94 78.32
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Figure 5. Visualization results of vehicle detection. (a,c) Lines show UAV images in different scenes.
Part of the original image (cyan area) is enlarged and displayed in (b,d) lines accordingly to display
the detection details.

4.4.2. Ablation Experiments

In this part, ablation experiments are performed to inspect the validity of each part.
We take advantage of RSS as the baseline and fundamentally fine-tune the parameters to
adapt itself to the characteristics of our dataset. Saliency detection is designed for removing
false objects based on regional stability results, in other words, objects that are not extracted
during the stability detection phase will never be detected. We attempted to improve the
seriously missed detection and extract more effective candidate regions by modifying the
condition of saliency decision, eliminating the second post-verification and white objects
processing. However, at the same time, this will cause a decrease in precision. The methods
of stability region discrimination based on Hu moment and locally weighted saliency
decision are adopted to remove false alarms and improve detection precision. In this part,
we conduct ablation experiments on each idea by changing one condition on the basis of
the previous one while the other conditions remain unchanged. Figure 6 shows some of
the subjective results of the above ideas in our approach.
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Figure 6. Visualization results of ablation experiments. (a–c) Respectively, represent three sets of
examples, and the second line of each set shows the enlarged results (cyan or orange area). The first
column shows the detection results of baseline, and the second column shows the results after fine-
tuning parameters, modifying saliency decision conditions and removing the second post-verification.
The third column shows the results after adding white objects processing, and the fourth column
shows the results with the addition of Hu moment discrimination and locally weighted saliency
decision. The fifth column displays the ground truth.

We analyze the detection results with precision, recall and F1 scores. Due to the
small size of the object, slight positioning deviation will lead to a significant decrease of
IoU, and the detection box is closely surrounded by the object, while there is a certain
error in the manual annotation. Moreover, due to the motion characteristics of UAVs and
vehicles, the objects are prone to motion blur, which affects the accuracy of the location.
Different from train-based methods, which can regression the accurate bounding box of
the object, our method can only extract the object region according to the low-level feature
of the image. For the above reasons, the threshold is set to 0.2 to obtain more reasonable
evaluation results. The experimental results are shown in Table 3. The result we obtained
may just be a local optimal solution, but the results of ablation experiments can still prove
the effectiveness of each idea.
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Table 3. Ablation experimental results. Only a new idea is added on the basis of the previous
experiment while the other conditions remain unchanged.

Newly Added Conditions Precision (%) Recall (%) F1 Score (%)

Baseline 36.77 16.81 23.07
Fine-tuning the parameters 64.10 21.16 31.82

Modify saliency decision condition 67.92 39.18 49.69
Remove second post-verification 69.55 69.04 69.30

White objects processing 63.33 89.60 74.21
Hu moment discrimination 68.35 83.56 75.19

Locally weighted saliency decision 71.26 86.94 78.32

According to the results in Table 3, the precision of detection was improved by 27.33%
by fine-tuning the parameter based on RSS, while recall was only improved by 4.35%. RSS
considers the region whose saliency score is less than the average of all candidate regions
in the whole image as the false alarm, which will lead to the problem that the real object is
mistakenly removed. Therefore, we modified the saliency decision condition to set a fixed
threshold, and the recall increased by 18.02% while precision was increased by 3.82%.

The motion characteristics of UAVs and vehicles, as well as environmental factors,
lead to no clear boundary between vehicle and background, and the stability region second
post-verification leads to the removal of many real objects. Experimental results show
that the application of removing second post-verification can help significantly improve
the recall without any false alarms. Then, we dealt with white objects by inversion and
clustering after which the recall increased by 20.56%, but the precision decreased by 6.22%
due to the introduction of white noise during processing.

Finally, Hu moment discrimination and locally weighted saliency decision were used
to further remove false alarms, and the optimal detection effect was obtained. The precision
increased to 71.26%, the recall increased to 86.94% and the F1 score reached 78.32%.

4.4.3. Tinier Object Exploration

In this part, original images are resized to generate series of images with lower
resolution, and the size of the vehicles is reduced proportionally. Additional test images
are used to explore the detection effect on tinier objects. Since our proposed algorithm is
pixel level, the bilinear interpolation method used in scaling will change the pixel value
and affect the detection result to a certain extent. During the test, we appropriately modify
the parameters related to image resolution and object size, and send low-resolution images
into the detection model. The detection results obtained are shown in Table 4.

Table 4. Results of different resolutions.

Scaling Factor Size of Usual Objects Precision (%) Recall (%) F1 Score (%)

1 10 × 10 71.26 86.94 78.32
2/3 7 × 7 70.85 80.53 75.38
1/2 5 × 5 70.91 78.11 74.34
1/3 3 × 3 72.17 75.57 73.83

It can be seen from Table 4 that the detection accuracy reduces slightly with the
decrease of resolution. After three times down-sampling of the original image, the object
size of 10 × 10 in the original image is only about 3 × 3, and the F1 score is 73.83%.
Compared with the original size, it only decreases by 4.49%, which is acceptable within
a certain range. The proposed algorithm mainly uses the gray difference between the
object and background for detection in the resolution of the input image, so the detection
results are only related to the pixel value and have nothing to do with the size of objects.
The experimental results show that the proposed algorithm can still effectively detect the
limited pixel objects below 10 × 10 pixels.
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We also compare our approach with the current state-of-the-art object detection net-
works, such YOLOv5, on the scaled mid-to-high altitude UAV dataset of different sizes.
F1 scores obtained by fine-tuning Yolov5 network on our dataset are compared with the
results of our method in Table 5. According to Table 5, our method performs worse than
YOLOv5s and YOLOv5m on the original images and the images down-sampled by a factor
of two thirds, but performs better when the scaling factors are one-half and one-third. Our
method achieves 2.27% higher F1 score than YOLOv5s and 2.66% higher than YOLOv5m
after twice down-sampling of original images, and 4.1% higher F1 score than YOLOv5s
and 3.27% higher than YOLOv5m after triple down-sampling. Experimental results demon-
strate the advantage of the method we put forward on tiny objects with limited pixels
blow 5 × 5 compared to the deep network. Although our method is slightly inferior to
YOLOv5 in larger object detection, it has stronger robustness and superior generalization
performance for object size.

Table 5. Comparison of our method with YOLOv5 on our dataset.

Method
Scaling Factor 1 2/3 1/2 1/3

Size of Usual Objects 10 × 10 7 × 7 5 × 5 3 × 3

YOLOv5s F1 score 83.87 83.62 72.07 69.73
YOLOv5m F1 score 85.41 83.61 71.68 70.56

Ours F1 score 78.32 75.38 74.34 73.83

5. Conclusions

This paper brings forward a tiny vehicle detection approach based on visual attention
and spatial-temporal information for mid-to-high UAV images. On account of the scene
dependence of vehicles, we segment road areas of the image through the deep semantic
segmentation network and extract the stability regions from road areas as candidate regions
of the vehicles. To remove the false alarms, we introduce the inter-frame motion relation
and design a locally weighted saliency decision method to perform the second inspection
on the candidate regions. Experimental results demonstrate that our method achieves
effective detection of vehicles in mid-to-high altitude UAV images. The detection algorithm
does not require large-scale annotation data for model training. Moreover, our method
is more robust to the size of objects and performs well in the detection of vehicles with
limited pixels below 5 × 5, which can effectively provide support for image data analysis
of ground.
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