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Abstract: Distributed generation connected with AC, DC, or hybrid loads and energy storage systems
is known as a microgrid. Campus microgrids are an important load type. A university campus
microgrids, usually, contains distributed generation resources, energy storage, and electric vehicles.
The main aim of the microgrid is to provide sustainable, economical energy, and a reliable system.
The advanced energy management system (AEMS) provides a smooth energy flow to the microgrid.
Over the last few years, many studies were carried out to review various aspects such as energy
sustainability, demand response strategies, control systems, energy management systems with
different types of optimization techniques that are used to optimize the microgrid system. In
this paper, a comprehensive review of the energy management system of campus microgrids is
presented. In this survey, the existing literature review of different objective functions, renewable
energy resources and solution tools are also reviewed. Furthermore, the research directions and
related issues to be considered in future microgrid scheduling studies are also presented.

Keywords: smart grid; energy storage system; campus microgrid; distributed generation; distributed
energy resources; demand-side management

1. Introduction

Distributed generations (DGs) have the potential to overcome the problems of energy
systems all over the world, such as power stability, system reliability, network overloading,
greenhouse gas emissions, and high consumption cost. The energy management system
of large commercial building microgrids has created problems to minimize the network
load deviation and operational cost [1]. The energy management system (EMS) of the
multi-energy microgrid (MG) can reduce the operational cost and is able to enhance energy
utilization efficiency [2]. However, the distribution generations (DG) consist of renewable
energy resources (RER) such as biomass, photovoltaic (PV), wind turbines (WT), fuel cells
(FC) accompanied by non-renewable energy sources such as diesel generators (DiG), gas
engines (GE), micro-turbines (MT) [3].

Microgrids have different types of systems, such as flexible load, DGs, and energy
storage systems (ESS). The generic microgrid model is described as the model as illustrated
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in Figure 1 that contains Solar PV, Diesel generator, grid, and energy storage company [4].
It also contains controllers that efficiently deal with the system by controlling the load to
increase the solar output. This model is a bi-directional power flow as it takes the load from
the homes, hostels, and academic departments [5].
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Figure 1. Generic Microgrid model.

In this model, those users who act as consumers and prosumers will be dealt with an
intelligent energy management system. It is a generally understood that a microgrid that
takes load from the user efficiently is a better maintained, reliable, and efficient microgrid
system. One of the general microgrid models is also shown as an example in Figure 1.

The DG depends on the control of the distributed energy resources (DER) and the
optimal scheduling of the microgrid. The optimal scheduling of power generation expres-
sively affects the stability of the energy system [6]. Different scheduling techniques of the
power system are used to improve the power quality and voltage control of microgrids
based on the real microgrid solution with multiple implementation scenarios that aimed to
get green energy and to make an efficient smart campus to achieve sustainable energy for
the campus microgrid with the reduction in GHG emissions [7].

Microgrids face different types of problems due to the variation in demand side and
fluctuations in voltages and frequencies. Energy management systems (EMS) normally
face microgrid problems by the insufficiency of energy production sources. It aims to
define the optimal usage of DG to feed the electrical loads [8]. EMS operates in centralized
and decentralized modes. Centralize modes are those in which the power exchange of
microgrids mainly bases on the price of markets. The decentralized mode is opposite
from the centralized mode because of autonomy power exchange without the market
price limitation [9]. Stability, efficiency, and energy protection are also the critical issues of
microgrids due to reverse flow of power of generation units, voltage fluctuations, microgrid
transient modes, drastic frequency variations in islanded operating mode, and supply-
demand microgrid uncertainties in which high levels of angle droop are required for
proper load sharing, especially under weak system conditions. EMS also contains multiple
challenges. To overcome these challenges, a detailed overview of some microgrids has been
developed to discuss major issues in the energy management systems [10].

A general overview of some microgrids with their components installed are given in
Table 1 to give us a summarized analysis of various microgrids with the comprehensive
review considering load type, optimization techniques, and results:
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Table 1. A review on the energy management of many microgrids.

Ref. Subject Components Optimization
Techniques Load Types Results

[11] Illinois Institute of
Technology (IIT)

Distributed generation
(DG), controllable loads,

storage, Switch

High-reliability
distribution system

(HRDS)

Electrical
appliances

Annual Operational
cost reduces

(140,497 $/year. to
126,644 $/year.)

[11] Illinois Institute of
Technology (IIT)

Distributed generation
(DG), controllable loads,

storage, Switch

High-reliability
distribution system

(HRDS)

Electrical
appliances

Annual Operational
cost reduces

(140,497 $/year. to
126,644 $/year.)

[12]
University Kuala
Lumpur, British

Malaysian Institute

Photovoltaic (PV), battery
storage system, Wind,

Converter

Hybrid Optimization
Model for Electrical

Renewable (HOMER)

Typical load
profile for a small

campus

Economical
evaluation of

greenhouse gasses
emissions

[13] 50 higher universities
around the world

All renewable resources,
energy storage system

All universities have
different Techniques Electrical load Economic benefits

[14] Nathan Campus, Griffith
University, Australia

DG and ESS, battery
bank, PV, WT, FC

Control and
management system

operation
AC DC Load, EV. Energy management

system

[15]
Nanyang Technological

University (NTU),
Singapore campus

PV, FC, and
Natural-gas
operated MT

Laboratory of Clean
Energy Research (LaCER)

Buildings and
transportation

Microgrid Energy
Management System

(MG-EMS

[16] All Prosumers ESS, PV, and wind
generation MILP, MICP Domestic and

Commercial Load Saving in Electrical cost

[17]

Overview microgrid
implementation in

American, Asian and
European countries.

Control system, Utility
network, renewable

sources, Diesel generator
Different techniques use Electrical

appliances
Power quality and reduce

dependency

[18] rural areas
Diesel generator, PV,

Energy Storage Battery’s,
metering

IBM ILOG CPLEX Electrical
appliances Efficient

[19] Modified Microgrid

Diesel generator, Wind,
Microturbine, Energy

Storage Battery’s,
metering

(GAMOM), (PSO),
(TLBO)

Electrical
appliances

Economic benefits, less
solving time

[20] Modified microgrid with
the usage of inverter PV, Fuel cell, inverters a multiagent system

(MAS)-based
Electrical

appliances Reduce Communication

[21] Industries PV, Wind, Energy storage
system, Diesel generator MILP Industrial load Economic benefit

[22] Islanded residential
microgrid (MG)

Gas engine, Microturbine,
PV, Fuel Cell, Energy

Storage system

Two-stage stochastic
programming

Electrical
appliances

maximize the expected
profit of MG and energy
payments of customers.

[23] Optimal scheduling
Multi microgrid

MT, GE, Wind,
PV, Energy storage,

Fuel cell
MILP Electrical load Most reliably and

economical

[24] Multi-Microgrids PV, Wind, ESS, DiG, FC
MILP, CPLEX 11

under
GAMS

Electrical load

Minimize the
operation costs and
optimally schedule

energy resources to fulfill
the demand loads

[25]
To enhance the

resilience of distribution
systems (DS)

PV, Wind, ESS MILP, Gurobi EV, Domestic,
Commercial Load

It minimizes power
system cost,

generation cost, and
customer interruption

cost
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Table 1. Cont.

Ref. Subject Components Optimization
Techniques Load Types Results

[26] Multi-Microgrids with
ESS

MT, PV,
Energy Storage system

bi-level model
Optimize Problem,

(GAMS)
Electrical load

Reduce the operational
cost and maximize the

owner profits

[27] Grid-Connected
Microgrid

PV, Wind, GE,
ESS, MT MINLP, NSGA Electrical load

It maximizes the profit
and reduces the GHG

emissions

[28] Electrical Thermal
resources in microgrid

GE, PV, ESS, Wind,
converter,
inverter

MILP Thermal,
Electrical load

It minimizes the
operation costs

[29] AC/DC Hybrid
Multi-microgrids

DiG, ESS, PV,
Wind

YALMIP toolbox of
MATLAB and CPLEX

solver 12.4
Electrical load Economic benefit

[30]

scheduling flexible
resources in
microgrids
operation

ESS, PV MOSEK SOCP Electrical load Economic benefit

Some Pros and Cons of the Literature review components are mentioned here: Wind Power: Pros: Reliable. Cons:
Expensive to be installed and the wind does not operate continuously. PV: Pros: Free energy available in nature.
Cheap energy once installed. Cons: Expensive. Efficiency level low, as it requires converters and storage devices
which are also expensive. Fuel Cell: Pros: Fuel cells are 85% energy efficient. Cons: Faces problems in productivity
and storage of hydrogen gas. Battery energy storage system: Pros: Maintenance costs less. Simple charging
algorithm. Low discharging time. Cons: Degrades at high temperature and limited cycle life. Micro-Turbine (MT):
Pros: Easy installation. Easy maintenance and operations. Cons: If loaded, it can be heated early. Gas Engine (GE):
Pros: It has an efficient engine design for small-scale and large-scale engines. Cons: Lower thermal efficiency.

The main contributions of the survey paper are:

1. This paper focuses on the survey of optimal scheduling of the distributed energy
resources with the various campus microgrids;

2. It also presents the scheduling of different energy resources with a comprehensive
review of the energy management of various campus microgrids at different locations;

3. EMS of microgrid has been reviewed considering the distributed generation, renew-
able energy resources, demand-side management (DSM), and ESS;

4. Energy management and optimal scheduling of microgrids have been evaluated
concerning objective functions (OFs), optimization techniques, simulation tools, and
constraints. A comprehensive research challenges and issues are discussed.

This study also aims to critically analyze many microgrids to give an overview of
multiple campus microgrids, to analyze their campus energy management systems, and
provide some solutions for them to optimize their campus. It focuses on the field of
campus microgrids with an emphasis on industrial microgrids and prosumer microgrids.
Nowadays, many power producers are aimed at producing their power energy supply often
termed as “Prosumers”. The contribution of this novel research is to help other researchers
in the field of the energy management of campus microgrid as it briefly describes the
systematic overview of various literature papers with the consideration of their installed
system and the approaches with the focus of multiple solutions are presented here. This
novelty also helps in exploring a new dimension of distributed generations. The innovative
approach of this paper is that it is also helpful for those researchers who aim to deliver
some novelty in the field of campus microgrids, demand-side management, and optimal
scheduling of distributed microgrids.

This paper presented the literature review of distributed generation (DG) which has
been classified into five categories:

(1) Solar PV;
(2) Wind turbine;
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(3) Fuel cell;
(4) Diesel generator;
(5) Energy Storage System.

This survey paper is further arranged as described: in Section 2, the energy man-
agement of campus microgrids with distributed generation. The optimal scheduling of
microgrids is presented in Section 3. The simulation tools for optimal scheduling of micro-
grids are reviewed in Section 4. Lastly, research challenges and the conclusion are presented
in Sections 5 and 6.

2. Energy Management of Campus Microgrids with Distributed Generations

A microgrid mostly consists of an energy storage system (ESS), distributed generation
(DG) resources, and load. Distributed generation has various types of technology for the
generation of electricity, such as combine systems, solar panels [31]. To analyze the energy
management of microgrids, we can discuss the self-resilience of microgrids as it makes the
microgrids self-reliant [32]. In the centralized system, self-reliance provides communities
with an efficient way to deal with the independent energy suppliers with the usage of fossil
fuels. It provides remote community members an easy way to connect with the utility and
to access the electricity more appropriately. Self-reliance helps the microgrid function as a
self-reliant power producer [33].

On the other hand, a combined system consists of WT, DiG, FC, and PV is developed
in Figure 2 to show the self-resilience of microgrids and how they manage the AC or DC
load in the communities.
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In Figure 2, Hybrid AC/DC microgrid units are connected to each other to balance
the demand loads with the help of EMS. In MG1, battery, wind, and loads are connected
with AC-BUS. Similarly, the components of the MG2 are connected with AC BUS (1–2),
while CL (1–2) is the converter that is connected with the system. This model represented
the microgrid systems connected with one another that aim to manage the load of the
communities independently.

Now, we will discuss the microgrid systems with multiple solutions which have been
presented for different EMS systems, optimization techniques, and various renewable
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energy resources. Several authors have reviewed these distributed generations for different
microgrid systems that are briefly described here:

Shahidehpour et al. [34] devised the energy management model to reduce the op-
eration cost of the microgrid. For this purpose, the high-reliability distribution system
technique was implemented in this Illinois campus (IIT). On the campus, the microgrid
has distributed generation (DG), distributed energy resources (DER), controllable load,
and energy storage systems (ESS). The proposed system was comprised of distributed
generation. MG contains different HRDS switch for the reliability indices. Using this
technique, the annual operation cost of campus microgrids reduce from 140,497 $/year
to 119,236 $/year because the purchasing cost of energy fluctuates every hour. From this
technique, it cannot focus on other parameters like uncontrollable loads, smart loads, and
multiple energy storage systems at once. An effective solution with an improved distribu-
tion technique like soft computing techniques, fuzzy modeling techniques, or load flow
techniques must be developed and implemented to further reduce the operational cost of
the campus microgrid.

The prosumer campus microgrid is presented by Muqeet in [3] to financially save
the consumer’s operational cost with energy storage system (ESS) and distributed energy
resource (DES). Three scenarios are present in this paper for the consumer:

1. With only a grid attached;
2. With photovoltaic (PV) source and ESS along with the grid source;
3. With Wind energy, PV, and ESS along with the grid source.

MILP technique simulates the optimal schedule for the power system in MATLAB.
After the energy management, the system’s operational cost reduces 67.91% per day by
integrating the Wind, PV, ESS, and grid energy. However, it lacks additional renewable
energy resources which can be incorporated with the system such as Hydal and it can also
be simulated with more advanced techniques like neural networks, deep learning, or any
advanced technique. Various types of distribution generation is illustrated in Figure 3 in
which distributed generation [35] consists of two types of traditional and non-traditional
generators which are also subdivided into further categories in which electrochemical
devices such as fuel cells consist of polymer electrolyte membrane fuel cells (PEMFC),
direct methanol fuel cells (DMFC), alkaline fuel cells (AFC), phosphoric acid fuel cells
(PAFC), molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and reversible
fuel cells (RFC).

2.1. Solar PV in Campus Microgrids

PV systems are used to generate electrical energy with the help of solar energy. The PV
system consists of more than one PV panel, electrical and mechanical connectors to produce
an electrical output. Panels are connected to produce the required amount of current and
voltage [14].

Some authors have also reviewed PV systems of different campus microgrids and
various energy systems.

Reyasudin et al. [12] devised the EMS (Energy Management System) model for the
University of Kuala Lumpur, British Malaysian microgrid, which aims to reduce the
operational cost of the microgrid. Energy storage systems (ESS) and Photovoltaic (PV) are
used in the microgrid to meet the campus load demand. The HOMER software was used
here to evaluate and analyze the environmental, economic, and electrical performance of
the Hybrid Renewable Energy System (HRES). However, it can also be simulated with
more advanced software like PVsyst [36], PVsol, or PV modeling software to achieve more
accurate results.

Another energy management system is presented by Leskarac in [14] for the huge
commercial building microgrid to reduce the network load variation and operational cost.
It is proposed by the bi-level linear model that contains mobile storage (electric vehicle),
stationary storage, microturbine, fuel cell, solar PV, and solved using the flower pollination
algorithm (FPA) in MATLAB. The simulation results of the grid-connected mode and the
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isolated mode of the microgrid was studied and improved. However, the author does
not address the frequency regulation or the power quality. It can also be solved with
more advanced optimization techniques like Spiral optimization (SPO) 2013, Artificial
swarm intelligence 2014, Golden Eagle Optimizer (GEO) 2020, and Jellyfish Search (JS)
2021, etc. [37].
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An optimal system is introduced by Kumar in [38] on the (Nanyang Technological
University (NTU), Singapore) campus microgrid (MG) includes photovoltaic (PV), natural
gas micro-turbine (MT), Electric vehicles (EVs), and a fuel cell (FC). Here, the author dis-
cusses how to manage the system’s energy and elaborates on how to achieve the demand
response (DR). They also describe how to achieve the output level of solar PV using the
NTU campus’ vehicle-to-grid technology using a PV system. On a typical day, the building
serving transformer support an average of 17.3 kW of additional EV loads. Approximately
MG 33% significantly supports the campus and EVs loads. However, it can also be ad-
dressed with the incorporation of wind and hydel resources, if possible. The author did
not focus on the specific demand response programs like Incentive-based programs [39],
Real-time pricing [40], Market-based programs [41], Price elasticity [42], and Price-based
programs, etc.

Another system is devised by Esmaeili in [43] that enhances the optimal scheduling of
multi-microgrids (MGs) in which the distribution system is enhanced by energy storage
systems (ESS) and demand response (DR) programs. The microgrid and Distribution
System Operators are the core objective discussed here because the upper level reduces
the operational cost from DSO and the lower level increases the profit of MG with the help
of energy management (EM). Mixed-Integer Second-Order Cone Programming (MISOCP)
is formulated as an optimization problem which is conducted by the General Algebraic
Modeling System (GAMS) language and resolved by the CPLEX solver. Market prices
are relatively moving upward, so MG owners choose to install their distributed energy
resources first, which includes microturbine (MT), Photovoltaic (PV), and responsive load,



Sensors 2022, 22, 2345 8 of 26

and then transfer the power with the others connected DSO and MGs. However, it focuses
only on the market-based price demand response, and it can also consider other demand
response programs like incentive-based programs or real-time pricing (RTP) schemes.
Moreover, MISOCP can also be implemented on other modeling tools like AIMMS, AMPL,
Mathematica [44] or APMonitor, etc. to get better results.

2.2. Wind Turbine in Campus Microgrids

Wind turbines (WT) generate electrical energy by wind power. Wind turbines are
constantly dependent on airflow and their output vary according to the speed of air. Some
authors have also reviewed wind systems on different campuses and islanded microgrids:

Liu et al. [45] presented the ESS sizing technique with a comprehensive consideration
of DGs, loads, and energy storage. DGs include wind turbines, Solar PV panels, electric
vehicles, and combined heat and power (CHP) generation. A two-layered hybrid ESS (i.e.,
lead-acid battery). As shown in Table 2, several scholars have employed these optimization
techniques to obtain the best solutions.

Table 2. Comparison of optimization methods considering advantages and disadvantages.

Techniques Optimization Methods Advantages Disadvantages Applications and Objectives

Deterministic
Techniques

MILP [46]

The problems are swiftly
and completely resolved

using mixed-integer
linear programming

(LP). Their linear
constraint is located in
the viable convex area,

with the goal of locating
the best global point and

precise solution.

Economic and stochastic
analysis are two types of
analysis. It has limited

capabilities for
applications with

objective functions that
are not continuous or

distinct.

For optimization challenges,
MILP is often utilized. It’s

simple to operate with CPLEX
Solver, that is a good piece of
software. Unmanned aerial
vehicles (UAVs) utilize it to

design their flight trajectories.

Dynamic Programming (DP) [47]

To divide the difficulties
into smaller components

and then optimizing
them to obtain the best

answer

It is time-consuming
since it has a huge

number of recursive
routines.

It is also employed as an issue of
optimization. It handles issues

like dependability design, robots
control, and navigation systems,

among others.

MINLP [27]

Solve issues using basic
operations and has a

large number of
optimum solutions that

outperform MILP.

It takes a long time.

Mixed-integer nonlinear
programming (MINLP) is a

method for solving optimization
problems containing continuous

and discrete variables in the
optimization problem, as well as

complex variables.

Metaheuristic
Techniques

Particle Swarm Optimization
(PSO) [48]

Greater productivity
while fixing

optimization issues.
Easy adaption for a

variety of optimization
issues and timely

reporting of an optimal
alternatives.

When addressing an
optimal solution,

complex calculation is
required.
In small

optima/minima zones,
the searching process
may get entrapped.

Many optimization issues, such
as power management, may be
solved with PSO. It may also be

utilized for video graphical
effects.

Genetic algorithms (GA) [49]

Focused on population
evolutionary

computation, which use
mutation, selection, and

crossover to find the
best solution. They do

also have a fast
convergence rate and
can rapidly adapt to

different types of
optimization techniques,
providing near-optimal

outcomes in a fair
amount of time.

While resolving, the
requirements for the

selection, mutation, and
crossover processes

must be satisfied.
It also does not ensure
that the best solution

will be found. Similarly
to PSO, the search

process may become
entrapped in localized
optima/minima areas.

In natural sciences, such as
architectures, genetic algorithms

can be used to find a
comprehensive solution. It is

employed in image processing
as well as learning the robot’s
behavior. It is also utilized in

distributed applications for data
allocation.
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Table 2. Cont.

Techniques Optimization Methods Advantages Disadvantages Applications and Objectives

Artificial Fish Swarm [50]

High precision, few
variables, flexibility,

and quick
convergence are all
advantages. It also

adapts well to a
variety of

optimization
situations, producing

near-optimal
approaches in a fair

amount of time.

It has the same
benefits as genetic
algorithms, but it

has drawbacks
because to the lack

of mutation and
crossover. It is also
no assurance that
you will find the
greatest answer.

Furthermore,
similarly to GA, the

searching may
become entrapped

in specific
optima/minima

areas.

Fault tolerance, quick
convergence speed,

outstanding adaptability, and
great precision are all

advantages of artificial fish
swarms. It frequently uses the
general technique to tackle a
variety of issues, including

prey, followers, and swarms.
Neural network learning, color

quantization, and data
segmentation are some of the

other uses of AFS.

Artificial
Intelligence
Techniques

Artificial Neural Network [51]

Its evaluation time is
quicker than prior
algorithms, and it
solves difficulties
such as obtaining
target objective

functions for
real-valued, binary,
and other values.

It supports parallel
processing and is

hardware
technology

dependent. It
provides

unexpected
answers but no

indication of how
they were achieved.

Handwriting recognition,
picture compression, and stock

exchange predictions all
employ deep neural networks.

Fuzzy Logic [52]

Fuzzy logic’s
structure is simple to
grasp, which makes it

appealing to
engineers who want
to use it to operate

machines.

It can be
challenging to

maintain precision
while using fuzzy

logic.

Fuzzy logic is widely utilized
in spaceflight, the automobile
industry, traffic control, and,

most notably, in enhancing the
transmission system’s

performance.

Special
Techniques

Manta Ray Optimization [53]

When compared to
alternative

optimizers, the
computing cost is

lower, and the results
are more precise.

Its fine-tuning for
finding solutions

for optimization is
ineffective, and its
convergence rate is

extremely slow,
finding it less

useful.

The manta ray approach is a
bio-inspired optimizing

algorithm inspired by the
exceptional behavior of

gigantic manta rays recognized
for their rapidity. It is popular

because of its high accuracy
and low computational cost.

Harris hawks Optimization [54]

It is well-known for
its good performance,

reasonable
convergence, and

high-quality
optimization outputs.

It can be tough to
grasp at times, and

the computing
complexity adds to

the difficulty.

HHO is still in its early stages
for academics, but it offers

good convergence, precision,
and speed for addressing

real-world optimization issues.

Li-ion battery Supercapacitor with three types of storage is built according to their
power density, load classification, and Demand Response (DR), which is the main tool
for attaining greater operational efficiency, reducing capital, and operational costs in MG
resource size optimization. It uses different types of loads which are suitable for different
kinds of energy storage systems that are hybrid and aim to improve energy storage systems’
economy and reliability.
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Moreover, huge differences in load variation during different periods are provided by
many types of storage, while Lithium-ion batteries take priority over lead-acid batteries.
This method reduces battery replacement time during the timespan of the MG. When the
EV and DSM plan are taken into account, the load curve is smoothed, which results in
a significant amount of profit, including the efficiency of the system. However, it lacks
battery degradation cost with an economic analysis to predict the battery degradation
according to time and it also focuses on a two-layered hybrid ESS system which also lacks
the selection of some advanced energy storage systems such as Siemens Junelight Smart
Battery SB–(3,3), Battery flex AC-1 1.3 (6.0 kW, 4.8 kWh) [55], or REACT2-5.0–12 kWh–AC
or DC, etc.

On the other hand, MG performance was observed by Baron in [56], where the research
aimed to increase the optimal scheduling of various types of grids. It included operational
costs of the system and costs associated with the loss of energy storage. The author
suggested this to avoid all the renewable energy transmission costs and cost of storage
systems. It is noteworthy that this pattern has been observed in wind and solar energy
production systems. Thus, this research provides the project operator with a tool to
determine the best operational phase of the MG by considering various events of the
batteries’ useful life. However, it does not focus on providing the optimal battery size
which may increase the operational cost of the microgrid. Thus, to reduce the operational
cost and other costs, a sizing approach is focused on various renewable energy resources.
To calculate optimal sizing approach for systems, various advanced optimization tools are
available which can be used in this regard such as PVsyst, PVsol, or HOMER pro [57,58].

Another optimal scheduling model is proposed by Du in [59] that optimally schedules
and operates the microgrid clusters of multi-microgrids’ energy and establishes an optimal
scheduling system to reduce the system operating costs for the microgrid (µG). The µG
includes wind turbines (WT), combined heat and power (CHP), electric refrigeration
(EC), photovoltaic (PV), electric boilers (EB), and other equipment. It is solved by the
CPLEX solver for model optimization solutions under the GAMS platform. The total daily
operation cost is calculated for case 1 is $29,033.6378 and for case 2 is $29,415.1206. Both the
cases are analyzed to select the optimal system. However, the system can also be solved by
a Gurobi solver to get better results and many other optimized renewable energy resources
must be incorporated such as wind or hydro to further reduce the operational cost of the
microgrids.

Now, Huang presented the microgrid configuration in [60] and introduce a power
consumption schedule optimization by a Stackel-berg game which models the 2- rational
decision-maker that relates among each other for the microgrid and can manage the
energy consumption scheduling problem. It makes the decision for the microgrid, as
the supreme leader, which leads to an advanced optimization problem to maximize the
installed number of micro-turbines, photovoltaic (PV) units, wind turbines, and batteries.
Microgrid configurations in residential buildings are used to validate the efficiency of
two-level scheduling and two-level classified algorithms [61].

By comparing four two-tier algorithms, the experimental results show that the Stack-
elberg game model optimizes the timing of smart home and microgrid configuration
simultaneously. Results show that the simultaneous optimization of power consumption
and optimal scheduling of the microgrid configuration can significantly optimize the cost
of configuration, even when there is little support for the public network [62]. Furthermore,
the simulation results indicated that the proposed model is suitable for customer engage-
ment to reduce consumption, such as changes in usage time and energy levels. However,
the microgrid configuration can also be improved by implementing both Stackelberg and
Cournot models together [63]. As the microgrid decision support system needs to be
improved because it is the central brain of the system that controls everything [64].
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2.3. Fuel Cell (FC) in Campus Microgrids

Fuel cells work like batteries, but they do not need recharging every time. It is
an electrochemical cell that produces electricity from chemical energy. Most commonly
used fuel cells are the PEMFCs (Proton exchange membrane fuel cells) which is common
nowadays because it operates at very low temperature (−20 C) to (1000 C) and it can
operate quickly in ideal condition to full load conditions [65].

Some authors have also reviewed fuel cells that are installed at different campus
microgrids and various locations:

Bouakkaz et al. [66] proposed an energy management approach that optimally im-
proves batteries’ lifetime by optimizing energy consumption at home with a unique fuel
system connected to a fuel storage system consists of (photovoltaic, batteries, diesel genera-
tor, and wind turbine). Recently, optimization algorithms have attracted lots of attention
to solve various engineering problems and some of them have high accuracy and lead to
higher efficiency and promising results. The rain flow algorithm is used to compute the
number of life cycles of the battery, but the problem is solved by the optimization technique
called the PSO (Particle Swarm Optimization) algorithm. This optimization minimizes the
number of battery cycles throughout the whole day by maintaining the charging/discharge
process that aims to increase the battery’s life cycle. The simulation results are obtained
to show the efficiency of the proposed management approach to optimize the battery life
cycle to more than 38%. However, the system lacks optimal sizing of batteries or battery
degradation cost which also affects improving the battery life and reducing the cost of the
energy storage systems. It can also incorporate more advanced techniques like Artificial
bee colony algorithms, multi-swarm optimization, or Swarm intelligence, etc. [67].

The distributed energy storage system (DESS) is addressed by Kim in [68] to propose
a low-cost planning method for the microgrid group. The proposed planning algorithm
operates the community microgrids, which consists of large ESS & large-Scale Fuel Cells
(LFC) that make the planning procedure while considering the variability of net load and
CDESS market procedure is operated for the DESS system. In the LFC and LESS planning
problem, the net load variation is formulated as a function of the amount of electricity
exchanged with the external electrical grid. In the case of the Customer DESS market
operation scheme, the market scheme is depending upon the price-signal market. The
simulation results show that the LESS operation cost is reduced to operate the community
microgrids. However, it can also focus on the expansion planning of the active distribution
network while using enhanced heuristic optimization techniques. More, the system does
not focus on the economic analysis and it can also focus on new market schemes to further
reduce the operation cost of DESS.

A non-linear model is proposed by Mohsin [69] to optimize the energy management
of emission-free ships (EF-Ships) with hybrid CI/ESS/FC as storage energy resources,
focusing on the decaying life-span of fuel cells (FC), fuel systems, and energy storage (ESS).
Aging factors and total operational costs of FC and ESS are analyzed. This article presents
an energy management scheme for EF-Ships with combined FC and ESS as power resources.
The proposed method deliberates both the aging factors of the FC and ESS and the ship’s
operation cost, and the problem attempts to find the optimal solution for the energy
planning program that reduces the operating costs while taking into account the limitations
of aging and decaying of the equipment [70]. The suggested SMPC method’s efficiency in
processing rapid ups and downs in weather forecasting and the GAMS software tries to
solve the suggested optimization problem calculated during the simulation process. The
obtained simulation results indicate that the effectiveness of the recommended model to
comply with the FC and ESS decaying/aging limitations while minimizing the operating
costs of the system by 4.67%. However, it does not focus on the degradation cost of the
energy storage systems and their optimal sizing approach. More, other tools are also
available which can give better results than GAMS for modeling such as AIMMS, AMPL,
APMonitor, or Mathematica, etc. [71].
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However, a comprehensive EMS (energy management system) model is devised by
Violante in [72] for a separate micro-grid that incorporates thermal energy resources, such
as thermal storage systems (TSS), combined heat and power (CHP) units, heat pumps,
boilers, and heat (HP), taking into account the thermal load model, is recommended
in this article. The advanced SMEs are verified and tested with an actual test bench
micro-grid situated in Italy and Bari, which provides both the heat and electricity in a
building located in Politecnico de Bari. The recommended EMS is intended to reduce
the fuel costs of the microgrid system, and it models properly for cogeneration units.
This model is optimized by the optimization problem called the (MILP) technique that
is easily manipulated with viable solvers, making the EMS system suitable for online
applications. MILP is an important technique in optimization methods utilized in various
applications [73]. The simulations are performed for altered winter days that also have
demonstrated the cost-effective benefits. Models of thermal systems in a micro-grid EMS,
resultant in the profitability of the daily fuel costs. This significantly increased the total cost
by more than 40% compared to the suggested EMS. Consequently, the incorporation of
thermal systems into this micro-grid EMS has proved to be valuable. Moreover, it lacks
the utilization of modern techniques like deep learning or artificial neural network, and it
can also incorporate other thermal energy resources, if possible, like geothermal energy
resources which give beneficial results.

Now, various number of fuel cell (FC) operated cars are reviewed by Alavi in [74] that
can be seen as an energy production that is distributed within an islanded microgrid, and
proper fuel cell power planning can keep up the power stability of the MG. The MM and
DF MM methods are able to generate the FC incorporated power by reducing the operation
cost of the system. Simulation results show that microgrids consider network topology with
low-level control models, develop the distributed control architectures for the microgrids
in grid-connected modes, and also considers the assembling of fuel cell vehicles using the
ADMM technique. However, it can also be modeled by sequential quadratic programming,
sequential linear programming, and sequential linear-quadratic programming and can also
be simulated in Accord.NET (C# augmented Lagrangian optimizer), or ALGLIB (C# and
C++ preconditioned implementations of augmented Lagrangian solver), etc. [75].

2.4. Diesel Generator in Campus Microgrids

Diesel generators convert the chemical energy to mechanical energy that contains
diesel fuel, through combustion. The mechanical energy in the generator rotates the crank
that can generate electricity. Electric charges are made in the electric wire by moving in
a magnetic field, this is how a diesel generator works. Here, the Diesel generator (DG) is
characterized based on efficiency and fuel consumption.

Some authors have also reviewed diesel generators that are installed at different
campus microgrids and various locations:

Rural areas of most developing countries are disconnected from electrical energy but
not at all times, because without electrical power, it would not be possible to survive [76].
Therefore, Arthur introduces a more realistic model for the rural area appliances and the en-
ergy management optimized for the microgrid. Renewable energy resources, such as diesel
generators and energy storage systems (ESS), fully support running a microgrid. However,
the results are simulated in MATLAB software using the Linear Programming technique to
maintain the load’s demand response (DR). HOMER software can also calculate the fuel
consumption of the running generator on an hourly basis that is also formulated in [77].
However, more advanced techniques must be utilized like MILP [78] or Deep learning [79],
etc. Homer pro can also be utilized in this regard to effectively manage the microgrid [80].

On the other hand, an EMS (Energy Management System) model is developed by
Krishnan in [21] for the industry microgrid (MG) to fulfill the industry’s appliances’ peak
time that consumes power. Here, MG includes renewable energy sources (RES), diesel
generators (DG), interruptible loads (IL), battery energy storage systems (BEES), and flexible
loads (FL). The MILP (Mixed-integer linear programming) technique is used to simulate the
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energy management of industry load in MATLAB. Results show that optimal scheduling of
the pump is improved, and system cost is reduced significantly while considering economic
savings. However, smart loads, controllable or uncontrollable loads are not addressed here,
and they must be addressed. Additionally, modern optimization methods can be utilized
like the Flower pollination algorithm [81] or Harris Hawk’s optimization [54] rather than
MILP to further optimize the system.

However, an effective operative model for a utility grid is presented by Karimi in [82]
that is attached with the microgrid considering different energy generation resources
consists of Diesel Generator (DG), Energy storage system (ESS), Wind Turbine (WT), Pho-
tovoltaic (PV), and Demand Response (DR) which is implemented by a mixed-integer
linear program (MILP) technique. The GAMS technique was also used to resolve the
multi-tasking optimization problem for energy management. However, the author does not
focus on the optimal power flow or optimal energy exchange among grids. Power quality
and voltage regulation [83] must be focused on here to get a more effective approach for
the given system.

Another power system is focused in [84] in which the BESS system is integrated into
the MG to ensure a more sustainable and economical system. The operational cost of
the remote microgrid is minimized by cost-effective planning during consideration of the
optimal battery size. Although fast discharging results in battery life decaying: as further
energy sources are expected to use the battery size with optimal lifetime and energy storage,
economic consideration in the isolated microgrid must be considered to deliver reliable
service to the customers. The present study solved the economic planning problem between
battery storage and diesel generators, considering battery degradation cost in real-time,
ensuring reliable service. However, the selection of BESS must be addressed to find an
optimal battery energy system for the MG to further reduce the energy cost for the system.
The author mentions the optimal sizing approach for the BESS system but it lacks focus on
high energy consumption usage from PV as it is the vital source to reduce the electricity
cost for the microgrid [85].

Now, a smart charging program is proposed by Fouladi in [86] for the PHEVs (plug-in
hybrid electric vehicles) to reduce GHG emissions of the utility grid, and it also reduces the
high power consumption from the main grid by the increased usage of the RER/DER. Diesel
generators, batteries, photovoltaic (PV) arrays and wind turbine (WT) are attached with the
microgrid and properly integrated with the remaining grid, considering the system’s overall
operational constraints. The suggested power management scheme allows V2G (Vehicle-
to-Grid) and G2V (Grid-to-Vehicle) operating systems to be used by the MG Aggregator
PHEV for support services. Consequently, the effects of the V2G operation mode and G2V
operation mode of PHEV (WEG) on microgrids are examined. The simulation results show
that the V2G operation mode and G2V operation mode of the EV charging stations are
studied thoroughly, which enables it to run as an efficient source for the EV. In this paper,
two scenarios are planned to assess the suggested power management’s efficiency and
compare their results with those of the previously reported method. The proposed power
management technique has proven to allow charging of PHEV depend upon the maximum
integration of RER and DER; therefore, it reduces the power released from the utility grid
even though the PHEV entry level is high. However, it does not focus on the price-regulated
electric vehicle charging or discharging strategy for the V2G and G2V operation modes [87],
and this must be addressed.

2.5. Energy Storage System in Campus Microgrids

An energy storage system is defined as the energy produced for later use that aims to
reduce power energy imbalances between demand and power production. A device that
stores electrical energy that is generated by any generator is generally termed a battery [88].
The microgrid that contains storage systems also contributes to the energy management
of microgrids that provide the necessary information and efficient control system with
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essential functionality, which guarantees that both the generation side and distribution
systems provide the electrical energy at nominal operational costs [89].

Some authors have also reviewed energy storage systems that are installed at different
campus microgrids and various locations:

Stina et al. [90] presented an energy storage solution for the Tezpur University based in
NE (North-East) India. This study consists of a DSM (Demand Side Management) system,
an EMS (Energy Management System), and an ESS (Energy Storage system) with the inte-
gration of a Bio-mass power plant with a co-generating gas engine. The proposed system
analyzed the cost minimization by reducing the usage of diesel engines and maximize
the usage of PV-plant (1 MW) that was installed at the campus. Data were gathered to
determine the economic analysis of the system so that profitability could be determined.
By evaluating the data, an assessment has been developed that by a proper EMS, and an ef-
ficient ESS reduces the cost of electricity annually for the Tezpur Campus. Results revealed
that the reasonable size for the lithium-ion batteries of BESS is 127 kWh at substation 4
and 90 kWh for the substation E4T microgrid. By this proposition, it is determined that it
manages the campus load effectively and reduces the cost yearly. However, the proposed
system lacks an optimal sizing of BESS which is an essential element in the energy storage
system. To increase profitability, an effective sizing approach needs to be adopted and
an applicable approach is needed to increase the high consumption of renewable energy
resources [34].

In [91], the university installed a smart grid project at the MONASH campus, North
Carolina, US. It consisted of 1 MW of Solar PV, 1 MWh of the energy storage system, and EV
charging stations for 20 buildings. The main objective was to manage the bills of customers
and to monitor the energy in real-time scenarios. However, Chongxin [92] overcomes the
problems of a microgrid with multiple DER’s by optimally applying day-ahead scheduling
of active/reactive powers. It included EV, energy storage systems, wind systems, PV, gas
turbines, and loads for the Nanjing University Microgrid. The author analyzed it with
the TOU (Time-of-Use) price approach. Load and renewable resources were predicted
and modeled with an Deep Q-Learning-based optimization technique. It decided on the
interval variable that sets the active/reactive power for the system to mitigate fluctuations.
It finally resulted in the optimal schedule of the microgrid with multiple DER. Both authors
have tried their best to install a smart grid project for the campus but they did not focus on
the power quality [93] or voltage regulation [94] for the campus microgrid. An effective
decision support system must be adopted that effectively manages the power flow among
grids and a real-time pricing technique must be implemented.

Finally, Binod Koirala highlights key factors in [95] to improve the ICES (Integrated
Community Energy Systems) with the consideration of power grid access, supportive
incentives, voltage regulation, and structural design improvements. In this paper, several
techno-economic perspectives are considered such as optimal energy storage devices, ancil-
lary services, sustainability and flexibility, and cost-benefit analysis. Finally, it described
the feasibility analysis of ICES technologies and the benefits of ICES in energy trends.
However, the author did not focus on the optimal sizing parameters for the energy storage
devices [96]. If such parameters are focused, it will improve the battery lifetime.

3. Microgrid EMS Objective Functions and Constraints
3.1. Objective Functions

EMS model manages various objective functions of the microgrid is described in
Table 3. Start-up, shut-down, fuel, and maintenance costs are the microgrid operational
costs [34]. It will help in analyzing multiple objectives for the campus microgrids while
focusing on the objective functions table whose main objective is to describe the main
components of various literatures paper that calculates the operational cost, net present
cost, or any type of generation cost for the system. Its advantages or disadvantage can be
analyzed in such a way that some objective functions minimize the energy generation cost
or maximizes the utility functions while some respond vice versa.



Sensors 2022, 22, 2345 15 of 26

Table 3. A review on the objective functions of various energy management systems.

Ref Objectives Functions Details

[97] COE = Cantot
Eanserved

The objective function consists of COE
that represents energy cost which is
calculated as: total annualized cost
(Cantot)/total annual energy served
(Eanserved). The main problem is to
calculate the energy cost and use

optimization algorithms to solve it. It can
also add some other costs like NPV (Net

present Value) analysis.

[98] F =
m
∑

t=1

(
Cg

t + Crg
t + CES−

t − Cl
t − CES+

t + Ωt

)
× ∆t

It consists of Cg
t that is the renewable

energy cost and Crg
t is the non-renewable

energy cost. CES−
t is the cost of ESS

charge and, , CES+
t is the discharge cost of

ESS. Cl
t , is the DR cost and Ωt is the

penalty of the energy not supplied. Its
problem was to calculate the renewable
energy cost. It lacks some resources, like
PV, wind which costs can be added, if a
microgrid enhance it by incorporating
more resources and in this way, cost

efficiency could be increased.

[99] F = NPC +
8760
∑

t=1
Pb(t) +

8760
∑

t=1
PH2 (t) +

8760
∑

t=1
Pw(t) + Pwt + PH2T

The main objective function relies on
NPC which is the net present cost for

twenty operating years.
Pwt, PH2, PH2T are the battery, water, water
tank, hydrogen, and metal hydride tank

penalty, represent.

[100] F = CFOPR
t + CFEMI

t + CFRLB
t

This objective function consists of
CFRLB

t , CFEMI
t , CFOPR

t represent the
emission, reliability and operation cost of

microgrid.

[101]

F = CMG
in + CMG

op

CMG
op =

L
∑

i=1
(CFi + COMi + CSi + CEi) +

M
∑

j=1
CESS

OMj − CMG
G

This EMS cost composed of CMG
in is the

investment cost and CMG
op is the operation

cost. However, it can also add
maintenance cost to further analyze the

EMS cost.

[102] F = CostOperating + CostEmission CostOperating

CostEmission =
T
∑

t=1
{emissionDG(t) + emissions(t) + emissionGrid(t)}

The objective function of the microgrid is
considered as an emission and operating

cost. More cost can be added, if the
microgrid involves PV, it will also make a

system towards efficiency.

[103] F = Fstart−up
Cost + Freserve

Cost + Fgeneration
Cost + FDR

Cost + FEmission

The objective function of the microgrid is
composed of emission functions and

overall cost. It lacks investment cost and
operational and maintenance cost, which

is necessary for a system.

[104] FrequencyMG =
Ns
∑

s=1
πs

(
Nh
∑

h=1
∑
l
|∆f(s, l, h)|

) It consists of FrequencyMG that controls
MG frequency as the EMS OF.
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Table 3. Cont.

Ref Objectives Functions Details

[105] F = ω1
T
∑

t=1
cos tt + ω2

T
∑

t=1
Qr,iEmissiont

I is the price penalty factor while ω1 and
ω2 are the non-negative coefficients for

adjusting objective functions.

[106]

F =
T
∑

t=1
{

N
∑

n=1
(Pn,tBn,t + SUn × yn,t + SDn × zn,t

+cπU
n,tSRU

n,tcπD
n,tSRD

n,t)

+
ND
∑

d=1
CDRd,t +

S
∑

s=1
Prt,sSCt,s}

The cost function composed of, star-up
costs, shut-down costs, and generation
trade-off of DGs as well as security cost

of the network and up and down reserves
of demand response. However, if NPV

and COE cost can be focused, it may take
the system towards cost efficiency.

[107] F = ∑
tεT

Ct,money + ∑
tεT

Cstartup
t,money − ∑

tεT
Pt,money + ∑

tεT
∑

tεT
µt,g.πg

It consists of Ct,money, is the operation

cost and CStartup
t,money represent the start-up

costs while Pt,money denote the total
revenue. Last term denotes the penalty of
the unmet load. Lastly, investment cost

must be focused in a system which is also
a necessary component.

3.2. Constraints

In Table 3, each optimization considers its own constrains, but there are two types of
constraints in a constrained optimization problem which are important to be mentioned,
such as OPF: equality and inequality. Equality constraints must be followed at all times.
They are always “binding,” in other words. The real and reactive power balancing equations
at load bus, for example, must always be met (at least to a user-defined tolerance) in the
OPF, as must the area region MW interchange limitations [108]. Inequality restrictions, on
the other hand, may or may not be enforceable. A line MVA flow, for example, might not
have been at its full capacity, and a generator’s actual power output also may not be at
its max capability. Multiple constraints create difficulties in the working of a microgrid.
EMS help to balance the system if constraint does not affect the system. Constraints lead to
damage to every part of the system [109]. Start-up of the system, charging, discharging of
the energy storage system, shut-down of the system, feeder currents, the voltage at buses,
frequency security aspects, reserve constraints, and ramping limits are also constraints.

3.3. Uncertainty Parameters

Different parameters are involved that reduces the power energy exchange between
the microgrid and the main grid. The system involves multiple parameters that reduce
the performance of the MG and to reduce the energy exchange, an IPI (Independence
Performance Index) needs to be calculated. It affects the reduction in multiple factors
and parameters like system losses, greenhouse gas emissions, and voltage drop in the
system [110].

However, MG targeting in the reduction in the daily operational cost, maintenance
cost, and miscellaneous cost of the system. The system contributes to the programs like
DR (Demand Response) that manage the flexible or non-flexible loads effectively [111].
Net metering is also carefully undertaken to exchange the power among the utility while
lessening the cost of non-supply of energy to the consumer end with the consideration
of DER investments [112]. A robust optimization method is implemented that considers
many errors that forecast in the future for consideration of load, market prices, and variable
renewable generation [113].
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4. Multiple Approaches Used for Optimal Scheduling of Campus Microgrids
4.1. Heuristic Approaches

The heuristic approaches are quick decision-making techniques used to resolve the op-
timization problem of the systems [49]. Some of the methods are meta-heuristics that have
a different way of exploration and exploitation [114]. The bi-level linear model contains
mobile storage (electric vehicle), stationary storage, microturbine, fuel cell, solar PV and is
solved using the flower pollination algorithm (FPA) in MATLAB [115]. Similarly, adapted
genetic algorithm according to the multicellular organism mechanism (GAMOM) used for
the operation of the microgrid. Results are based on the applied method because every
technique is more reliable than another such as particle swarm optimization (PSO) [116],
genetic algorithm (GA) [117], and Teaching learning-based optimization (TLBO) [118].
Mixed-integer linear programming (MILP) is also used here to simulate the industry load’s
energy management [119]. The MILP method obtains and solves the start-stop status,
operational cost of each microgrid unit, and ESS, and then compares it [120,121].

4.2. Multiagent System (MAS)

A computerized system comprised of several interacting intelligent agents is known
as a multi-agent system (MAS or “self-organized system”). Multi-agent systems can tackle
issues that a solitary agent or a monolithic system would find difficult or impossible to
address. Methodic, functional, procedural methods, algorithmic search, and reinforcement
learning are all examples of this intelligence. Let us take an example presented in one
literature: Load distribution control in an inverter-based MG using a completely distributed
MAS-based approach with limited communication. Detection algorithm that requires less
data transfer than most existing MAS-based load distribution studies to detect global
microgrid information [122]. The rain flow counting algorithm is used to determine the
number of cycles of the battery, but the optimization problem is solved using the particle
mass optimization (PSO) algorithm [123]. MAS deals as a self-organized system that is
very intelligent controlling multiple agents at a single time.

4.3. Mathematical Methods
4.3.1. CPLEX Solver

CPLEX Optimizer offers flexible and high-functioning mathematical programming
solvers for linear programming, quadratic programming, and mixed-integer programming,
etc. Various mathematical programming is solved by a CPLEX solver like Mixed-Integer
Second-Order Cone Programming (MISOCP) optimization problem is formulated using
the General Algebraic Modeling System (GAMS) language and solved by the CPLEX [124].
Mixed-integer linear programming problems are linearized and formulate the electrical flow
and natural gas equation using the General Algebraic Modeling System (GAMS) algorithm
techniques [125]. Demand response (DR), renewable energy resources, and present a MILP
for EMS. The GAMS technique is used to resolve the multi-objective optimization problem
for energy management [126].

4.3.2. SNOPT Solver

SNOPT and GAMS are capable of solving the nonlinear problems of the system [127].
It uses a sparse sequential quadratic programming (SQP) approach to approximate the
Hessian of the Lagrangian with restricted quasi-Newton assumptions. It is particularly
useful for nonlinear issues including expensive to evaluate functions and gradients. Al-
though the functions must be smooth, they do not have to be convex. Various mathematical
programming is solved by SNOPT solvers like EMS uses coordinated GAMS to ensure
effective coordination and operation of the MMG system [128], SNOPT used a semidefinite
QP Solver with limited memory approximation technique of Quasi-Newton and also used
a reduced Hessian sub-algorithm to solve the QP sub-problems.
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4.3.3. Gurobi Optimizer

Mixed-integer linear programming (MILP) formulates the restoration problem of vari-
ous network and TESS constraints solved using Gurobi optimizer. Gurobi optimizer is used
to resolve the problems of MILP and MINLP [129,130]. The Gurobi Optimizer is commer-
cialized for mixed-integer linear programming (MILP), quadratically constrained program-
ming (QCP), quadratic programming (QP) [131], linear programming (LP) [132], mixed-
integer quadratically constrained programming (MIQCP), and mixed-integer quadratic
programming (MIQP).

4.4. Test System of Validation

Evaluations were conducted to test the performance of the EMS algorithm applied to
the microgrid. The microgrid systems have been summarized in the area of EMS [133,134].
Evaluation of Microgrids is based on topologies. Microgrid evaluations are applied in real
life and the test system [135,136].

Table 4 represents these test systems’ classification from various perspectives, includ-
ing single and multi-microgrids, microgrid connection with the island, and grid system
and distributed generation used in a microgrid.

Table 4. Survey on different IEEE Microgrid test systems.

Ref
Microgrid Mode Energy Source

Node System
Islanded Grid-Connected Type Min Power Max Power

[99] 7 4
MT 0 MW 0.8 MW

IEEE 33PV 0 275 kW

[100] 4 4

WT. 200 kW 300 kW
IEEE 34- node systemsPV 80 kW 120 kW

ESS −20 kW 200 kW

[137] 4 4
DiG 100 kW 790 kW IEEE 33 bus system
WT 8000 kW 45,000 kW

[138] 4 4
DiG 1.60 MW 1.80 MW IEEE 33 bus system
BES 0 0.2 MW

[139] 4 4

PV 0 11 MW
IEEE 84 bus systemMT 0 5 MW

ESS 0 8 MW

[140] 7 4
DiG 0.5 MW 5 MW IEEE 33 bus system
MT 0.1 MW 2 MW

[141] 7 4
BES 11.93 kW 19.40 MW IEEE 6 bus system
DG 200 kW 300 kW

[142] 7 4

MT. 0 kW 1000 kW

IEEE 33 bus systemWT 0 kW 1000 kW
PV. 0 kW 1500 kW
ESS −1500 kW 1500 kW

[143] 7 4 – – – IEEE 30 bus system

[144] 7 4 PV 16.2 kW 77.6 kW IEEE 33-bus distribution network

[145] 7 4

DiG 10 kW 100 kW

IEEE 33-bus test systemESS 0 kW 16.6 kW
EV 0 kW 111 kW
PV 0 kW 126.8 kW

[146] 7 4 – – – IEEE 33

It also describes the microgrid with an islanded and grid-connected mode, and while
mentioning the energy sources with maximum and minimum power using different types
such as DG, WT, PV, FC, etc. It also described the node system for many IEEE buses.
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5. Research Challenges

From the above analysis, it is deduced that the EMS is a very important part of campus
microgrids. This paper observed different energy resources and storage systems that
deal with the challenges while implementing their applications in the campus microgrids.
However, some issues are briefly described to overcome the implementation issues of
EMS within microgrids. Microgrid systems operate as an effective alternative approach
for the power system that is connected using either grid-connected or island-connected
modes. Similarly, transient stability issues, electricity rate uncertainty, grid reliability,
voltage stability are some challenges that the microgrid system faces during its operation.
Thus, microgrids install different RER’s (Renewable Energy Resources) to overcome the
issues of high energy demand. It also focuses on making the system more responsible and
sustainable. It is necessary to keep an effective framework for stable campus microgrids.
It also enhances an EMS that should be designed to optimize the system’s efficiency. An
enhanced time-of-use pricing structure is required to make power unit pricing efficient.

The sustainability and techno-economic analyses of a campus microgrid were also
examined. For higher education colleges (HEC), recent literature tries to reduce costs,
maximize available resources, and reduce energy trading across microgrids. Innovative
microgrid methods were used on many of the campuses studied to help enhance energy ef-
ficiency and reduce power dissipation and GHG emissions. Many campuses were studied,
including Eindhoven, YZU (Yuan Ze University), University of Genova (Savona), Connecti-
cut Microgrid Campus, University of Novi Sad, Clemson University, Illinois Institute of
Technology (IIT) and Tsinghua campus, China. The literature also contains some of the
most recent research for inventive researchers who want to convert traditional microgrids
into intelligent grid systems.

The following are among the research challenges that campus microgrid faces:

1. To maximize the utilization of green sources on campus;
2. To minimize the campus microgrid’s operating and running costs as low as possible;
3. To ensure the system’s reliability and dependability;
4. To reduce the use of utility electricity by offering renewable energy resources;
5. To improve the system more stable by incorporating modern optimization techniques;
6. To improve an EMS that is meant to maximize the efficiency of the system;
7. To ensure electricity unit prices efficient, a better time-of-use pricing scheme is neces-

sary;
8. To create an effective economic plan in order to increase the economic benefit of the

advanced campus microgrid system.

The major goal of this research is to provide a quick summary of previous studies
on campus microgrids that addresses both operating expenses and energy system usage
in literatures. It also discusses EMSs (energy management systems), energy trading, and
technologies that can sustain campus microgrids. It also promotes the advancement
of intelligent campus microgrids through technology and research, taking into account
socioeconomic advantages, suitable power flow solutions, and smart campus microgrid
financing. It also focusses on campus distributed generation at these institutes, such
as energy storage, wind, solar PV, and EV charging and discharging scenarios. These
issues were based on realistic microgrid energy systems with a variety of approaches and
deployment scenarios aimed at utilizing green energy, developing a smart campus, and
achieving renewable energy for the campus microgrids to minimize GHG emissions.

It also looked at energy trading strategies among prosumers and customers in recent
studies. Consumers can choose between using the utility or purchasing power from the grid,
or operate in islanded mode. The goal is to increase renewable energy use while lowering
ESS and generating costs, which have an economic impact on the prosumer. Investing in
smart grids, which will transform current conventional campus microgrids into a smart
microgrid, is the effective solution to these issues. Maintaining electricity supply is said
to be critical for each campus microgrid, particularly during a grid interruption such as
in outage situations. The entire microgrid system will be more efficient as a result of this.
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Improved power generation and load flow control will help consumers as well. Reduced
GHG emissions and climate change, particularly through CO2 reduction, will be critical.

There are still many issues such as power management, sustainability, reliability,
power quality, load shedding, voltage, and frequency stability that creates difficulties in
implementing the microgrid in the system. Somehow, energy management of microgrids
through optimal scheduling of distributed generation is an optimal solution to mitigate
the microgrid aforementioned challenges using optimization techniques. This paper also
observed different energy storage systems such as fuel cells, batteries, and electromag-
netic storage devices. There are many issues in the batteries such as low life cycle, slow
charging, low energy density issues, and complexity in maintenance. The solution tools
need advancement to overcome the computational time issues and such related concerns.
Furthermore, machine learning, artificial intelligence, and blockchain techniques are more
suitable optimization techniques as compared to classical techniques.

6. Conclusions

In this paper, a comprehensive survey of the campus microgrids, their optimal schedul-
ing of the distributed energy resources is reviewed considering the limitations and solutions.
This work analyses different energy resources with multiple solutions techniques proposed
in the literature for energy management of various campus microgrids at different loca-
tions. It also investigates the optimal power output of various Distributed generators.
Additionally, it briefly explains the voltage and frequency regulation of the MG system
consideration of grid-connected or islanded modes. This paper also reviews the MG-EMS,
which has evolved in recent frameworks, discussing different types of MG generation and
multiple storage units installed at different locations. Similarly, the study briefly defines the
MG-EMS objective functions and up-to-date optimization algorithms are also evaluated.
The objective functions used in the literature are also reviewed, along with the system
various components. These methods are chosen and explained with their optimal solutions
based on their practicality, resource availability, and especially their reliability of the micro-
grid environment. The research challenges and their limitations are also addressed in the
literature. Furthermore, a thorough study is also needed to address the recent problems
and trends with the best possible methods and approaches available for the advanced
campus microgrid energy management system such as blockchain, artificial intelligence, or
machine learning.
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Acronyms
EMS Energy management system
ESS Energy storage system
DOD Depth of discharge
FIT Feed-in-Tariffs
BESS Battery energy storage system
BSOC Battery state of charge
DG Distributed generator
DERs Distributed energy resources
DSM Demand-side management
GHG Greenhouse gas
LP Linear programming
PV Photovoltaic
MILP Mixed integer linear programming
TOU Time-of-Use
RERs Renewable energy resources
µG Microgrid
FLC Fuzzy logic controller
SOC State of charge
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