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Abstract: Wearing a safety helmet is important in construction and manufacturing industrial activities
to avoid unpleasant situations. This safety compliance can be ensured by developing an automatic
helmet detection system using various computer vision and deep learning approaches. Developing
a deep-learning-based helmet detection model usually requires an enormous amount of training
data. However, there are very few public safety helmet datasets available in the literature, in
which most of them are not entirely labeled, and the labeled one contains fewer classes. This paper
presents the Safety HELmet dataset with 5K images (SHEL5K) dataset, an enhanced version of the
SHD dataset. The proposed dataset consists of six completely labeled classes (helmet, head, head
with helmet, person with helmet, person without helmet, and face). The proposed dataset was tested
on multiple state-of-the-art object detection models, i.e., YOLOv3 (YOLOv3, YOLOv3-tiny, and
YOLOv3-SPP), YOLOv4 (YOLOv4 and YOLOv4pacsp-x-mish), YOLOv5-P5 (YOLOv5s, YOLOv5m,
and YOLOv5x), the Faster Region-based Convolutional Neural Network (Faster-RCNN) with the
Inception V2 architecture, and YOLOR. The experimental results from the various models on the
proposed dataset were compared and showed improvement in the mean Average Precision (mAP).
The SHEL5K dataset had an advantage over other safety helmet datasets as it contains fewer images
with better labels and more classes, making helmet detection more accurate.

Keywords: YOLOv3; YOLOv4 YOLOv5; YOLOR; safety helmet; SHEL5K; object detection;
benchmark dataset

1. Introduction

Workplace safety has become a focus for many production and work sites due to the
consequences of the unsafe environment on the health and productivity of the workforce.
According to statistics [1–4], the construction industry is at high risk for the injuries and
deaths of workers. In 2005, the National Institute for Occupational Safety and Health
(NIOSH) reported 1224 deaths of construction workers in 1 y, making it the most dangerous
industry in the United States (U.S.) [1]. Moreover, the U.S. Bureau of Labor Statistics (BLS)
estimated injuries for 150,000 workers every year at construction sites [1]. The Bureau also
reported the death of one in five workers in 2014 and a total of 1061 construction workers’
deaths in 2019 [2,3]. As per the report of the Ministry of Employment and Labor (MEOL) in
Korea, 964 and 971 workers died in workplace accidents in 2016 and 2017, respectively [4].
Among these fatalities, 485 fatalities occurred at construction sites, followed by 217 and 154
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in the manufacturing and service industry, respectively. Workers at most of the worksites
and manual working environments are at high risk of injuries because of not following the
safety measures and using Personal Protective Equipment (PPE). The carelessness of the
workers and not following PPE compliance will have adverse effects and pose more threats
of minor or major injuries. In 2012, the National Safety Council (NSC) reported more than
65,000 cases of head injuries and 1020 deaths at construction sites [5]. According to the
American Journal of Industrial Medicine, a total number of 2210 construction workers died
because of a Traumatic Brain Injury (TBI) from 2003 to 2010 [6]. Released by Headway, the
brain injury association, 3% of PPE purchased was for head protection as head injuries
account for more than 20% of total injuries [7].

These statistics delineate the prevalence of fatal and non-fatal injuries in the construction
industry, and there is a dire need to reduce the rate. Creating a safe environment for
workers brings an arduous challenge for this sector globally. Adopting safety measures
and providing construction workers with PPE can result in decreasing accident rates.
Despite the effectiveness of these strategies, it is not guaranteed that the workers would be
cautious and use the PPE. To avert all these troubles, there is a need to discover automated
ways of detection and monitoring safety helmets. A deep-learning-based safety helmet
detection system can be developed by using a large amount of labeled data. However,
there is a lack of datasets to build highly accurate deep learning models for workers’
helmet detection. There are few publicly available datasets for safety helmet detection,
which are not entirely labeled, and the labeled ones contain fewer classes and incomplete
labels. Therefore, the proposed work presents the Safety HELmet dataset with 5K images
(SHEL5K) dataset, an enhanced version of the SHD dataset [8]. In the SHD dataset [8],
many objects are not labeled, which is not sufficient to train an efficient helmet recognition
model. The SHD dataset [8] was improved in the proposed work by labeling all three
originally proposed classes and adding three more classes for training an efficient helmet
detection model. The main aims of the proposed study were to: (1) complete the missing
labels and (2) increase the number of classes from three to six (helmet, head with helmet,
person with helmet, head, person without helmet, and face). The proposed dataset was tested on
various object detection models, i.e., YOLOv3 [9], YOLOv3-tiny [10], YOLOv3-SPP [11],
YOLOv4 [12], YOLOv5-P5 [13], the Faster Region-based Convolutional Neural Network
(Faster-RCNN) [14] with the Inception V2 architecture [15], and YOLOR [16] models.
The experimental results showed significant improvements in the mAP as compared to the
publicly available datasets. A comparative analysis was performed, and discussions are
provided based on results from the various models. The proposed system was also used to
successfully perform real-time safety helmet detection in YouTube videos.

2. Related Work

In the literature, various efforts have been made by researchers to develop a vision-based
system for the helmet detection task. Li et al. [17] proposed a Convolutional-Neural-Network
(CNN)-based safety helmet detection method using a dataset of 3500 images collected by
the web crawling method. The precision and recall of the system were recorded as 95% and
77%, respectively. Wang et al. [18] proposed a safety helmet detection model trained on a
total of 10,000 images captured by 10 different surveillance cameras at construction sites.
In the experiment’s first phase, the authors employed the YOLOv3 architecture [9] and
achieved an mAP0.5 of 42.5%. In the second phase, the authors improved the architecture
of YOLOv3 [18] and achieved an mAP0.5 of 67.05%. Wang et al. [19] suggested a hardhat
detection system based on a lightweight CNN using the Harvard database hardhat dataset [20].
The dataset contains 7064 annotated images, which consist of three classes (helmet, head,
and person). In the three classes, the person class is not appropriately labeled. The network
was trained considering two classes (helmet and head) and achieved an average accuracy
of 87.4% and 89.4% for head and helmet, respectively. Li et al. [21] trained an automatic
safety helmet-wearing detection system using the INRIA person dataset [22] and collected
pedestrian data from a power substation. The authors in [21] showed that the accuracy
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of the proposed method (Color Feature Discrimination (CFD) and the ViBE algorithm in
combination with the c4 classifier) yielded better results than HOG features and the SVM
classifier method. The accuracy of the HOG feature with the SVM classifier achieved 89.2%,
while the proposed method achieved an accuracy of 94.13%. Rubaiyat et al. [23] proposed
an automated system for detecting helmets in construction safety. The authors collected
1000 images from the Internet using a web crawler, which consisted of 354 human images
and 600 non-human images. The helmet class achieved an accuracy of 79.10%, while the
without helmet class achieved an accuracy of 84.34%. Similarly, Kamboj and Powar [24]
proposed an efficient deep-learning-based safety helmet detection system for the industrial
environment by acquiring data from various videos of an industrial facility. The videos
were captured by using cameras having a resolution of 1920 × 1080 px and a frame rate
of 25 frames per second. The dataset consisted of 5773 images having two classes (helmet
and without helmet). An improved helmet detection was proposed by Geng et al. [25] using
an imbalanced dataset of 7581 images, mostly with a person in a helmet and a complex
background. The label confidence of 0.982 was achieved by testing it on 689 images.
Moreover, Long et al. [26] proposed a deep-learning-based detection of safety helmet
wearing using 5229 images, acquired from the Internet and various power plants (including
power plants under construction). The proposed system was based on SSD, and an mAP0.5
of 78.3% was achieved on the test images and compared with SSD, which was 70.8% using
an IoU of 0.5. In the above studies [17,18,23,24,26], they used custom data to test their
method; therefore, it is not fair to make a comparison of the proposed work in this paper
with these methods.

2.1. Datasets for Safety Helmet Detection

In general, researchers develop helmet detection systems using custom data or publicly
available datasets. Some of the publicly available datasets, i.e., [8,20,27,28], for safety helmet
detection are summarized in Table 1. Table 1 shows a brief comparison of the proposed
dataset in the current study with various publicly available datasets. Each dataset shown
in Table 1 is explained in detail below.

Table 1. Comparison of public safety helmet datasets and the SHEL5K dataset.
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Total sample 7063 7041 5000 7581 5000

Class 3 3 3 2 6

Number of labels in each class

Helmet 19,852 26,506 18,966 - 19,252

Head 6781 8263 5785 - 6120

Person * 616 998 751 9044 -

Head and helmet - - - - 16,048

Person not helmet - - - - 5248

Person and helmet - - - - 14,767

Face - - - - 14,135

Hat ** - - - 111,514 -

Total 27,249 35,767 25,502 120,558 75,570

* The person class of the SHD dataset is called head. ** The hat class of the SHD dataset is called helmet.
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2.1.1. Safety Helmet Detection Dataset

The Safety Helmet Detection (SHD) dataset [8] is a publicly available dataset on
Kaggle containing 5000 labeled images and three classes (helmet—18,966, head—5785,
and person—751). However, the dataset has many incompletely labeled objects. Figure 1b
shows the dataset labels, which shows that the person class is not labeled.

Figure 1. Comparison of public safety helmet datasets’ labels and SHEL5K dataset’s labels:
(a) SHEL5K dataset, (b) SHD dataset [8], (c) hardhat dataset [20], (d) HHW dataset [27], and (e) SHW
dataset [28].

2.1.2. Hardhat Dataset

The hardhat dataset [20] is a safety helmet dataset shared by Northeastern University
consisting of 7063 labeled images. The dataset is divided into training and testing sets,
which contain 5297 and 1766 images, respectively. The images are from three distinct classes
having 27,249 labeled objects (helmet—19,852, head—6781, and person—616). In the given
dataset, the person class is not labeled properly, as shown in Figure 1c, and the number of
images in each class is not distributed equally.

2.1.3. Hard Hat Workers Object Detection Dataset

The Hard Hat Workers (HHW) dataset [27] is an improved version of the hardhat
dataset [20] and is publicly available on the Roboflow website. In the HHW dataset [27],
the number of labels in each class is increased (helmet—26,506, head—8263, and person—998).
Figure 1d shows a sample image of the HHW dataset [27] labels in which it can be seen
that the person class is not labeled.
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2.1.4. Safety Helmet Wearing Dataset

The Safety Helmet Wearing (SHW) dataset [28] consists of 7581 images. The images
have 111,514 safety helmet-wearing or positive class objects and 9044 not-wearing or
negative class objects. Some of the negative class objects were obtained from the SCUT-HEAD
dataset [29]. Several bugs of the original SCUT-HEAD dataset [29] were fixed to directly
load the data into a normal PASCAL VOC format. Most images in the dataset are helmet
images, and there are a very small number of head images. Figure 1e shows a labeled
sample image from the SHW dataset. Figure 1a shows a comparison between the public
datasets’ labels and the SHEL5K dataset’s labels.

3. SHEL5K Dataset

In the proposed work, the number of labels and classes in the SHD dataset [8] were
extended and completed. Figure 2 shows sample images of the SHD dataset [8]. The SHD
dataset [8] contains 5000 images having a resolution of 416 × 416 and 25,501 labels with
complicated backgrounds and bounding box annotations in PASCAL VOC format for the
three classes namely helmet, head, and person. The limitation of the SHD dataset [8] is that
numerous objects are incompletely labeled. Figure 3a,b shows image samples with person
and head not properly labeled. The main aims of the proposed study were to: (1) completed
the missing labels and (2) increase the number of classes from three to six (helmet, head with
helmet, person with helmet, head, person without helmet, and face).

To address the limitations associated with the SHD dataset, SHEL5K is proposed,
which consists of 75,570 labels. The number of labels in the SHEL5K dataset was increased
for each class, i.e., (helmet—19,252, head—6120, head with helmet—16,048, person without
helmet—5248, person with helmet—14,767, and face—14,135). Figure 3 shows the comparison
of the labels of the SHD dataset [8] (a and b) and SHEL5K datasets (c and d), with the
helmet in blue, the head in purple, the head with helmet in navy blue, the person with
helmet in green, the person without a helmet in red, and the face in the yellow bounding
boxes. Moreover, the graph in Figure 4 shows the comparison of the SHD dataset [8] and
SHEL5K dataset in terms of the number of labels of each class. The SHD dataset [8] and
SHEL5K labels are represented by blue and orange bars, respectively. From the graph, it
can be seen that the class person is too poorly labeled. In the proposed work, the labeling of
the image was performed by using the LabelImg [30] tool with the following steps: (1) the
default number of classes in the tool was changed to six for our dataset; (2) images opening
and label saving paths were specified; (3) objects corresponding to the classes were labeled,
and an XML file was created.

The file contains the name of the image, the path to the image, the image size and
depth, and the coordinates of the producer image.
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Figure 2. Sample images of the SHEL5K dataset.
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Figure 3. (a,b) SHD dataset [8] labels; (c,d) SHEL5K dataset labels.

Figure 4. Bar graph comparison between the SHD dataset [8] and SHEL5K dataset in terms of the
number of labels for each class.
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4. Results and Discussion

The proposed dataset SHEL5K was benchmarked by using state-of-the-art one-stage object
detection models such as YOLOv3 [9], YOLOv4 [12] YOLOv5-P5 [13], the Faster-RCNN [14]
with Inception v2 [15], and YOLOR [16]. In particular, we employed different pretrained
variations of the models, i.e., YOLOv3-tiny [10], YOLOv3 [9], YOLOv3-SPP [11], YOLOv3-SPP
pretrained on the MS COCO dataset [31], YOLOv3-SPP pretrained on the ImageNet
dataset [32], and YOLOv5-P5 models (YOLOv5s, YOLOv5m, YOLOv5x) [13]. These models
were prepared using the COCO 128 dataset, which contains the first 128 images of COCO
train 2017 [31].

4.1. Evaluation Metrics

In the proposed work, the precision, recall, F1 score, and mAP were used as the
evaluation metrics to perform a fair comparison between the experimental results of the
models. The precision represents the object detection model’s probability of the predicted
bounding boxes being identical to the actual ground truth boxes and is described in
Equation (1) below.

Precision =
TP

(TP + FP)
(1)

where TP, TN, FP, and FN refer to True Positive, True Negative, False Positive, and False
Negative, respectively. The recall represents the probability of ground truth objects being
correctly detected as depicted in (2).

Recall =
TP

(TP + FN)
(2)

Moreover, the F1 score is the harmonic mean of the model’s precision and recall, and
the mathematical representation is shown in Equation (3).

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(3)

Additionally, the mean Average Precision (mAP) is the score achieved by comparing
the detected bounding box to the ground truth bounding box. If the intersection over union
score of both the boxes is 50% or larger, the detection is considered as TP. The mathematical
formula of the mAP is given in Equation (4) below.

mAP =
1
n

k=n

∑
k=1

APk (4)

where APk is the average precision of class k and n represents the number of classes.

4.2. Experimental Setup

Data preparation started with the conversion of annotated files from the PASCAL
VOC format to the YOLO format to be given as the input to object detection models.
The proposed dataset was randomly divided into training and testing sets. The training set
contained a total of 4000 (80%) images, while the testing set contained 1000 (20%) images.
The criterion for evaluating the performance of the various models were the mAP0.5 (the
and F1 score. During the experiments, the Intersection over Union (IoU) threshold value
was kept at 0.5. YOLOv3-SPP [11], YOLOv4 [12], YOLOv5-P5 [13], and YOLOR [16] were
considered trained on the proposed dataset as these models have the fastest inference
time for real-time object detection as compared to the majority of object detection models.
The reason is that these models perform classification and bounding box regression in
a single step. Empirically, it was found that the suitable number of epochs for training
the YOLOv3 models (YOLOv3-tiny [10], YOLOv3 [9], and YOLOv3-SPP [11]), and the
Faster-RCNN [14] with Inception v2 [15] was 1000, while for the other models, namely
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YOLOv4 [12], YOLOv5-P5 [13], and YOLOR [16], the value was 500. The performance of
these models was also compared with the Faster-RCNN [14] with Inception v2 [15] model,
which is better at detecting small objects. The Faster-RCNN [14] with Inception V2 [15]
model was trained with 250,000 steps, and the learning rate was set to 0.0002 while keeping
the value of the batch size equal to 16. The results of the Faster-RCNN [14] with Inception
v2 [15] were measured using the comparative analysis of object detection metrics with a
companion open-source toolkit [33], which is similar to the YOLO models.

4.3. Three-Class Results

The SHD dataset [8] has three classes (helmet, head, and person) and the SHEL5K dataset
has six classes (helmet, head with a helmet, a person with a helmet, head, person without a helmet,
and face). In the current study, two classes person with helmet and person without helmet were
combined to perform a fair comparison between the two datasets. Both classes were merged,
as they correspond to the class person in the SHD dataset [8]. Figure 5 shows the comparison
of the SHD and SHEL5K dataset results on the same images. For the SHD dataset [8]
results, the person class was not detected. Table 2 shows the comparison results of the
YOLOv3-SPP [11] and YOLOv5x [13] models on the SHD dataset [8] and SHEL5K dataset.
For the sake of simplicity, the results of two models, YOLOv3-SPP [11] and YOLOv5x [13],
are presented as they outperformed the remaining models. For the YOLOv5x [13] model,
an mAP0.5 of 0.8528 was achieved for three classes, where the best and worst mAP0.5s
were 0.8774 and 0.8311 for the helmet and person classes, respectively. The trained model
showed low performance in the case of the person class in comparison with the helmet class.
The YOLOv5x [13] model achieved better performance than YOLOv3-SPP [11] as shown in
Table 2. The head class in the SHD dataset [8] achieved high a precision, recall and F1 score
as it was properly labeled in comparison with the other classes. The helmet class results
did not perform well as head with helmet and helmet were given a single label helmet in
the dataset. Moreover, the results of the person class were low as the labeling of the person
class was incomplete in the SHD dataset [8].

Table 2. Comparison between two dataset results for 3 classes on the YOLOv3-SPP [11] and
YOLOv5x [13] models.

YOLOv3-SPP [11]

SHD Dataset [8] SHEL5K Dataset with 3 Classes

Class Precision Recall mAP0.5 F1 Precision Recall mAP0.5 F1

Helmet 0.9578 0.4976 0.4869 0.6549 0.9222 0.7197 0.7028 0.8084
Head 0.9154 0.302 0.2923 0.4542 0.9114 0.6642 0.6484 0.7684
Person 0 0 0 0 0.9092 0.6354 0.6148 0.748

Average 0.6244 0.2665 0.2597 0.3697 0.9143 0.6731 0.6553 0.775

YOLOv5x [13]

SHD Dataset [8] SHEL5K Dataset with 3 Classes

Class Precision Recall mAP0.5 F1 Precision Recall mAP0.5 F1

Helmet 0.9559 0.9162 0.9162 0.9356 0.9402 0.8858 0.8774 0.9122
Head 0.909 0.879 0.8686 0.8938 0.9216 0.8562 0.8499 0.8877
Person 0.0345 0.0052 0.0003 0.009 0.9203 0.8409 0.8311 0.8788

Average 0.6331 0.6001 0.595 0.6128 0.9274 0.861 0.8528 0.8929



Sensors 2022, 22, 2315 10 of 23

Figure 5. Comparison of the SHD and SHEL5K dataset results on the same images. (a–c) The results
of the best SHD dataset [8] model. (d–f) The results of the best SHEL5K dataset model.

Figure 6 shows the confusion matrices for the YOLOv5x [13] model based on various
publicly available datasets. The confusion matrices computed for the HHW dataset [27],
the hardhat dataset [20], and the SHD dataset [8] for three classes (helmet, head, and person)
are plotted in Figure 6a–c, respectively. The confusion matrices showed very poor results
for the class person, and the background FNs were also high. The background FNs are the
unrecognized percentage of the labeled object, and its results were for all three datasets.
The helmet and head classes performed very well, and the background FPs were recorded as
high. Figure 6d shows the confusion matrices constructed by the object detection models
on the SHW dataset [28] test dataset for two classes (hat and person). The confusion matrix
shows that the YOLOv5x [13] model showed good performance on the SHW dataset [28]
as compared to the other datasets. Overall, the performance of the other datasets was also
promising, except for the person class, which was not detected by the model. Therefore,
in the current study, the dataset was extended and labeled properly, and additional classes
were added to have a more accurate detection of the person class in the SHEL5K dataset.

4.4. Six-Class Results

Tables 3 and 4 show the comparison results of different variations of the YOLOv3-SPP [11]
and YOLOv5-P5 [13] models trained on the SHEL5K dataset. For YOLOv3-SPP [11], three
different models were evaluated using the SHEL5K dataset, in which one was trained
from scratch (not pretrained) and the other two models were pretrained on the ImageNet
dataset [32] and MS COCO dataset [31]. The highest mAP0.5 of 0.5572 was achieved by the
YOLOv3-SPP [11] model pretrained on the ImageNet dataset [32]. For YOLOv3-SPP [11],
the highest mAP0.5 of 0.6459 was achieved for the head with helmet class, while the two
worst mAP0.5s of 0.007 and 0.0295 were reported for the face class when the model was
trained from scratch and YOLOv3-SPP [11] was pretrained on the MS COCO dataset [31].
These models achieved an mAP0.5 value of nearly zero, which may be because the human
faces were far away in most images and there was no face class included in the COCO
dataset [31]. For the YOLOv5-P5 [13] model, Table 4 shows a comparison of the results of
the three models of YOLOv5-P5 [13] on the SHEL5K dataset. The YOLOv5-P5 [13] model
is available in the YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x models. However, in the
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current study, the YOLOv5s, YOLOv5m, and YOLOv5x models on the pretrained COCO128
dataset [31] were selected. The YOLOv5x [13] achieved an mAP0.5 of 0.8033, and the class
with the highest mAP0.5 of 0.8565 was the class person with helmet. The results of the face
class were relatively poor, and the mAP0.5 was 0.7196. The mAP0.5 of YOLOv5-P5 [13] was
better than YOLOv3-SPP [11]. The results of the YOLOv5x [13] model on three different
types of images captured at various distances (far, near, and medium) are shown in Figure 7.

Figure 6. Confusion matrices of the YOLOv5x model on (a) the SHD dataset [8], (b) hardhat
dataset [20], (c) HHW dataset [27], and (d) SHW dataset [28].
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Figure 7. The YOLOv5x [13] detected outputs are plotted with the original images.

Table 3. Comparison results of different variations of the YOLOv3 models (a) trained from scratch,
(b) pretrained on the ImageNet dataset [32], and (c) pretrained on the MS COCO dataset [31].

YOLOv3-SPP [11]

Scratch Pretrained on ImagesNet Dataset [32] Pretrained on MS COCO Dataset [31]

Class Precision Recall mAP0.5 F1 Precision Recall mAP0.5 F1 Precision Recall mAP0.5 F1

Helmet 0.9253 0.3144 0.3053 0.4693 0.9373 0.6275 0.6105 0.7518 0.8277 0.2971 0.2602 0.4372
Head with helmet 0.9244 0.4035 0.3871 0.5618 0.9349 0.6668 0.6459 0.7784 0.7806 0.463 0.4043 0.5813
person with helmet 0.7778 0.1442 0.12 0.2433 0.8746 0.6288 0.5924 0.7316 0.8622 0.4491 0.4076 0.5906
Head 0.8868 0.2295 0.2173 0.3646 0.9268 0.6184 0.5978 0.7418 0.8378 0.2775 0.2422 0.4169
Person without helmet 0.8241 0.1563 0.1339 0.2628 0.8784 0.4957 0.4729 0.6338 0.8389 0.3823 0.3528 0.5252
Face 0.4191 0.0556 0.0295 0.0982 0.7588 0.4715 0.4238 0.5816 0.3978 0.013 0.007 0.0252

Average 0.7929 0.2173 0.1988 0.3333 0.8851 0.5848 0.5572 0.7032 0.7575 0.3137 0.279 0.4294

Table 4. Comparison results of different variations of YOLOv5-P5 [13]: (a) YOLOv5s, (b) YOLOv5m,
and (c) YOLOv5x.

YOLOv5s [13] YOLOv5m [13] YOLOv5x [13]

Class Precision Recall mAP0.5 F1 Precision Recall mAP0.5 F1 Precision Recall mAP0.5 F1

Helmet 0.961 0.7825 0.872 0.8626 0.9632 0.7981 0.8795 0.8729 0.96 0.8205 0.8896 0.8848
Head with helmet 0.9437 0.7973 0.8761 0.8608 0.9476 0.7946 0.8783 0.8641 0.9357 0.8247 0.8912 0.8767
Person with helmet 0.9061 0.8385 0.8935 0.871 0.9131 0.8346 0.8922 0.8721 0.8953 0.8723 0.9089 0.8836
Head 0.9341 0.8219 0.889 0.8744 0.9335 0.8252 0.8897 0.876 0.9344 0.8497 0.9025 0.89
Person without helmet 0.8791 0.7583 0.8493 0.8142 0.8872 0.7602 0.8527 0.8188 0.8921 0.7924 0.8732 0.8393
Face 0.8991 0.6514 0.7863 0.7558 0.9061 0.6982 0.8122 0.7886 0.895 0.7427 0.8301 0.8117

Average 0.9207 0.774 0.861 0.8397 0.9251 0.7851 0.8687 0.84887 0.9188 0.817 0.8826 0.8644

Figure 8 shows the confusion matrix of the SHEL5K dataset. The results were relatively
low compared to the other public datasets. This is also evident from Table 5, which
shows the comparison results of the YOLOv5x [13] model on various datasets including
the SHEL5K dataset. The model trained on the SHEL5K dataset showed better results
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compared to the other datasets except for the SHW dataset [28]. The precision, recall, and F1
score achieved by the model on the proposed dataset were slightly lower than the SHW
dataset [28]. The precision, recall, and F1 score of the model on the SHEL5K were recorded
as 0.9188, 0.817, and 0.8644, respectively. This is because the SHW dataset [28] contains
only two classes, while the proposed dataset contains six classes. Moreover, during the
labeling of the proposed dataset, an image containing some part of the helmet and face
was labeled as the helmet or face class, respectively. The Precision–Recall (PR) curve is also
shown in Figure 8, which also depicts that the lowest mAP0.5 (0.72) was achieved by the
face class, which was less than the mAP (0.80) of all the other classes.

Figure 8. Confusion matrix and PR curve of the object detection model calculated on the SHEL5K
dataset and the YOLOv5x [13] model.

The results of the YOLOR model on the proposed dataset (SHEL5K) are summarized
in Table 6. The YOLOR [16] model used in the proposed work was pretrained on the COCO
dataset [31]. The model achieved an mAP0.5 of 0.8828, and the highest mAP0.5 of 0.911
was recorded for the class head with helmet. The result of the class person without helmet was
relatively poor with an mAP0.5 of 0.8498. The results of the model on the sample images
are depicted in Figure 9.

Figure 9. Result of the YOLOR [16] model experiments on the sample images.
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Table 5. The result of the YOLOv5x [13] and YOLOR [16] models on the publicly available datasets
and the proposed SHEL5K dataset.

YOLOv5x [13] YOLOR [16]

Datasets Class Precision Recall mAP0.5 F1 Precision Recall mAP0.5 F1

SHW [28] 2 0.9334 0.9297 0.9219 0.9294 0.9486 0.8063 0.889 0.8697

Hardhat [20] 3 0.6715 0.6545 0.6389 0.6546 0.6367 0.6263 0.6407 0.6315

HHW [27] 3 0.6355 0.6295 0.6214 0.6288 0.6289 0.6177 0.6344 0.6233

SHD [8] 3 0.6331 0.6001 0.595 0.6128 0.6211 0.6341 0.6431 0.6276

SHEL5K 6 0.9187 0.817 0.8826 0.8644 0.9322 0.8066 0.8828 0.8637

Table 6. The result of the YOLOR [16] model on the SHEL5K dataset.

YOLOR [16]

Class Precision Recall mAP0.5 F1

Helmet 0.9658 0.7981 0.8846 0.874

Head with helmet 0.9464 0.8172 0.8898 0.877

Person with helmet 0.9225 0.8771 0.9204 0.8992

Head 0.9461 0.8464 0.9068 0.8935

Person without helmet 0.8859 0.8019 0.8767 0.8418

Face 0.9264 0.6992 0.8182 0.797

Average 0.9322 0.8066 0.8828 0.8637

Figure 10 compares the visualization results of the best model trained on the SHW
dataset [28] and the SHEL5K dataset on a test image. It can be seen from the result of
the model trained on the SHW dataset [28] in Figure 10a that the model was not able to
detect the helmet class if the helmet in the image was half visible and the head of the worker
was hidden, as shown in Figure 10a. The results of the model trained on the SHEL5K
dataset are shown in Figure 10b, which shows that the model can detect the helmet class
correctly, which shows that the labeling in the proposed dataset was performed efficiently.
The state-of-the-art model trained on the SHEK5K dataset in the current study did not
perform well. However, in the future, the proposed dataset will be given to new object
detection models to achieve high performance.

Figure 10. Comparison of the best-trained model results on the (a) SHW dataset [28] and the (b)
SHEL5K dataset.

The K-fold cross-validation method was used to check whether the models were
subjected to overfitting on the proposed data or not. The proposed dataset was divided into
training 80% (4000 images) and testing 20% (1000 images). The value of K was considered
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five where the data were split into five folds, i.e., K1, K2, K3, K4 and K5. Table 7 shows
the results of K-fold cross-validation on the SHEL5K dataset using the YOLOR [16] model.
The results of all the folds were comparable, which shows that the model was not subjected
to overfitting. The maximum mAP0.5 value of 0.8881 was achieved at fold K5, and the
minimum mAP0.5 value of 0.861 was achieved at fold K4.

Table 7. The results of K-fold cross-validation on the SHEL5K dataset using the YOLOR model [16].

K1 K2 K3 K4 K5

mAP0.5 F1 mAP0.5 F1 mAP0.5 F1 mAP0.5 F1 mAP0.5 F1

Helmet 0.8846 0.874 0.8813 0.8704 0.8878 0.8787 0.881 0.8702 0.8896 0.878

Head with helmet 0.8898 0.877 0.8848 0.8741 0.8932 0.8815 0.8859 0.8713 0.8953 0.88

person with helmet 0.9204 0.8992 0.9146 0.8976 0.9213 0.9048 0.9319 0.9117 0.9226 0.9037

Head 0.9068 0.8935 0.893 0.8805 0.8979 0.885 0.9068 0.8921 0.9134 0.9003

person without helmet 0.8767 0.8418 0.8731 0.8433 0.8867 0.8547 0.8749 0.8412 0.8832 0.8584

face 0.8182 0.797 0.8213 0.7943 0.814 0.79 0.8094 0.7795 0.8244 0.8008

Average 0.8828 0.8637 0.878 0.8614 0.8835 0.8658 0.8817 0.861 0.8881 0.8714

The results of all the state-of-the-art models trained on the SHEL5K dataset are
summarized in Table 8. The performance of the YOLO models was compared with
the Faster-RCNN with the Inception V2 architecture. YOLOv3-tiny [10], YOLOv3 [9],
and YOLOv3-SPP [11] were the models pretrained on the ImageNet dataset [32], while
YOLOv5s, YOLOv5m, and YOLOv5x [13] were pretrained on the COCO128 dataset [31].
Detection results of the best yolov5x [13] models trained on SHEL5K dataset and other
publicly available datasets [8,20,27,28] are illustrated in Appendix A. The best mAP0.5 of
0.8828 was achieved by the YOLOR [16] model with a precision, recall, and F1 score of
0.9322, 0.8066, and 0.8637, respectively. The lowest mAP0.5 score of 0.3689 was achieved by
the Faster-RCNN [14] with a precision, recall, and F1 score of 0.7808, 0.3862, and 0.5167,
respectively. The Faster-RCNN model achieved the highest inference time of 0.05 s. In the
YOLO models, the YOLOv3-tiny [10] achieved the lowest mAP0.5 score of 0.3779 with
a precision, recall, and F1 score of 0.7695, 0.4225, and 0.5408, respectively. Table 8 show
the training time and testing time of all the models. The YOLOv3 tiny model had the
lowest inference time of 0.006 s and fewer layers and parameters as compared to the other
YOLO models. The YOLOR model achieved the highest mAP0.5 of 0.8828 with an optimum
inference time of 0.012 s.

Table 8. Results of state-of-the-art models on the SHEL5K dataset.

Models Precision Recall mAP0.5 F1 Training Time Testing Time Parameters Layers(hours) (s) (Million)

Faster-RCNN [14] 0.7808 0.3862 0.3689 0.5167 55.6 0.084 13.3 48

YOLOv3-tiny [10] 0.7695 0.4225 0.3779 0.5408 5.2 0.006 8.7 37

YOLOv3 [9] 0.8509 0.4482 0.417 0.5848 24.6 0.011 61.6 222

YOLOv3-SPP [11] 0.8851 0.5848 0.5572 0.7032 24.6 0.012 62.6 225

YOLOv4 [12] 0.925 0.7798 0.7693 0.8449 11.2 0.014 63.9 488

YOLOv4pacsp-x-mish [12] 0.9195 0.8036 0.7915 0.8567 14.5 0.014 63.9 488

YOLOv5s [13] 0.9205 0.774 0.861 0.8397 0.3 0.018 7.1 224

YOLOv5m [13] 0.9251 0.7851 0.8687 0.8488 2.7 0.022 21.1 308

YOLOv5x [13] 0.9188 0.817 0.8826 0.8644 6.3 0.032 87.2 476

YOLOR [16] 0.9322 0.8066 0.8828 0.8637 9.8 0.012 36.9 665
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5. Conclusions

The proposed work aimed to extend the number of classes and labels of the publicly
available SHD dataset [8]. The SHD dataset [8] contains 5000 images with three object
classes (helmet, head, and person); however, most of the images were incompletely labeled.
Therefore, a new dataset named SHEL5K (publicly available at https://data.mendeley.
com/datasets/9rcv8mm682/draft?a=28c11744-48e7-4810-955b-d76e853beae5 (accessed on
5 January 2022)) was proposed by adding three more classes and completely labeling all
5000 images of the SHD dataset [8]. The proposed dataset was benchmarked on the various
state-of-the-art one-stage object detection models, namely YOLOv3-tiny [10], YOLOv3 [9],
YOLOv3-SPP [11], YOLOv4 [12], YOLOv5-P5 [13], the Faster-RCNN [14] with Inception
v2 [15], and YOLOR [16]. The experimental results showed significant improvements in
the mAP0.5 s of the compared models. From the experimental result of the models on the
proposed dataset (SHEL5K), it can be concluded that all the models showed promising
performances in detecting all classes. It can also be concluded that the proposed dataset
had an advantage over the SHD dataset [8] in terms of images and labeling. Moreover,
models trained on the proposed dataset can be used for a real-time safety helmet detection
task. In the future, we will improve the real-time recognition rate of the safety helmet
detection focusing on misclassified cases.
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Appendix A

Figure A1. Predictions of the best model trained on the SHEL5k dataset and the ground truth labels
of the sample images.
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Figure A2. Predictions of the best model trained on the hardhat dataset [20] and the ground truth
labels of the sample images.
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Figure A3. Predictions of the best model trained on the SHW dataset [28] and the ground truth labels
of the sample images.
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Figure A4. Predictions of the best model trained on the SHD dataset [8] and the ground truth labels
of the sample images.
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Figure A5. Predictions of the best model trained on the HHW dataset [27] and the ground truth
labels of the sample images.
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