
����������
�������

Citation: Lee, Y.-G. Low Memory

Access Video Stabilization for

Low-Cost Camera SoC. Sensors 2022,

22, 2341. https://doi.org/10.3390/

s22062341

Academic Editors: Sylvain Girard

and Jiayi Ma

Received: 27 January 2022

Accepted: 13 March 2022

Published: 18 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Low Memory Access Video Stabilization for Low-Cost
Camera SoC

Yun-Gu Lee

School of Software, Kwangwoon University, Kwangwoon-ro 20, Nowon-gu, Seoul 01897, Korea;
harmony96@gmail.com; Tel.: +82-2-940-8112

Abstract: Video stabilization is one of the most important features in consumer cameras. Even simple
video stabilization algorithms may need to access the frames several times to generate a stabilized
output image, which places a significant burden on the camera hardware. This high-memory-access
requirement makes it difficult to implement video stabilization in real time on low-cost camera SoC.
Reduction of the memory usage is a critical issue in camera hardware. This paper presents a structure
and layout method to efficiently implement video stabilization for low-end hardware devices in
terms of shared memory access amount. The proposed method places sub-components of video
stabilization in a parasitic form in other processing blocks, and the sub-components reuse data read
from other processing blocks without directly accessing data in the shared memory. Although the
proposed method is not superior to the state-of-the-art methods applied in post-processing in terms
of video quality, it provides sufficient performance to lower the cost of camera hardware for the
development of real-time devices. According to my analysis, the proposed one reduces the memory
access amount by 21.1 times compared to the straightforward method.

Keywords: video stabilization; rolling shutter compensation; CMOS sensor; camera SoC; cam-
era hardware

1. Introduction

Nowadays, various types of devices from low-end to high-end are equipped with
a camera that adopts a complementary metal-oxide semiconductor (CMOS) sensor [1].
CMOS technology provides low power consumption and fast readout speed [2], but the
quality of video shot by the camera is degraded when the camera moves during capturing
a video [3]. The first degradation is the undesirable geometric image distortion that comes
from the rolling shutter effect [4]. As depicted in Figure 1, readout circuits of the CMOS
sensors read the pixel values row by row from top to bottom rather than all the rows at the
same time, which is called rolling shutter [4,5]. The CMOS sensor captures each row in a
frame at the different time due to the rolling shutter effect [6]. For example, rows of S1 and
S2 in Figure 1 are captured at the different time. Readout circuits first read the pixel values
at row S1, then the pixel values at row S2 are captured. If a camera moves from time t to
t + 1 as given in Figure 1b, each row will have different amount of displacement according
to camera motion. Thus, the captured image will be distorted as in the right image of in
Figure 1b. This geometric distortion causes a straight line to bend. The second cause of
quality degradation is camera motion jitters along frames, as depicted in Figure 2. Camera
motion along frames in Figure 2a makes a captured video shaky, as depicted in Figure 2b.
These two factors significantly degrade the quality of video, and users are uncomfortable
watching the video. Hence, video stabilization with rolling shutter compensation is one of
the most important features in consumer cameras.

Sensors 2022, 22, 2341. https://doi.org/10.3390/s22062341 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22062341
https://doi.org/10.3390/s22062341
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22062341
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22062341?type=check_update&version=1


Sensors 2022, 22, 2341 2 of 18

Motion

(a)

(b)

S1 S2

S2

S1

t t + 1 captured

t t + 1 Captured

S1 S2

S2

S1

Geometric distortion

Real object

Captured 

object

Captured 

object

Captured

Captured

Scanline

Figure 1. (a) Readout circuits read the pixel values from top to bottom. (b) Geometric image distortion
from rolling shutter if camera moves.

t t + 1 t + 2

t t + 1 t + 2

(a)

(b)

t t + 1 t + 2

(c)

Camera view

Captured frame

Stabilized frame

W+MW

H
+

M
H

Real object

Figure 2. (a) Camera motion along time and (b) unstable video (captured). (c) Captured frames are
cropped to generate stabilized output frames.



Sensors 2022, 22, 2341 3 of 18

Many algorithms have been developed to compensate the geometric distortion from
the rolling shutter effect and stabilize the shaky video [6–19]. A simple two-dimensional
model was proposed to remove perceived camera motion [7]. Liang [6] proposed a method
to use planar motion for modeling the rolling shutter effect. A content-preserving warp
was proposed by relaxing the physical constraint while preserving the perceptual qual-
ity [9]. Liu proposed video stabilization using on subspace constraints on the 2D feature
trajectories [13]. Forssen and Ringaby proposed a method to use feature point matching
and tracking for video stabilization and rolling shutter compensation [11,14]. Grundmann
proposed calibration-free video stabilization and rolling shutter compensation based on
a mixture model of homographies [15]. Lee proposed video stabilization based on the
human visual system [16]. Guilluy recently reviewed more than 120 articles related to
digital video stabilization [20] in depth in terms of cutting edges and gaps. Camera motion
basically causes image quality degradation. Therefore, many existing algorithms have been
focused on improving the camera motion models that describe the geometric relationship
among consecutive frames [20]. Recently, CNN-based methods [21–23] have been stud-
ied, but they require high computational resources [20]. While these algorithms provide
nice performance, they require huge computational burden and are suitable for use with
post-processing [18]. Dong [18] hence proposed fast video stabilization for strict real-time
applications and dramatically reduced the processing complexity. However, it is not still
suitable for use with real-time mobile applications [19]. To further reduce the processing
time, real-time method for a CMOS image sensor was proposed [2,19]. Its computational
complexity is extremely low enough to run it on CPUs in from middle-end to high-end
mobile devices. However, the above software-based algorithm may not be possible to
run on CPUs in low-end devices such as cheap drones, cameras, IP cameras, etc. The
computational resources of these low-end devices are so limited that there is not room
enough to allocate the computing resources for video stabilization with rolling shutter
compensation (VSRSC).

For real-time processing in low-end devices, we can consider hardware implementa-
tion on camera system-on-chip (SoC). Compared to software-based algorithms, hardware-
based algorithms have not been studied much. Araneda proposed a hardware architecture
for real-time digital video stabilization [24] and a compact hardware architecture for digital
image stabilization using integral projection [25]. However, these architectures did not
consider the rolling shutter compensation that is one of the most important features in
cameras equipped with the CMOS sensor. There are two major concerns in implementing
the algorithm using hardware: hardware complexity increase and additional memory
access. The hardware complexity may be significantly reduced by adopting fast algorithms
such as [2,19]. However, VSRSC requires very large additional memory access, which
is a huge burden in real-time devices, especially for low-end. The reduction of memory
bandwidth is always a critical issue in camera SoC [26], and study on video stabilization
and rolling shutter compensation that uses small amount of memory access is needed. Let
us consider the memory bandwidth for running VSRSC in brief. VSRSC generally consists
of three parts: motion estimation, new camera path planning (or parameter estimation for
compensation), and new image synthesis [2]. Motion estimation predicts camera motion
by analyzing successive frames. Thus, it needs to read two successive frames at least from
memory and compare them to predict motion. VSRSC usually needs local motion to predict
the geometric distortion from rolling shutter compensation. It makes the memory access
pattern very irregular or random and significantly decreases the efficiency of the system
bus. In general, the local motion estimation requires more than two-frame memory access.
In addition, even simple image warping should read a frame from the shared memory,
synthesize the new frame, and write the frame to the shared memory. In summary, VSRSC
may require three frames reading and one frame writing at minimum. A dedicated internal
memory may be used to reduce memory access of the shared memory. However, the
dedicated internal memory to store frames is too expensive for low-end camera SoC. It is
necessary for camera hardware to efficiently reduce the memory bandwidth required for
the processing while providing acceptable performance.



Sensors 2022, 22, 2341 4 of 18

One of the biggest challenges in VSRSC for low-end devices is to reduce memory access
amount while providing acceptable performance. Although Araneda proposed a solution
for real-time digital video stabilization [24], it did not consider the reduction of the memory
access amount. Moreover, its image quality may not be acceptable without the rolling
shutter compensation. This paper proposes a structure and layout method to efficiently
implement our previous real-time algorithm [2] for low-end hardware devices in terms
of shared memory access amount. The memory access amount varies depending on the
structure in which each sub-component of the algorithm is arranged and structured. Sub-
components should be arranged and structured so that data read from the shared memory
can be reused as much as possible. This paper presents a method where sub-component
block for VSRSC reuses data read by other processing blocks. For this purpose, this paper
analyzes the memory access pattern of sub-components in our previous VSRSC, and each
sub-component is placed in a parasitic form in other processing blocks in consideration of
the memory access pattern. Consequently, the memory access amount is extremely reduced.

2. Review

This paper analyzes the computational operations and memory access patterns of our
previous software-based algorithm [2], and arranges sub-components of the algorithm in
camera SoC so that shared memory access is reduced when implementing it in hardware.
Therefore, this section briefly reviews our previous rolling shutter compensating algorithm
from a computational point of view.

2.1. Motion Estimation

A line motion vector at each row is required to compensate the geometric distortion
from rolling shutter effect. Our previous method obtains the line motion vector at each
row by not directly predicting motion but mathematically deriving it from several global
motion vectors. Since the implementation cost of global motion estimation is cheaper than
that of local motion estimation, this approach significantly reduces the implementation
complexity. Well-known projection-based motion estimation is adopted to further reduce
implementation cost of the global motion estimation [27]. The projected-based global
motion estimation converts two-dimensional motion search to one-dimensional motion
search. Frames are first projected to create one-dimensional lines along the horizontal and
vertical directions. Let the projected lines be LX

n (x) and LY
n (y).

LX
n (x) =

H−1

∑
j=0

In(x, j) LY
n (y) =

W−1

∑
i=0

In(i, y) (1)

Here, In(i, j) is an intensity of pixel at (i, j) of the n-th frame. Then, global motion is
predicted using the projected one-dimensional lines as follows.

GMVX(n) = arg min
m∈[−S,S]

W−1−S

∑
i=S

|LX
n−1(i + m)− LX

n (i)| (2)

where S is a search range. Here, GMVX(n) is a global motion vector along the x axis in the
n-th frame.

2.2. Parameter Estimation

Our previous method [2] models a camera movement as a quadratic function using an
initial velocity and a constant acceleration. The initial velocity and constant acceleration
along the x direction are predicted as follows.

vX
n = GMVX(n)− 1

6
{GMVX(n + 1)− 2GMVX(n) + GMVX(n− 1)} (3)

aX
n−1 = vX

n − vX
n−1 (4)



Sensors 2022, 22, 2341 5 of 18

where vX
n and aX

n are the initial velocity and constant acceleration along the x direction
in the n-th frame. The initial velocity and constant acceleration along the y direction are
calculated in the same way. Only several numerical additions and subtractions are needed
to predict compensating parameters for a single frame. Since its computational cost is small
enough to be performed on low-cost reduced instruction set computer (RISC), this paper
does not consider implementation of the parameter estimation on camera SoC.

2.3. Image Warping

In the image warping step, new images are interpolated pixel by pixel according to
transformation functions as follows.

pO(x, y) = pI(x + xo f f (y), y + yo f f (y)) (5)

xo f f (y) = cX + vX × t(y) + aX × (t(y))2 (6)

yo f f (y) = cY + vY × t(y) + aY × (t(y))2 (7)

Here, pI(x, y) and po(x, y) are pixel values at (x, y) in input and output images, respec-
tively. Offset, (xo f f (y), yo f f (y)), is a compensation parameter. Since this method models a
camera trajectory as a quadratic function, xo f f (y) and yo f f (y) in Equations (6) and (7) are
quadratic functions. vY and aY are the initial velocity and constant acceleration along the y
direction, respectively. cX and cY are the initial offsets for the first row of image. t(y) is the
time when capturing the y-th row, and the time to capture a single frame was normalized
to 1 for convenience. The details are given in [2].

3. Proposed Method for Reducing Memory Access Amount
3.1. Camera SoC
3.1.1. Image Processing Chain

Camera SoC includes many hardware blocks such as audio processing, image/video
processing, CPU, GPIO, USB, UART, LCD out, DDR, etc. [28]. This paper considers only
the image/video processing part among them. Image processing chain (IPC), which is
sometimes called image processing pipeline [29], is one of the key components in im-
age/video processing. The IPC transforms a raw image data from the CMOS sensor into a
full-color image [30]. The IPC includes many image processing blocks such as dead pixel
correction [31], noise reduction [32], white balance [33], demosaic [34], etc. A video encoder
converts the full color images to a compressed video bitstream. The video encoder for
consumer electronics usually complies with the international coding standards, such as
MPEG-4 [35], H.264 [36], HEVC [37], VVC [38], etc.

In the view of shared memory access, the IPC can be categorized into two types. The
first type of the IPC does not access the shared memory during processing as depicted in
Figure 3a. The output of “block a” in the IPC is connected to the input of “block b”. Only the
last processing block (or “block k”) accesses the shared memory to store the final image data.
The remaining blocks process data on the fly without accessing the shared memory. Small
buffers to temporally store several rows can be used between processing blocks. Since the
output of the current processing block is fed to the input of the next processing block, the
data access pattern of blocks in the IPC needs to be the same. The first block in the IPC
obtains the input from the CMOS sensor that outputs raw image data in a raster scan order.
Consequently, the data access patterns of all the processing blocks in the IPC need to be a
raster scan order.

While many algorithms process pixels sequentially in a raster scan order, some ad-
vanced algorithms access pixels in images in a complex way. For example, some algorithms
first analyze input images by accessing pixels within the images in a raster scan order, then
some parts of images are selectively enhanced according to the analyzed information. Since
these algorithms irregularly access pixels in images, they cannot be directly connected
with processing blocks that read pixels in a raster scan order. Thus, the shared memory is
required to buffer for temporally storing the intermediate frame data. Figure 3b depicts an



Sensors 2022, 22, 2341 6 of 18

example of the IPC with shared memory access during processing. The output of “block
b” in the IPC is buffered in the shared memory, and “block c” reads input data from the
shared memory.

Bus

Shared 

Memory

CMOS

Sensor
a b c k

Image Processing Chain

Other

Processing 

block

�✁

✂

CMOS

Sensor
a b c k

Image Processing Chain

✄

(a) (b)

Bus

Shared 

Memory

Other

Processing 

block

☎✆

Figure 3. Image processing chain (a) without shared memory access during processing and (b) with
shared memory access during processing.

3.1.2. Requirement of VSRSC for Reducing Memory Access Usage

The straightforward method to include VSRSC in camera SoC is simply to attach a
VSRSC block as depicted in Figure 4. The VSRSC block reads frames from the shared mem-
ory via the shared bus and stores output frames to the shared memory through the shared
bus. The amount of memory access used by the VSRSC block is added directly to the total
memory access of camera SoC. On the other hand, since the available memory bandwidth
afforded by the shared bus is limited, the reduction of required memory bandwidth is
always a critical issue in camera SoC [26]. As described in the introduction, even simple
VSRSC needs to read and write frames several times, which is a huge burden for camera
SoC. This straightforward method, as depicted in Figure 4, is not an appropriate approach
for camera SoC, where reducing memory access usage is an important issue. To eliminate
the additional memory access usage caused by VSRSC, a dedicated internal memory such
as SRAM may be used. However, the dedicated internal memory to store the several frames
is an expensive solution, especially for low-cost devices. Hence, low-cost devices need a
solution to include VSRSC by trading off performance and memory access usage.

Processing 

block #1

Shared 

Memory

Processing 

block #N
�✁ VSRSC

Shared bus

Figure 4. A straight method to include a video stabilization block with rolling shutter compensation
in camera SoC.

The amount of memory access for VSRSC can be significantly reduced if a VSRSC block
can be directly connected with other image processing blocks. In other words, it is desirable
that the VSRSC block obtains the input data from other processing blocks and sends the
output data to other blocks without accessing the shared memory. For the end, memory
access patterns of the VSRSC block and other processing blocks to be connected with VSRSC
should be the same. Let us consider the processing steps of VSRSC in terms of memory
access. The first step is to predict motion between input frames. Motion estimation requires
only input frames and generates no output data to send to other processing blocks. Thus,
motion estimation can be directly connected with other processing blocks if the memory
access patterns of the input of motion estimation and the output of other processing blocks
are the same. The second step is to calculate parameters for compensation, which is usually
performed on the CPU. Hence, there is no issue in the second step in terms of memory
access. In the last step, VSRSC generates the output frame by warping the input frame



Sensors 2022, 22, 2341 7 of 18

based on a warping matrix. Thus, image warping can be directly connected with other
processing blocks if the memory access patterns of the output of the image warping and
the input of other processing blocks are the same.

3.1.3. Structure of the Proposed Method for Reducing Memory Access Amount

Figure 5 depicts the structure of the proposed method. The motion estimation block
in the proposed method does not directly access the shared memory through the shared
bus. When processing block #1 writes data to the shared memory, the motion estimation
block intercepts the data to predict motion. When processing block #2 reads data from
memory, the image warping block interpolates the image on the fly, based on compensation
parameter, and transfers the new pixel to the processing block #2. Therefore, this structure
enables reusing data from other processing blocks #1 and #2 to predict motion and generate
the output image. It should be noted here that since digital VSRSC crops input frames
to generate output frames, the size of input frames should be larger than that of output
frames, as shown in Figure 2b,c. For VSRSC, an image sensor captures frames larger than
the final output frames. Image processing blocks located prior to the VSRSC handle the
larger frames that include the processing margin of MW and MH along the horizontal
and vertical directions, respectively. For instance, assume that the size of the final frame
is (W, H). Then, the sizes of input frames for VSRSC will be (W + MW , H + MH). The
processing block #1 should handle frames with a size of (W + MW , H + MH). Since the
size of output frames from the image warp is (W, H), the processing block #2 needs to
handle frames with a size of (W, H).

Processing block #1 Processing block #2

Image Warping

(W+MW, H+MH)
(W, H)

Shared Memory

Shared bus

Motion Search

Motion estimation

Image Projection

Buffer

Motion 

Vector

Comp.

Parameter

Figure 5. Structure of the proposed method for implementation on camera SoC.

If the IPC accesses pixels in the shared memory during processing, such as in Figure 3b,
motion estimation and image warping blocks can be located inside the IPC. The “block
b” and “block c” in Figure 3b correspond to the processing block #1 and #2 in Figure 5,
respectively. The motion estimation block intercepts frame data written to shared memory
by “block b”. Image warping reads frame data from the shared memory, generates the
new stabilized data, and feeds it to the “block c”. On the other hand, the other type of
IPCs handles images without using shared memory access, as shown in Figure 3a. In
this case, the motion estimation and image warping blocks are not located inside the IPC
together. The motion estimation block is located at the end of the last processing block in
the IPC. Thus, the processing block #1 in Figure 5 corresponds to the “block k” in Figure 3a.
Many video cameras eventually need to encode frames processed from the IPC using video
encoders. Input frames to be encoded are usually stored in the shared memory, and these
video encoders read them via the shared bus. Hence, the image warping can be located
at the front of the video encoder. The processing block #2 in Figure 5 corresponds to a
video encoder. Some cameras do not encode frames using a video encoder. In this case of
cameras, the proposed method cannot be applicable.



Sensors 2022, 22, 2341 8 of 18

3.2. Motion Estimation

Since the blocks in the IPC process data on the fly, their pixel access pattern is the
raster scan order as mentioned in Section 3.1.1. The motion estimation block is connected
in the middle of the IPC or the end of the IPC. Thus, let us assume that the processing block
#1 in Figure 5 outputs pixels in raster scan order.

Motion estimation introduced in Section 2.1 consists of two steps: image projection and
motion search. The first step, or image projection, is performed as follows. The processing
block #1 in Figure 5 sequentially writes pixels in an image to the shared memory in a raster
scan order. The data projection block in motion estimation intercepts the sequential pixels
output from the processing block #1. It accumulates the sequential output to two line
buffers that store two one-dimensional images along horizontal and vertical directions,
respectively, as given in Equation (1). The next frames are accumulated in the same way.
After line buffers for the previous and current frames are projected, the line buffers are used
to perform the motion vector search according to Equation (2), which is the second step
of motion estimation. Figure 6 illustrates an example of image projection in the proposed
motion estimation block. Let the coordinate of the current pixel in an example of Figure 6
be (0, 1) in the current frame. The value of the current pixel is accumulated to the first
element in the horizontal line buffer for the current frame and the second element in the
vertical line buffer for the current frame. After all pixels in a frame are projected, a global
motion estimation vector along the x direction is predicted using horizontal line buffers
for current and previous frames according to Equation (2). A global motion vector along
the y direction is is predicted in the same way. Two line buffers are required to store the
projected lines for horizontal and vertical directions for each frame. For motion estimation,
four line buffers for the previous and current frames are necessary in total. This approach
makes it possible to reuse data from the other processing blocks and extremely reduces the
amount of shared memory access.

Current frame

�✁

Horizontal Line Buffer for current frame

+

Sequential output

Vertical Line Buffer for current frame

+

(0,1)

Horizontal Line Buffer for previous frame

Vertical Line Buffer for previous frame

First line Second line

Figure 6. Image projection.

It should be noted here that although the above motion estimation block predicts
only global motion vectors for each frame, our previous work presents a way to calculate
local line motion for each scan line from the global motion vectors [2]. The calculation of
local line motion from the global motion vectors is simple enough to be performed on the
low-cost RISC. Araneda presented a compact hardware architecture for motion estimation
using integral projection [25]. Araneda’s work can be referenced to implement the motion
estimation block of the proposed method.



Sensors 2022, 22, 2341 9 of 18

3.3. Image Warping

In the proposed structure, the image warping block reads an image from shared
memory, generates the new image, and passes the new image to the next processing block
(or processing block #2) on the fly, as shown in Figure 5. The image warping needs to
generate output pixels according to the memory access pattern of the next processing block.
There are two types of processing blocks, as discussed in Section 3.1.1. The first type is a
general image processing block, which sequentially reads pixels in an image and generates
output pixels in a raster scan order. In this case, the image warp should generate output
pixels sequentially in a raster scan order. The sequential output pixels from the image warp
are fed to input of the next processing block. The other type of the next processing block is a
video encoder where camera IPC handles images on the fly without using shared memory,
as depicted in Figure 3a. The image warping should generate output pixels according to the
memory access pattern of the video encoder input. The video encoders generally divide a
frame into blocks and encode the divided blocks one by one. Thus, the image warp should
generate output pixels based on the block. The following Sections 3.3.1 and 3.3.2 analyze
the memory access pattern, examine how to prepare output pixels in the image warp, and
calculate the amount of memory access according to two types of the next processing block.

3.3.1. Raster Scan Order Access

In this subsection, we assume that the memory access pattern of the processing block
#2 in Figure 5 is the raster scan order. VSRSC compensates camera motion and rolling
shutter effect by deforming a shape of an input image to another one. Image warping
deforms an input image into the new one according to the motion model with predicted
model parameters. Since the state-of-the-art methods usually adopt 3D or perceptual
motion models [20] to achieve high performance, the motion models are very complex, and
their memory access patterns for input images become very irregular. Figure 7a illustrates
one of the examples using mesh-based warping, which is generally used in conventional
methods [9]. To provide output pixels in raster scan order such as the dashed line in the
output image of Figure 7a, the image warping needs to predict pixel values along the
dashed line in the input image. Since the positions of pixels along the dashed line are not
the integer pixel accuracy, output pixels need to be interpolated using pixels in the input
image. Gray pixels in the figure represent pixels to be used for interpolation. The image
warps should access the gray pixels in order to generate output pixels in raster scan order.
The dashed line crosses not a single row, but multiple rows in the input image. Thus, the
pixel access pattern of the input image is not raster scan order. The image warp should
read pixels from several rows in the input image to synthesize a single output row. The
dashed line in the input image goes up and down, and memory access pattern is irregular
and unpredictable. It is natural that since most conventional methods have been developed
for running on personal computer, server, etc., they do not consider the memory access
pattern of input images. Therefore, it is difficult to directly connect these kinds of image
warping methods to a processing block that requires input pixels in a raster scan order such
as in Figure 5.

Now, let us analyze the pixel access pattern of image warping for our previous
work [2]. The image warp simultaneously performs video stabilization and rolling shutter
compensation. Since this video stabilization adopts the translational motion model, it is
performed by shifting an input image according to the predicted displacement parameters,
which are with integer pixel accuracy. The input image shift can be simply performed
using read memory address shift, and this video stabilization does not change the memory
access pattern. This paper, hence, analyzes the pixel access pattern of only rolling shutter
compensation in detail. Readout circuits in the CMOS image sensors read pixels row by
row [5]. Thus, each row is captured at a different time, but pixels in the same row are
captured at the same time. Pixels captured at the same time have the same amount of rolling
shutter distortion, so the rolling shutter compensation parameters for pixels belonging



Sensors 2022, 22, 2341 10 of 18

to the same row should be the same. Pixel transformation between the input and output
images is rewritten for convenience.

pO(x, y) = pI(x− xo f f (y), y− yo f f (y)) (8)

xo f f (y) = cX + vX × t(y) + aX × (t(y))2 (9)

yo f f (y) = cY + vY × t(y) + aY × (t(y))2 (10)

The offset in Equation (8), or (xo f f (y), yo f f (y)) is a function of y. Thus, the value of x
component does not affect the offset value. Pixels in the same row have the same amount of
offset value or compensating parameter. Accordingly, this method compensates the rolling
shutter effect by moving pixels in a row in an input image to the proper position in the
output image according to a compensating parameter. In other words, a horizontal line in
the output image corresponds to a horizontal line in the input image with different position.
Figure 7b illustrates an example of pixel access pattern for image warping for the rolling
shutter compensation. To generate output pixels in raster scan order, such as the dashed
line in the output image of Figure 7b, the image warping needs to access pixels along the
dashed line in the input image. Since the dashed line in the input image is not slanted but
horizontal, pixel access pattern is also raster scan order. Consequently, pixel access pattern
of input and output pixels for image warping are the same, which satisfies the requirement
described in Section 3.1.2.

(a) (b)

Rolling 

shutter 

Compensation

Translational stabilization

W
W

Pixel used in interpolation

Output image

Input image

Output image

Input image

Figure 7. Pixel access patterns of (a) usual image warping and (b) proposed method.

On the other hand, the offset is not integer point but float point accuracy number.
Then, (x + xo f f (y), y + yo f f (y) is a coordinate with floating point accuracy, so pO(x, y)
needs to be obtained by interpolating pixels in the input image. For example, pixel q0
in Figure 8 is interpolated using four pixels of p0,0, p0,1, p1,0, and p1,1. The interpolation
weights for the x and y directions are wx and wy, respectively. Since the offset values (or
compensation parameters) of pixels from the same row are the same, the interpolation
weights in the same row are constant. In an example of the figure, the interpolation weights
of q0, q1, . . ., qW−1 are the same along the x and y directions. Therefore, the calculation of
offset and weight values only needs to be performed once for each row. For convenience of
hardware implementation, the calculation can be performed in advance by CPU and be
stored in internal buffers. Since the offset and weights are calculated once for each row, the
computational burden is low enough to be calculated in the CPU.



Sensors 2022, 22, 2341 11 of 18

wx

wx
wx

wx

�✁

wx

wx

q0
q1 q2 qW✂1qW✄2q3

☎✆

wy

Pixel in an input image Pixel in an output image

p0,0

DOx

p0,1

p1,0 p1,1

DIx

p0,W

p1,W

Figure 8. Pixels used in interpolation.

The interval between successive output pixels along the x direction, or DO
x in Figure 8,

is exactly 1, which is the same as DI
x or an interval between successive input pixels. Thus,

the number of pixels required for interpolating one row is 2× (W + 1), where W is the
width of an output image. Some of them may be commonly used in interpolating the
next row. There are three cases of input pixel reuse in interpolating the next row. The first
case is a usual case in which the bottom row of two input ones used when interpolating
the current output row is reused when interpolating the next output row, as depicted in
Figure 9a. In the figure, two rows of rI

1 and rI
2 are used for interpolating pixels in a row of

rO
0 . In addition, two rows of rI

2 and rI
3 are used for interpolating pixels in a row of rO

1 . Here,
one row of rI

2 is commonly used for interpolating two output rows of rO
0 and rO

1 . Since the
offset value (or yo f f (y)) is varying along the y direction, the interval between successive
output pixels along the y direction or DO

y in Figure 9 is not exactly 1. When the interval (or
Iy) becomes less than 1, case 2 in Figure 9 sometimes occurs. In this case, two rows of rI

1
and rI

2 are commonly used for interpolating two output rows. The last case is where there
is no common input pixels to use to interpolate two output rows, as depicted in Figure 9c.
It is noted here that when the interval, DO

y is very close to 1, cases 2 and 3 are not usual.

�✁

✂✄

Pixel in an input image Pixel in an output image

☎✆

✝✞

✟✠

✡☛

Case 1

☞✌

✍✎

✏✑

✒✓

✔✕

✖✗

ro0

ro1

rI0

rI1

rI2

rI3

DOy

(a) (b) (c)

Case 2 Case 3

DOy DOy

Figure 9. Three cases of input pixel reuse in interpolation. (a) One row reuse, (b) two rows reuse, and
(c) no reuse.



Sensors 2022, 22, 2341 12 of 18

Since two input rows are needed for interpolating one output row, the method may
need to access the shared memory (2× H) times to interpolate one output image, where H
is the height of an output image. As shown in Figure 9, some input rows are commonly
reused to interpolate output rows. The amount of memory access to read input rows from
the shared memory can be reduced by using a line buffer that stores and reuses the input
row used in common. Under the assumption of the line buffer, NT

access, the total number of
rows reading from the shared memory can be calculated from the y-coordinates of rows in
the input image accessed for interpolating the first and last output row. The y-coordinate
of pO(x, y) in the input image coordinate is (y− yo f f (y)) from Equation (8). The position
accessed for interpolating the first output row (or rF ) is (0− yo f f (0)). The position for
the last output row (or rL) is (H − 1)− yo f f (H − 1). Let us assume that, for simplicity, the
black area [2] in CMOS image sensor is small compared to the active area, so t(H − 1) is
approximately 1. Note here that the time to capture a single frame was normalized to 1 for
convenience. Then, NT

access is as follows.

NT
access = rL − rF + 2 = (H + 1)− vY − aY (11)

The amount of memory access depends on the values of vY and aY. Camera motion
along the y direction determines these values. For example, when there is no camera
motion, vY and aY are zero. In this case, NT

access is (H + 1). According to camera motion,
NT

access can be more than or less than (H + 1). If the average camera motion in a video is
close to zero, the average value of NT

access at the whole frames become close to (H + 1).

3.3.2. Block-Based Access

Video encoders divide a frame to be encoded into small blocks and sequentially encode
each block one by one. The size of the block (or basic unit) varies depending on video
coding standards [35–38]. The size of macroblock for H.264 [36] is 16. The recent video
coding standard, such as high-efficiency video coding (HEVC) [37], allows various sizes of
the coding tree unit (CTU) from 64× 64, 32× 32, and 16× 16. The video encoder hardware
can be designed in various architectures, and the memory access pattern of reading an
input block from the shared memory may be different depending on hardware architecture.
This paper assumes that the video encoder hardware reads frames from a shared memory
based on blocks and copies each block to the internal memory, which is one of the common
methods to our best knowledge.

The image warp should provide pixels to a processing block according to a block-based
pattern. In detail, the image warp reads necessary pixels in the shared memory, generates
the new block using the pixels, and feeds it to the video encoder. The basic strategy is the
same as that of raster scan order access described in Section 3.3.1. The difference is that
the method in Section 3.3.1 uses the raster scan access in a frame level, but the block-based
method uses the raster scan access in a block level. As discussed in the previous subsection,
the image warp accesses more pixels than the number of output pixels to interpolate output
pixels. Thus, block-based image warp requires an input block larger than k× k, in order
to generate a block of k× k size to feed the next processing block. The number of lines
reading from the shared memory for interpolating one block depend on the compensating
parameters along the y direction, as discussed in the previous subsection, but we can
approximate the number to BH + 1 under the assumption that the average camera motion
in a video is close to zero. Here, BH is the block height. Then, the total memory access is
as follows.

MAVG
B = NB × (BW + 1)× (BH + 1) (12)

BW and NB denote the block width and the number of blocks in a frame, respectively.
This paper assumes that the video encoder reads frames from a shared memory based

on blocks and copies each block to the encoder’s internal memory. The proposed method
may not be applied to encoders that do not satisfy the above assumptions.



Sensors 2022, 22, 2341 13 of 18

4. Experimental Results and Analysis
4.1. Comparisons of Memory Access Amount

As mentioned in the introduction, few studies have been conducted to reduce the
memory access amount in hardware implementation for VSRSC. Moreover, since most of
the existing algorithms are based on software-based post-processing, they will require a
huge amount of memory access if it is implemented with hardware. It is natural that the
memory access amount of the proposed method is extremely small compared to the existing
methods. Hence, the superiority of the proposed method cannot be shown by comparing
the proposed method with the existing ones in terms of memory access amount. Therefore,
this paper shows the effectiveness of the proposed method by comparing three algorithms.
The first method does not include VSRSC in camera SoC, as given in Figure 10a. The second
method considers a straightforward method to include VSRSC as shown in Figure 10b.
The proposed method is applied in the final one. For fair comparisons, Figure 10b,c are
assumed to adopt the same algorithm [2]. Since there are various types of camera SoCs that
have many image and video processing blocks, it is not possible to examine the amount of
memory access in the entire processing blocks. In this paper, we compare only the memory
access amount in paths that are directly related to VSRSC. The paths correspond to the
solid lines in Figure 10. The memory access paths in the dashed line are not considered.
Bilinear interpolation is considered for image warping.

Processing

block #1

Processing

block #2

Image 

Warping

Motion 

Estimation

Bus

(W+MW, H+MH) (W, H)

Shared Memory

Processing

block #1
Processing

block #2

Bus

(W, H)

Shared Memory

(W, H)

Processing

block #1
VS with

RSC

Bus

Shared Memory

Processing

block #2

(W, H)

(W+MW,

H+MH)

(W, H)

(a) (b)

(c)

(W+MW,

H+MH)

Figure 10. Comparison of memory access amount in three methods: (a) no video stabilization and
rolling shutter compensation, (b) straightforward method, and (c) proposed method.

Without video stabilization and rolling shutter compensation, the size of output frames
from the processing block #1 in Figure 10a is the same as the size of frames input to the
processing block #2, where width and height are W and H, respectively. Hence, the amount
of memory access to process a single frame is (2 × M × N). Now, let us consider the
straightforward method as shown in Figure 10b. VSRSC generally generates an output
frame from an input frame by deforming and cropping the input frame, so an input



Sensors 2022, 22, 2341 14 of 18

frame size should be bigger than an output frame size. Let the width and height of an
input image be (W + MW) and (H + MH), respectively, where MW and MH are margin
for processing. The processing block #1 first writes a frame in the shared memory to
be processed by VSRSC. Its memory access amount, or BS

P, is (W + MW) × (H + MH).
VSRSC then performs motion estimation and image warping. In order to predict motion
between the previous and current frames, VSRSC generally needs to read the previous and
current frames at least once. The amount of memory access during motion estimation, or
BS

ME, is 2(W + MW)× (H + MH). For image warping, it reads an input frame from the
shared memory, and synthesizes the new frame to store it to the shared memory. While the
memory access amount for storing the new frame is W × H, the memory access amount
for reading the input frame, MR, is not constant. Its memory access amount, or BS

W , is
(W × H + MR). As discussed in Section 3.3.1, the amount of memory access depends on
compensating parameters. The value of MR is proportional to NT

access in Section 3.3.1 or
the total number of rows to be accessed for interpolating one output image in the image
warping. If camera motion in a video is averagely close to zero along frames, the average
value of NT

access of the whole frames approximates to (H + 1). Hence, the value of MR is
averagely (W + 1)× (H + 1), which is approximately W × H. It should be noted here that
since output frames are cropped within input images, the value of MR cannot exceed the
size of the input image with (W + MW)× (H + MH). Finally, the processing block #2 reads
the output frame from the shared video, which amounts to W × H (or BS

V). Hence, the total
amount of memory access is (BS

P + BS
ME + BS

W + BS
V) = 3(W + MW)× (H + MH) + 2W ×

H + MR, and its average and maximal values are (3(W + MW)× (H + MH) + 3W × H)
and (4(W + MW)× (H + MH) + 2W × H), respectively.

In the proposed method, motion estimation is performed while processing block #1 writes
output frames to the shared memory. Its memory access amounts to (W + MW)× (H + MH).
Then, image warping reads data from the shared memory to feed its output frame to
processing block #2. There are two types of processing block #2 in respect of memory access
patterns. The first pattern of memory access is the raster scan order, and the other one is
the block-based memory access pattern. If the memory access pattern of image warping
is raster scan order, the amount of memory access becomes MR. In this case, the total
amount of memory access of the proposed method is (W + MW)× (H + MH) + MR, and
its maximal value is 2(W + MW)× (H + MH). The second access pattern is block-based
memory access. The average amount of memory access, or MAVG

B , is given in Equation (12),
and the total amount of memory access is (W + MW)× (H + MH) + MAVG

B . Since MB is
W × H/(BW BH), Equation (12) can be rewritten as

MAVG
B = W × H × (1 + B−1

W + B−1
H + B−1

W B−1
H ) (13)

Table 1 summarizes the memory access amount required for processing a single frame.
The proposed method significantly reduces the amount of memory access compared to the
straightforward method. The additional memory access amount by the proposed method
is extremely small compared to no VSRSC. Table 2 shows the memory access amount of
a typical example. It is assumed here that the frame size is 1920× 1080 and the margin
is 10% for the x and y directions. In the table, the straightforward method averagely
increases the memory access amount by 232%, in order to support VSRSC. Meanwhile,
the proposed method averagely increases only 11% of the memory access amount. The
proposed one reduces the memory access amount by 21.1 times (=232%/11%) compared to
the straightforward method.

The total amounts of memory accesses for no VSRSC and the proposed method
(raster scan order) are averagely (2× M × N) and ((W + MW) × (H + MH) + M × N),
respectively. The additional memory access amount of the proposed method becomes
(MW × H + MH ×W + MW ×MH). Let the margins for the x and y directions be αW and
αH in terms of percentage. Then, the increase rate of additional memory access amount is
as follows.



Sensors 2022, 22, 2341 15 of 18

MW H + MHW + MW MH
2WH

= 0.5(αW + αH + αWαH) (14)

where MW = αWW and MH = αH H. Hence, the increased rate of additional memory
access amount is proportional to the sum of margin rates along the x and y directions
by approximating αWαH << αW and αWαH << αH . The strength of this work is that it
performs VSRSC with extremely small increase of memory access.

The margin area is required to perform VSRSC. Accordingly, IPC should handle an
image larger than the final output image, which increases the implementation cost of the
IPC. The IPC needs to additionally process data of size ((W + MW)× (H + MH)−W×H)).
If the size of the final output image is 1920× 1080 and the margin is 10% for the x and y
directions, the amount of data to be additionally processed by the IPC is 21%.

Table 1. Memory access amount required for processing a single frame. Here, VSRSC stands for
video stabilization with rolling shutter compensation.

Method Memory Bandwidth

No VSRSC 2×M× N

Straightforward method
On average 3(W + MW)× (H + MH) + 3W × H

maximum 4(W + MW)× (H + MH) + 2W × H

Proposed method
Raster scan order

On average (W + MW)× (H + MH) + W × H

maximum 2(W + MW)× (H + MH)

Proposed method
Block-based (on average) (W + MW)× (H + MH) + MAVG

B

Table 2. Memory access amount for a frame with a size of 1920× 1080. Let the block size for the
video encoder be 64. The margin size is set to 10%.

Method
Memory Bandwidth

Value Ratio

No VSRSC 4,147,200 1.00

Straightforward method
On average 13,747,968 3.32

maximum 14,183,424 3.42

Proposed method
raster scan order

On average 4,582,656 1.11

maximum 5,018,112 1.21

Proposed method
Block-based (on average) 4,778,752 1.15

4.2. Image Quality

Video stabilization techniques have been studied extensively over the past decade.
Recent algorithms show high performance in terms of video quality, but, as mentioned in
the previous chapter, most algorithms are software-based post-processing and use a large
amount of computation. On the other hand, consumer cameras use fast real-time algorithms
or mechanical optical image stabilization. As these fast algorithms have been developed for
real-time operation, the performance is inferior to that of the software-based post-processing
algorithm. Since the proposed algorithm is also designed for the real-time processing, its
performance is also inferior to that of the software-based post-processing algorithm.

The performance gap between the proposed method and the state-of-the-art techniques
depends on the type of input videos. Since the proposed algorithm adopts a 2D-based
motion model, the performance gap is very small for videos having small camera motion.
However, as the camera motion becomes large, the 2D-based motion model will not
accurately model the camera motion, and its performance will degrade. A trade-off between



Sensors 2022, 22, 2341 16 of 18

performance and computation is inevitable in real-time application. The performance of the
proposed method is the same as that of our previous algorithm. The detailed performance
comparisons are given in [2].

Although the proposed method is not superior to the state-of-the-art methods applied
in post-processing in terms of video quality, it provides sufficient performance to lower
the cost of camera hardware for the development of real-time devices. It requires only an
additional 11% increase of memory access on average for video stabilization and rolling
shutter compensation when the margin is 10%. Therefore, it is very suitable for low-cost
camera hardware.

4.3. Extra Processing Delay

Motion estimation of the proposed method consists of two parts: data projection and
motion search. As discussed in Section 3.2, the data projection needs only simple operations.
Hence, the extra processing delay is not an issue in data projection. The motion search
starts after finishing the data projection of the current frame. In order not to increase the
processing delay, this motion search should be completed before starting the projection of
the next frame. There is a black area [2] in CMOS image sensor where it is a non-image
area. Since the motion search in the proposed method is a one-dimensional search problem,
it may be possible to perform within this non-image timing. If the motion search cannot be
completed within the black area time, three line buffers are required for triple buffering. In
this case, the processing delay increases by one frame.

The interpolation weight for the same row is constant, as discussed in Section 3.3.
The calculation of interpolation weight only needs to be performed once for each row. In
addition, interpolation requires only several numerical operations. Hence, the processing
delay of the image warping is not a problem.

5. Conclusions

Video stabilization with rolling shutter compensation generally requires high com-
putational burden and huge memory access amount. Existing research focused on the
development of software-based post processing algorithms, and it was difficult to ap-
ply these algorithms to low-cost cameras with limited hardware resources. Some fast
algorithms were developed in order to alleviate the computational burden by trading off
between performance and processing speed, but the memory access amount required to
perform video stabilization with rolling shutter compensation is still too huge to run on
low-cost camera hardware. This work presents a structure and layout method to efficiently
implement our previous real-time algorithm for low-end camera hardware in terms of
shared memory access amount. The proposed method places sub-components in a para-
sitic form in other processing blocks, and the sub-components reuse data read from other
processing blocks. Hence, the additional memory access amount will be extremely small.
The proposed method thus has high application potential, particularly in low-cost devices.

VSRSC consists of some sub-components. The proposed method places each sub-
component in a parasitic form in other processing blocks to reduce the memory access.
Hence, all processing blocks in the camera SoC related to the VSRSC should be implemented
in hardware to run the proposed method in real time, which requires very high cost. This
makes it difficult to evaluate the real-time performance of the proposed method at this time.
Further work in the real-time implementation on camera SoC needs to be carried out to
evaluate the proposed method.

Funding: The present research has been conducted by the Research Grant of Kwangwoon University
in 2020. The work reported in this paper was conducted during the sabbatical year of Kwangwoon
University in 2019. This work was supported by the Institute of Information & communications
Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No.
2020-0-00011).

Institutional Review Board Statement: Not applicable.



Sensors 2022, 22, 2341 17 of 18

Informed Consent Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Baker, R.J. CMOS: Circuit Design, Layout and Simulation, 3rd ed.; Wiley-IEEE: Hoboken, NJ, USA, 2010; p. 504.
2. Lee, Y.G.; Kai, G. Fast rolling shutter compensation based on piecewise quadratic approximation of a camera trajectory. Opt. Eng.

2014, 53, 093101. [CrossRef]
3. Liang, Y.-M.; Tyan, H.-R.; Chang, S.-L.; Liao, H.Y.M.; Chen, S.-W. Video stabilization for a camcorder mounted on a moving

vehicle. IEEE Trans. Veh. Technol. 2004, 53, 1636–1648. [CrossRef]
4. Geyer, C.; Meingast, M.; Sastry, S. Geometric models of rolling-shutter cameras. In Proceedings of the Omnidirectional Vision

Camera Networks and Non-Classical Cameras, Beijing, Chaina, 21 October 2005; pp. 12–19.
5. Bermak, A.; Boussaid, F.; Bouzerdoum, A. A new read-out circuit for low power current and voltage mediated integrating cmos

imager. In Proceedings of the IEEE International Workshop on Electronic Design, Test and Applications, Perth, WA, Australia,
28–30 January 2004.

6. Liang, C.-K.; Chang, L.-W.; Chen, H.H. Analysis and compensation of rolling shutter effect. IEEE Trans. Image Process.
2008, 17, 1323–1330. [CrossRef] [PubMed]

7. Morimoto, C.; Chellappa, R. Fast electronic digital image stabilization. In Proceedings of the 13th International Conference on
Pattern Recognition, Vienna, Austria, 25–29 August 1996; pp. 284–288.

8. Gleicher, M.L.; Liu, F. Re-cinematography: Improving the camerawork of casual video. ACM Trans. Multimed. Comput. Commun. Appl.
2008, 5, 1–28. [CrossRef]

9. Liu, F.; Gleicher, M.; Jin, H.; Agarwala, A. Content-preserving warps for 3D video stabilization. ACM Trans. Graph. 2009, 28, 44.
[CrossRef]

10. Baker, S.; Bennett, E.P.; Kang, S.B.; Szeliski, R. Removing rolling shutter wobble. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition 2010, San Francisco, CA, USA, 13–18 June 2010; pp. 2392–2399.

11. Forssen, P.-E; Ringaby, E. Rectifying rolling shutter video from hand-held devices. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition 2010, San Francisco, CA, USA, 13–18 June 2010; pp. 507–514.

12. Grundmann, M.; Kwatra, V.; Essa, I. Auto-Directed Video Stabilization with Robust L1 Optimal Camera Paths. In Proceedings of
the IEEE International Conference on Computer Vision and Pattern Recognition 2011, Colorado Springs, CO, USA, 20–25 June
2011; pp. 225–232.

13. Liu, F.; Gleicher, M.; Wang, J.; Jin, H; Agarwala, A. Subspace video stabilization. ACM Trans. Graph. 2011, 30, 4. [CrossRef]
14. Ringaby. E.; Forssen, P.-E. Efficient video rectification and stabilization of cell-phones. Int. J. Comput. Vis. 2012, 96, 335–352.

[CrossRef]
15. Grundmann, M.; Kwatra, V.; Castro, D.; Essa, I. Calibration-free rolling shutter removal. In Proceedings of the IEEE International

Conference on Computational Photograph 2012, Seattle, WA, USA, 28–29 April 2012; pp. 1–8.
16. Lee, Y.G. Video stabilization based the human visual system. J. Electron. Imaging 2013, 23, 053009. [CrossRef]
17. Liu. S.; Yuan, L.; Tan, P.; Sun, J. Bundled camera paths for video stabilization. ACM Trans. Graph. 2013, 32, 78.
18. Dong, J.; Liu, H. Video stabilization for strict real-time applications. IEEE Trans. Circuits Syst. Video Technol. 2017, 27, 716–724.

[CrossRef]
19. Lee, Y.G. Real-time rolling shutter compensation for a complementary metal-oxide semiconductor image sensor. Opt. Eng.

2018, 57, 100501. [CrossRef]
20. Guilluy, W.; Oudre, L.; Beghdadi, A. Video stabilization: Overview, challenges and perspectives. Signal Process. Image Commun.

2021, 90, 116015. [CrossRef]
21. Yang, G.-Y.; Lin, J.-K.; Zhang, S.-H.; Shamir, A.; Lu, S.-P.; Hu, S.-M. Deep Online Video Stabilization With Multi-Grid Warping

Transformation Learning. IEEE Trans. Image Process. 2019, 28, 2283–2292
22. Yu. J.; Ramamoorthi, R. Robust Video Stabilization by Optimization in CNN Weight Space. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition 2019, Long Beach, CA, USA, 15–20 June 2019; pp. 3800–3808.
23. Zhao, M; Ling, Q. PWStableNet: Learning Pixel-Wise Warping Maps for Video Stabilization. IEEE Trans. Image Process.

2020, 29, 3582–3595. [CrossRef] [PubMed]
24. Araneda, L.; Figueroa, M. Real-Time Digital Video Stabilization on an FPGA. In Proceedings of the 2014 17th Euromicro

Conference on Digital System Design, Verona, Italy, 27–29 August 2014.
25. Araneda, L.; Figueroa, M. A compact hardware architecture for digital image stabilization using integral projections.

Microprocess. Microsyst. 2016, 39, 987–997. [CrossRef]
26. Lee, Y.G.; Song, B.C.; Kim, N.H.; Joo, W.H. Low-complexity near-lossless image coder for efficient bus traffic in very large size

multimedia SOC. In Proceedings of the ICIP 2009, Cairo, Egypt, 7–10 November 2009.
27. Lee, Y.G. Fast global motion estimation on single instruction multiple data processors for real-time devices. Electron. Imaging

2019, 58, 113105. [CrossRef]
28. S2L IP Camera Processor. Available online: https://www.ambarella.com/wp-content/uploads/S2L-Product-Brief-Final.pdf

(accessed on 26 January 2022).

http://doi.org/10.1117/1.OE.53.9.093101
http://dx.doi.org/10.1109/TVT.2004.836923
http://dx.doi.org/10.1109/TIP.2008.925384
http://www.ncbi.nlm.nih.gov/pubmed/18632342
http://dx.doi.org/10.1145/1404880.1404882
http://dx.doi.org/10.1145/1531326.1531350
http://dx.doi.org/10.1145/1899404.1899408
http://dx.doi.org/10.1007/s11263-011-0465-8
http://dx.doi.org/10.1117/1.JEI.23.5.053009
http://dx.doi.org/10.1109/TCSVT.2016.2589860
http://dx.doi.org/10.1117/1.OE.57.10.100501
http://dx.doi.org/10.1016/j.image.2020.116015
http://dx.doi.org/10.1109/TIP.2019.2963380
http://www.ncbi.nlm.nih.gov/pubmed/31944957
http://dx.doi.org/10.1016/j.micpro.2015.04.003
http://dx.doi.org/10.1117/1.OE.58.11.113105
https://www.ambarella.com/wp-content/uploads/S2L-Product-Brief-Final.pdf


Sensors 2022, 22, 2341 18 of 18

29. Ramanath, R.; Snyder, W.E.; Yoo, Y.; Drew, M.S. Color image processing pipeline. IEEE Signal Process. Mag. 2005, 22, 34-43.
[CrossRef]

30. Adams, J.E.; Hamilton, J.F. Digital Camera Image Processing Chain Design, 1st ed.; CRC Press: Boca Raton, FL, USA, 2009.
31. Cho, C.-Y.; Chen, T.-M.; Wang, W.-S.; Liu, C.-N. Real-Time Photo Sensor Dead Pixel Detection for Embedded Devices. In

Proceedings of the 2011 International Conference on Digital Image Computing: Techniques and Applications, Noosa, OLD,
Australia, 6–8 December 2011.

32. Mughal, W. Choubey, B. Fixed pattern noise correction for wide dynamic range CMOS image sensor with Reinhard tone mapping
operator. In Proceedings of the 2015 Nordic Circuits and Systems Conference (NORCAS): NORCHIP & International Symposium
on System-on-Chip (SoC), Oslo, Norway, 26–28 October 2015.

33. Barnard, K.; Cardei, V.; Funt, B. A comparison of computational color constancy algorithms—Part I: Methodology and experiments
with synthesized data. IEEE Trans. Image Process. 2002, 11, 972–983. [CrossRef]

34. Trussell, H.J.; Hartwig, R.E. Mathematics for demosaicking. IEEE Trans. Image Process. 2002, 11, 485–492. [CrossRef]
35. Sikora, T. The MPEG-4 video standard verification model. IEEE Trans. Circuits Syst. Video Technol. 1997, 7, 19–31. [CrossRef]
36. Wiegand, T.; Sullivan, G.J.; Bjontegaard, G.; Luthra, A. Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits

Syst. Video Technol. 2003, 13, 560–576. [CrossRef]
37. Sullivan, G.J.; Ohm, J.-R.; Han, W.-J.; Wiegand, T. Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Trans.

Circuits Syst. Video Technol. 2012, 22, 1649–1668. [CrossRef]
38. Bross, B.; Wang, Y.-K.; Ye, Y.; Liu, S.; Chen, J.; Sullivan, G.J.; Ohm, J.-R. Overview of the Versatile Video Coding (VVC) Standard

and its Applications. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3736–3764. [CrossRef]

http://dx.doi.org/10.1109/MSP.2005.1407713
http://dx.doi.org/10.1109/TIP.2002.802531
http://dx.doi.org/10.1109/TIP.2002.999681
http://dx.doi.org/10.1109/76.554415
http://dx.doi.org/10.1109/TCSVT.2003.815165
http://dx.doi.org/10.1109/TCSVT.2012.2221191
http://dx.doi.org/10.1109/TCSVT.2021.3101953

	Introduction
	Review
	Motion Estimation
	Parameter Estimation
	Image Warping

	Proposed Method for Reducing Memory Access Amount
	Camera SoC
	Image Processing Chain
	Requirement of VSRSC for Reducing Memory Access Usage
	Structure of the Proposed Method for Reducing Memory Access Amount

	Motion Estimation
	Image Warping
	Raster Scan Order Access
	Block-Based Access


	Experimental Results and Analysis
	Comparisons of Memory Access Amount
	Image Quality
	Extra Processing Delay

	Conclusions
	References

