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Abstract: This paper deals with the problems and the solutions of fast coverage path planning (CPP)
for multiple UAVs. Through this research, the problem is solved and analyzed with both a software
framework and algorithm. The implemented algorithm generates a back-and-forth path based on the
onboard sensor footprint. In addition, three methods are proposed for the individual path assignment:
simple bin packing trajectory planner (SIMPLE-BINPAT); bin packing trajectory planner (BINPAT);
and Powell optimized bin packing trajectory planner (POWELL-BINPAT). The three methods use
heuristic algorithms, linear sum assignment, and minimization techniques to optimize the planning
task. Furthermore, this approach is implemented with applicable software to be easily used by first
responders such as police and firefighters. In addition, simulation and real-world experiments were
performed using UAVs with RGB and thermal cameras. The results show that POWELL-BINPAT
generates optimal UAV paths to complete the entire mission in minimum time. Furthermore, the
computation time for the trajectory generation task decreases compared to other techniques in the
literature. This research is part of a real project funded by the H2020 FASTER Project, with grant
ID: 833507.

Keywords: multi-UAV; coverage path planning; aerial sensing; bin-packing problem

1. Introduction

Nowadays, the research and development of unmanned aerial vehicles (UAVs) and
unmanned aerial systems (UASs) are constantly growing due to their notable characteristics,
low cost, ability to integrate payload, and autonomous navigation. These features have
made UAVs a powerful system used in civilian and military applications. In addition,
multiple professional solutions are offered by single-UAV systems [1], and swarms and
multi-agent techniques are a line of research that is increasingly gaining the interest of
researchers in the last decade due to its high performance in terms of time efficiency,
flexibility, and fault tolerance [2].

In contrast, current multi-UAV systems present several challenges in their control
layers, communications, decision-making capacities, and practical applications, including
those for whom the human operator closes the control loop [3]. In summary, multiple
approaches study the dynamics and behavior of each entity inside the swarm, the com-
munication with other entities, and the intelligence of the swarm. Additionally, other
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external factors were considered during the design stages, including legal restrictions and
the complexity of the piloting, or safety problems [4]. As such, the system’s complexity
tends to increase proportionally to many entities. Based on this, different methods in the
state of the art address the trajectory planning problem for multiple UAVs based on GNNS
navigation [5,6] and multi-UAV task allocation [7,8]. In this context, multi-agent coverage
path planning (CPP) is a subfield of trajectory planning where the algorithms have to find
the optimal paths of UAVs equipped with sensors of a limited footprint to cover the free
workspace [9] and the optimal path allocation for each UAV. This technique is applicable
for tasks such as inspection [10], precision agriculture[11,12], search and rescue [13], remote
sensing [14], and others.

Through several researchers’ works, it was found that multiple approaches deal with
the problem of CPP for UAVs in different ways, as stated in [15], where the authors
distinguished between no decomposition, exact, and approximate cellular decomposition
techniques. For the first method, a defined area is split into sub-areas to determine the
optimal route that establishes the connection between them. Another example, in [16], the
authors divided the free workspace into cells and took the center of each cell as a waypoint
within a graph; they found the resulting path by graph optimization. In addition, the
methods represented in [17,18] proposed an exact cellular decomposition method dividing
the area into convex subregions and determining the optimal path based on the number
of UAV turns. On the other hand, no decomposition methods consider the entire area
for planning and include works such as [19] which proposed an energy-efficiency spiral
pattern for CPP or [20] that applied the back-and-forth strategy.

In the multi-UAV system, the aforementioned techniques are applied with the addi-
tional challenge of task allocation. Some approaches such as [11,21] apply exact cellular
decomposition methods; in the first case, the authors use auction-based algorithms to assign
tasks and in the other, with a leader–follower approach. Proposals as in [22,23] address the
problem using grid pattern map decomposition and linear programming methods to solve
the graph generated by the possible trajectories and the agents. Others such as [24] use
a column generation model to perform the coverage mission with multiple UAVs using
energy constraints; only numerical simulations were collected in the results. More similarly
to our work, in the proposal presented by [25], the authors divided the coverage area
between the agents based on their single relative capabilities and used the back-and-forth
path planning method to cover each partition; moreover, in [26], the authors performed
the same path planning technique for the total area, generating a graph with the possible
routes for each fixed-wing UAV; this graph has multiple constraints to optimize the flight
time and ensure the safety of the agents; the solution is found with the graph optimization
using the mixed integer linear programming method (MILP). In this context, the algorithm
in [27] presents a similar approach for multirotor UAVs, changing the constraints and the
optimization method to optimize the computation time.

The present proposal was developed within the H2020 project FASTER (First Respon-
der Advanced Technologies for Safe and Efficient Emergency Response) [28]; in which the
company Drone Hopper must provide a fleet of UAVs to be used by first responders (FR)
to perform multiple tasks such as mapping, monitoring, surveillance, or search and rescue.
This framework proposes a new multi-UAV coverage path planning technique based on the
heuristics of a bin packing problem combined with optimization methods to generate the
individual routes for each UAV that minimizes the mission time. Due to its simplicity, this
algorithm consumes less computational resources when compared with other proposals
in the literature. Furthermore, it is defined in the system architecture, communications,
hardware, and user interface for a real-time operation, considering the FR’s requirements.

The paper is structured as follows: Section 2 describes the problem definition state-
ment; then, in the Methodology in Section 3, the system architecture, the algorithms for
the multi-UAV CPP, and the software implementation are presented. The results and
discussion for the simulation and real-flight operations are then shown in Section 4. Finally,
in Section 5, the conclusions and future work are stated.
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2. Problem Definition

Through this research, it is assumed that there is a group of k heterogeneous multirotor
UAVs at the same altitude covering a polygonal convex area in the IR2 space defined by a
set of points P; all UAVs are supposed to take off at the same time from different positions.
The sensor footprint is the main feature to be considered in the parameter setting of any
mission, as shown in Figure 1.

Figure 1. Footprint schema in a homogeneous UAV fleet.

To have similar measurements inside the scanned polygonal area, all UAVs must
reach the same altitude and the space between lanes must be constant. However, these
parameters can be configurable without affecting the system’s performance.

Additionally, to prevent collisions, each UAV will be assigned a different altitude
to take off, navigate to the mission start point, and return to launch (RTL), as shown in
Figure 2.

Mission Altitude

UAV1

UAV2

Takeoff points
Arrival Points
RTL Points

Figure 2. Mission operation schema. Each UAV takeoff at its assigned altitude, then performing the
operation at mission altitude, and RTL at assigned altitude again.

For this reason, the problem cannot be solved by dividing the area by the number of
UAVs due to two main factors: the distance of each UAV from the starting point of the
mission and the assigned altitude. As an additional safety constraint, the paths of each
UAV will be continuous without interruptions between them. Additionally, each aircraft
is equipped with the same onboard sensors (RGB or thermal cameras pointing down).
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Furthermore, the system interface will be user-friendly to allow the operator to connect the
ground control station (GCS) to the group of UAVs, select the P points to cover a convex
area in a given satellite map, and then launch the flight operation. Finally, the algorithms
must optimize the calculation time to operate in emergency scenarios.

With these requirements, the main challenge is to develop a system to determine the
paths for each UAV to cover the defined area and define its architecture to complete the
mission in the minimum amount of time. In the following sections, the solutions proposed
to deal with these problems are described.

3. Methodology
3.1. Architecture Proposal

A centralized architecture is proposed, where the central node assigns the task to
each agent. In this case, the GCS computer performs all the calculations and uploads the
waypoints to each UAV. For this, the robotic operating system (ROS) [29] framework and
MAVROS package [30] are used. The system architecture is presented in Figure 3.

Operator

Central Node (GCS)

• Area selection

• Launch mission

• Monitoring UAVs

𝑼𝑨𝑽𝟏 +𝑶𝑩− 𝑷𝑪𝟏 𝑼𝑨𝑽𝒏 +𝑶𝑩− 𝑷𝑪𝒏𝑼𝑨𝑽𝟐 +𝑶𝑩− 𝑷𝑪𝟐

802.11 ax

1200 Mbps

• Path Planning

• Optimal Task Assignment

• Online UAVs State Monitoring

w𝒂𝒚𝒑𝒐𝒊𝒏𝒕𝟏

𝒘𝒂𝒚𝒑𝒐𝒊𝒏𝒕𝟐
𝒘𝒂𝒚𝒑𝒐𝒊𝒏𝒕𝒏

Flight Control Unit

(𝑭𝑪𝑼𝟏) 𝑭𝑪𝑼𝟐

𝒗𝒊𝒅𝒆𝒐𝟏
𝒗𝒊𝒅𝒆𝒐𝒏𝒗𝒊𝒅𝒆𝟐

𝑭𝑪𝑼𝒏

………

…………

Figure 3. Architecture proposal.

As clarified in Figure 3, each UAV has an onboard computer (OB− PCn) to send
and receive data from the flight control unit (FCUn) through serial communication (for
hardware details, see Section 3.4). The onboard computer captures the FCU and video
cameras (videon) and sends them to the GCS. The communications between the GCS and
the UAVs OB-PC in the UAVs are performed using the standard IEEE 802.11ax (commonly
known as WiFi 6). During the operation, the GCS obtains the input area from the user
and calculates the optimal set of waypoints for each UAV. The waypoints are sent to each
OB-PC using the ROS framework, which decodes the information for the FCU.

3.2. Multi-UAV CPP Algorithm
3.2.1. Area Decomposition

Based on previous works in the literature [26,27], it is clear that they used the back-
and-forth strategy shown in [31] for the area decomposition. This method establishes the
first step to find the optimal coverage direction. The authors in [31] proposed that this
direction must be perpendicular to the shortest height of the polygon to obtain the smaller
number of curves optimizing the rows number; additional parameters as spacing and row
distances are calculated based on camera footprint [32]. In this context, given the field of
view θ, the aspect ratio r, and the flight altitude h; the sides AF and BF of the footprint
could be calculated through the following equations:



Sensors 2022, 22, 2297 5 of 25

AF =
2 · h · tan(θ/2)√

1 + r2
(1)

BF =
2 · r · h · tan(θ/2)√

1 + r2
(2)

Unlike the aforementioned approaches that generate waypoints to cover the rows of
the path, the newly implemented algorithm in this research will obtain waypoints generated
for the entire route (similar to cell decomposition methods) to optimize the distribution of
tasks between the agents, as shown in Figure 4.
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to j, at this point, operational constraints proposed in section 2 determines that all paths
will be continuous. Finally, Hd (Equations 4 and 5) is the delay caused by the altitude
assignment and will depend on mission altitude (hm), ascent velocity (Va), descent velocity
(Vd) and the difference between assigned and mission altitudes (∆hk); Consequently, the
total mission time is the maximum kth UAV mission time. With these considerations, the

(a) (b)

Figure 4. Waypoint generation results: (a) waypoints generated using simple back-and-forth algo-
rithm; (b) waypoints generated with a sampled back-and-forth for our proposal.

Figure 4 was generated using open source Matplotlib libraries [33] and shows a
comparison of the generated waypoints to be used in the algorithms presented in [26,27]
and the one implemented through the present work. The reason for the difference is simple:
while the calculation time in graph optimization algorithms increases exponentially with
each added waypoint, in other heuristic methods, such as that presented in Section 3.2.2,
the processing time is slightly affected. In addition to this, spacing and row distance
are placed considering the desired overlapping; nevertheless, multiple GCS software as
QGroundControl [34] allows the user to set them manually; however, it is not the aim of
this study to determine their optimal values.

3.2.2. Multi-UAV Routing

Given the set of waypoints of the previous Section 3.2.1, it is proposed that the bin
packing trajectory planner (BINPAT) is a routing strategy. This algorithm has two stages,
respectively, track packing and task assignment. Assuming a constant average velocity for
each UAV, the mission time for k UAVs can be modeled as

Tk =
N

∑
i=1

N

∑
j=1

Dij

Vk
ij

Mk
ij + Hdk (3)

where:

Hdk =
hk

m + ∆hk

Vk
a

+
hk

m + ∆hk

Vk
d

(4)

same as

Hdk =
(hk

m + ∆hk)(Vk
a + Vk

d )

Vk
a ·Vk

d
(5)

Through Equation (3), Dij represents the distance cost of flying between two nodes
and Vk

ij represents the UAV flight speed. The binary variable Mij defines whether the kth
UAV travels from point i to j; at this point, operational constraints proposed in Section 2
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determine that all paths will be continuous. Finally, Hd (Equations (4) and (5)) is the
delay caused by the altitude assignment and will depend on the mission altitude (hm),
ascent velocity (Va), descent velocity (Vd), and the difference between assigned and mission
altitudes (∆hk). Consequently, the total mission time is the maximum kth UAV mission
time. With these considerations, the optimization will be performed by minimizing the
maximum IR2 distance-based mission cost, that is:

Ck = ∑
i

∑
j

Dij Mk
ij + Hdk (6)

Based on this, the algorithm for the BINPAT is presented in Algorithm 1.

Algorithm 1: BINPAT Algorithm

The Data: P(xp, yp), W(wk), L(xk, yk), F(a, b), Mh
The Output: WPT(UAVk, xm, yn), C(ck)
W ptSet(xwpt, ywpt) = Back&Forth(P, F)
PathDistArray(n, 1) = GetDist(W ptSet)
D′, M = CBinPack(PathDistArray, W)
foreach UAV do

C′k,i = ∑i ∑j D′ij M
k
ij . from Equation (6)

end
AP = min ∑k ∑i C′k,iLk,i

Hk = AssignH(C′, Mh)
Ck = C′k + Hdk

WPTk,m,n = W ptGen(AP, W ptSet)

In Algorithm 1, the inputs are given by the set of points (P), the UAV weighted pa-
rameters (W), UAV locations (L), the camera footprint parameters (F), and the mission
altitude (Mh). The UAV weighted parameters vector represents weighted features that
can influence the mission performance; these weights are the same when having a ho-
mogeneous multirotor. In addition, the outputs are the individual cost vector C and the
three-dimensional matrix WPT with the set of 2D waypoints for each UAV. In the first stage
of the algorithm, the set of waypoints is obtained using the back-and-forth (Back&Forth)
technique (Section 3.2.1); then, the waypoints are separated into individual paths and each
path distance is computed. During the track packing step, the result of the custom bin-
packing algorithm (Algorithm 2) is the set of individual waypoints, where D′ is the distance
that a UAV has to navigate based on its initial weight and M represents the traveling
condition (if a track is assigned to a UAV or not). For the task assignment stage, the asset
cost matrix (AP) is obtained through the modification on the Jonker–Volgenant method for
a linear sum assignment problem [35,36]. After that, the altitude assignment matrix (Hk) is
obtained proportionally to the first cost matrix (C′), i.e., UAVs with higher mission costs
will be assigned lower takeoff altitudes. Then, the resultant cost vector (C) is calculated,
adding the individual altitude delay cost (Hdk) to the first cost matrix; finally, from AP and
W ptSet, it is calculated as WPT.

Furthermore, Algorithm 2 is an analogy to the bin-packing problem, in which a set
of tracks (items) must be assigned to a set of UAVs (bins). In this case, the capacity of
each UAV W ′k is the weighting of the total cost of the mission determined by the vector of
weights W. Starting from mentioned values, tracks are iteratively assigned to each UAV
until their maximum capacity is completed. As such, adding a new track to the UAV should
not exceed its maximum capacity or improve the result of not adding it. As a result, the
mission distance and the indices of the tracks to be traveled by each UAV are calculated.



Sensors 2022, 22, 2297 7 of 25

Algorithm 2: CBinPack Algorithm
The Data: Pn, Wk
The Output: D′i,j, Mk

W ′k = W ·∑n
i=1 Pi

m = 0
ω = 0
BinSize = W ′m
prevRes = BinSize
foreach ωn ∈ P do

ω′ = ωn + ω
Res =| BinSize−ω′ |
if Res > prevRes then

m = m + 1
BinSize = Wm
ω′ = ω

end
D′m,n = ω
Mm,n = N

end

3.2.3. Routing Optimization

Although the BINPAT algorithm can represent an optimal implementation result for
specific UAVs (see Section 4), there may be cases where using fewer UAVs optimizes the
mission time. BINPAT could not determine it since it will try to assign the entire mission to
the set of available UAVs (especially for the case of homogeneous UAVs). For this reason,
a new variation called Powell optimal BINPAT (POWELL-BINPAT) was implemented to
solve the optimal assignment problem. In Section 3.2.2, one of the inputs of the BINPAT
algorithm was a set of initial UAV weights Wk, and the output was the individual set of
waypoints and the individual mission cost whereby the optimal mission cost will be found
by minimizing the maximum individual cost (Equation (7)):

min (max Ck) (7)

For this reason, the objective of this step was to find the best set of weights Wk for M
given UAVs that produce the optimal cost subject to Equation (8):

0 ≤Wk ≤ 1, ∀k ∈ M (8)

Dealing with Wk as the input and the result of the BINPAT algorithm Ck from
Equation (6), an iterative process is used to enhance the minimum cost of the mission,
and this is achieved using the Powell optimization method [37,38] using as main param-
eters Equations (7) and (8), respectively. Powell’s technique finds the best solution by
performing one-dimensional minimizations along each vector of the directions in the
N-dimensional set of solutions.

3.3. Software Implementation

The novel swarm application is implemented in both the virtual and real world,
wherein the former, all the algorithms are interpreted in C++ and Python codes and then
compiled in the Debian space, connected to a Qt visual application, as shown in Figure 5,
to be easily modifiable, interacting the generated data using ROS bridge platform, as
displayed in Figure 6, and finally, simulated inside the Gazebo area to check whether the
swarm drones display any incoherent action. This subsection extensively addresses the
schematic of accomplished work through simulation.
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The graphical user interface (GUI) environment designed in this research is based on Qt
C++ language, interacting with the ROS workspace to regulate the swarm algorithms and
communicate with the drones. Accordingly, Figure 5 shows the main elements of the GCS
SW divided into four main sections, connection, streaming tabs, flight instruments, and the
map widget. The GUI imports all the generated drones’ data, including drone ID, position,
attitude angles, velocities, and their battery information transformed to corresponding
*.json files, as shown in Figure 5, and according to the user-chosen waypoints, a mainframe
area for the swarm is created to be exported as *.json, *.yaml, and *.wp formats to be further
utilized by the main algorithms to generate the interpolate and extrapolate points close to
the frame. Optimizing calculated routes, the best route (considering the equal distance and
flight time, the one that performs the fewest deviations is the most optimized method) will
be the candidate to pass the ROS bridge and be subscribed by the simulation application.
Furthermore, Figure 5 demonstrates a sample swarm mission in a stream, starting in the
upper-left part, where three connected drones are displayed and then the PUBLISH ON
COP button starts advertising the online location of the drones and sends the data to the
ROS workspace. While the upper-middle section relates to the swarm parameters, Swarm
Lines Distance determines the gap between each line of the mission in meters, while Swarm
Altitude defines the flight altitude of all drones during the mission (more information is
given in Section 2). In addition, setting the swarm parameters, creating a set of waypoints
on the map, and then saving the green button exports them through the algorithms. On the
upper-right corner of Figure 5, however, all information received from the connected drones
is monitored and each drone could be directly armed or be returned to the landing point
near the Home location by using ARM and RTL buttons, respectively; moreover, the three
flight instruments show the necessary information of the flight regarding each connected
drone. Additionally, the middle blue windows contain the number of waypoints chosen
by the user and their relative distances to the Home, the right part demonstrates that all
waypoints after that are produced by the swarm algorithms and imported in the application.
Eventually, the map section shows the online location of the drones and the generated
waypoints. Mainly, since all the path planning and optimization codes are compatible
with ROS workspace, they are modulated with ROS launchers to rapidly change the main
variables, which adds *.yaml formats and contains the addresses and properties of the
connected drones which accelerate the running of the whole application. Furthermore, the
SW is enriched with several *.qml codes to enhance the map view of the mission area to
make it as realistic as feasible to choose waypoints, view determined routes, and have an
online drones view. Further SW details are collected in Table 1.

Figure 5. A snapshot of the ground control station (GCS) SW used for the swarm project.
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Table 1. Full properties of the swarm GUI application.

Based Language Role Configuration

Qt C++

• Contains the main functions, including widgets, buttons, frames,
tabs, spinners, and text boxes;

C++ 11
• Connects the master computer to the drones as slaves, using ROS

connection, utilizing *.bash script handlers;
Compiler qmake 3.0• Connects the main c++ file with previously generated files to moder-

ate the swarm mission, linked to corresponding modifier buttons;
• Creates submodules to interact with *.qml visualizers.

Qt Meta

• Contains visualizer objects, namely rectangles, circles, buttons, map-
inputs, map quick items, map routes, map polygons, map poly-lines,
map routes, list models, grids, and mouse functions;

Qt Quick• Manages the waypoint and the markers;

JavaScriptLanguage (qml) • Corresponding functions to save the user desired frame and view
the calculated points;

• Determines the relative distances of the chosen points and the de-
fined home which affects all the swarm algorithms.

Hyper Test

• Includes all the instruments with a high frequency, 100 Hz to update
the flight information, related to the position, attitude (Euler angles),
airspeed, altitude, battery, etc.;

HTML
Markup Language

• Streams the video of each drone during the flight, broadcasting
through a local or global web address;

• Designates an especial API key of the Bing Maps for the map space
used in the application;

Brian Fox Unix

• Connects the drones to the GUI application via ssh connection and
regulates the vulnerability when various drones are simultaneously
connected;

• Manages the camera function of any connected drones, interacting
with OpenCV libraries and fswebcam capturing SW;

Shell (Bash)
• Launches or kills programs related to the swarm and optimization;
• Reports the online connectivity state of any drones during the flight

to facilitate the ROS bridge to advertise and subscribe the topics
according to available vehicles.

As mentioned in Table 1, four programming languages are utilized to ensure each part
of the SW performs optimally; for instance, there are myriad types of primary flight displays
(PFDs) that visualize the actual state of the drone inside the SW; however, a great number
of PFDs decelerate the system because of the large volume of code compiling behind. Here,
nonetheless, a pre-designed Qt-based collection, QFlightInstruments: http://marekcel.pl/
qflightinstruments (accessed on 10 March 2022) [39] is employed that loads dramatically
quickly (with 200 Hz frequency) and demonstrates images with a high resolution using
image coding (H.264). Through Figure 6, a complete schematic diagram for the swarm
mission procedure is implemented, showing the online hybrid map used in the GUI,
the communication of the GCS, and the swarm drones through an ROS interaction that
concludes in generating the swarm waypoints to output the mission.

http://marekcel.pl/qflightinstruments
http://marekcel.pl/qflightinstruments
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Figure 6. A diagram of the swarm mission procedure.

The communication status of the drones can be checked at any time before starting
the mission using return-value ssh; then, connected ones start publishing the data on the
Kafka server confined by a local network to advertise the flight data for the GCS and other
drones. Definitely, the distance between the swarm lines and the number of surrounding
mission lines is configurable before starting the mission. Meanwhile, the movement trace
of the drones and the streaming lines are demonstrated on the hybrid map area.

3.4. Hardware Implementation

To conduct practical missions, a set of system configurations is chosen to function
optimally; meanwhile, the GUI application supports monitoring up to eight drones simul-
taneously. Clearly, each drone is equipped with an onboard computer to function as a
slave system for the ground master computer, communicating through an ROS network
connection. Furthermore, the unmanned aerial system (UAS) employed a robust wireless
dual-band connection lay on a TP-link 4G+ Cat6 AC1200 Wireless Dual Band Gigabit
Router which is then enhanced by connecting to the global network; i.e., establishing
unique identification ports (IPs) for each drone to be in a local communication published
on the global network. Moreover, the drone’s configuration is shown in Figure 7 where
onboard PCs advertised ROS topics for the master and further listened through the GCS.
In addition, a set of video streaming is configured using OpenCV libraries for flying drones
in which the GUI software received a real video stream from each drone through the local
network, as shown in Figure 3.

Ultimately, Figure 7 demonstrates the equipped equipment for the drones through the
swarm mission where each drone is empowered by various components: a Pixhawk 2.1
CubePilot integrated with here3 GPS, a powerful onboard PC (Jetson Xavier Developer),
which has an eight-core ARM processor based on a 64-bit CPU module, a ZED2 StereoLabs
camera mounted below the Jetson Xavier, and a wireless ASUS Dual-Band (5 GHz/2.4 GHz)
Wireless USB 3.0 Adapter communicating with the TP-link router. Overall, the system
integration utilized through this project, according to several observations, aims to conquer
multi-UAV path planning, communication problems, and internal uncertainties.
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Figure 7. The drone properties utilized through the swarm mission.

3.5. Transformation between Relative and Absolute Coordinates

To prevent unbiased errors through the transformation of coordinates from the SW,
ROS bridge, and the drones, a common interpreted form is assumed, that is, relative
coordination. As such, waypoints generated by the user are transformed from absolute
location (latitude and longitude) to the relative distances from the pre-defined Home location
and then exported to the ROS workspace, as shown in Equation (9). According to Haversine
formula [40], which determines the orthodromic distances of two points on a sphere and
considering the radius of the Earth (6371 km), Equation (9) could be driven as

∆lat = RAD(latp − lath)
∆lng = RAD(lngp − lngh)

d = sin(0.5∆lat)2 + cos(D2R(lath)) cos(D2R(latp)) sin(0.5∆lng)2

→ Relative Distance = 2R arctan(
√

d,
√

1− d)

(9)

where h represents the Home location, p is the target waypoint; function RAD transforms
an angle from degree to radian; and lat and lng represent the latitude and longitude of the
waypoints, respectively. Using Equation (9) through the SW planning, all the location data
are relative for both GUI and the swarm algorithms to be with the same scale.

4. Results and Discussion
4.1. Algorithm Validation

The algorithms described in the previous sections were implemented using Python li-
braries for validation. At the same time, numerical simulation was tested in multiple scenar-
ios to evaluate different combinations before implementing the real flights. The main idea
is to combine simple back-and-forth and sampled back-and-forth for area decomposition,
as shown in Figure 4, with route generation algorithms (BINPAT and POWELL-BINPAT).
In addition, three possible combinations are evaluated: BINPAT+simple back-and-forth
(SIMPLE-BINPAT), BINPAT+ sampled back-and-forth, and POWELL-BINPAT + sampled
back-and-forth. The distance-based cost results are represented in Table 2 with the graphical
results shown in Figure 8.
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Table 2. Distance-based cost results using the BINPAT and POWELL-BINPAT for simple and sampled
area decomposition.

Distance-Based Cost

UAV
Simple Back-and-Forth Sampled Back-and-Forth
SIMPLE-BINPAT BINPAT POWELL-BINPAT

UAV 1 963.81 928.75 908.75

UAV 2 944.65 900.34 911.77

UAV 3 644.58 789.27 904.72

SD 179.03 73.7 3.53
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Figure 8. Multi-UAV algorithm results: (a) defined search area and UAV locations; (b) SIMPLE-
BINPAT; (c) BINPAT; and (d) POWELL-BINPAT.

According to Equation (7), the total cost of the mission will be the highest of the
individual costs for each UAV. To clarify the results in Figure 8 and future figures, the
navigation order of the routes is from the lowest to the highest index. Regarding Table 2
and Figure 8, it can be noticed that SIMPLE-BINPAT reports the greatest cost (963.81 m).
In contrast, the sampled back-and-forth decomposition improves the performance, first
for the BINPAT (928.75 m) and then for the POWELL-BINPAT (911.77 m). Additionally, as
a result of the optimization, the POWELL-BINPAT reduces the standard deviation of the
cost, meaning that each UAV consumes similar resources to perform the mission. Through
the context, graphical comparisons with other proposals in the literature are represented,
as shown in Figure 9.
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Figure 9. Multi-UAV routing comparison results with 3 UAVs: (a) results obtained with graph
optimization for fixed wings; and (b) results obtained with graph optimization for multirotors;
(c,d) SIMPLE-BINPAT; (e,f) BINPAT; and (g,h) POWELL-BINPAT.

In Figure 9, the results obtained with simple and sampled back-and-forth decomposi-
tion are compared with the graph optimization methods in the literature [26,27]. Although
the constraints used for the optimization in these methods are different, the BINPAT al-
gorithm with simple area decomposition generates similar trajectories compared to these
proposals. Moreover, using the approaches with sampled area decomposition, these results
are improved for our specific constraints. Furthermore, the processing time was evaluated
in a computer with an AMD Ryzen 7 3750H processor and 16-GB RAM, as shown in Table 3.

Table 3. Processing time results for a different UAV number.

UAVs SIMPLE-BINPAT BINPAT POWELL-BINPAT

2 0.000748 0.0021 0.296894

3 0.001474 0.002244 0.301134

4 0.001522 0.002756 0.512768

5 0.001961 0.003125 1.419654

6 0.003479 0.003365 1.853162

7 0.004275 0.003924 1.96757

Based on the results presented in Table 3, it can be noticed that BINPAT achieves
acceptable results in computation time during the planning stage when it is compared with
the other proposals for coverage routing that uses processors with similar features. For
instance, in the case of three UAVs, BINPAT variations achieve between 0.0014 and 0.3 s; in
contrast, the approach presented by [11] reported processing times between 0.15 and 0.31 s
for three UAVs. Moreover, the algorithm presented in [26] achieves computation times from
0.8 to 4.59 seconds depending on the constraints; and through the work presented in [27],
the authors stated a computation time of 0.8 seconds for three UAVs and 19 waypoints.

Finally, one of the main features of POWELL-BINPAT concerning BINPAT is its ability
to decide the optimal number of UAVs needed to complete a mission in the shortest time.
Through Figure 10 and Table 4, the optimum UAV assessment results and the comparison
of the cost-based results as represented show the best results of planning a mission, in
contrast to the work performed in [26,27].
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Figure 10. Optimal UAV assignment results with POWELL-BINPAT: (a) paths generated with BINPAT;
and (b) paths generated with POWELL-BINPAT.

Table 4. Cost-based results comparison.

Distance-Based Cost Results

UAV Number BINPAT POWELL-BINPAT

UAV1 390.72 0

UAV2 401.93 370.73

UAV3 394.62 383.99

Furthermore, by analyzing Table 4, it is clear that UAV1 generated unnecessary dis-
tance costs by climbing to the assigned altitude, reaching the first waypoint, and returning;
these costs are optimized with the Powell method to obtain better results in only planning
missions for UAV2 and UAV3.

4.2. Simulation Results

The presented approaches were tested in the open source Gazebo simulator [41] with
PX4 software in the loop (SITL). Two simulation scenarios are considered: short-track
scenario and long-track scenario, as shown in Figure 11.

(a) (b)

Figure 11. Robotic simulation scenario: (a) short-tracks scenario; and (b) long-tracks scenario.

The difference between these scenarios is the length of the lane; while on the short
track, the maximum street length is approximately 150 m, on the long track, the maximum
is approximately 320 m. Furthermore, the experiments were carried out with three and five
UAVs. Multiple mission altitudes (from 35 to 55 m) and different lane widths (between
5 and 15 m) were tested. The main objective was to evaluate the influence of multiple
parameters in the algorithm’s performance such as the number of UAVs, the altitude, and
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the lane features. As an additional detail, the cruise velocity of each UAV is considered
5 m/s, and the route was completed with a constant heading. The metrics used to evaluate
the simulation results depend on the time that the UAVs take to accomplish a mission. They
include the maximum time (Max), the average time (Av), the standard deviation (SD), and
the coefficient of variation (CV), as shown in Equation (10):

CV =
SD
Av
∗ 100 (10)

The tables with the time results of multiple experiments are presented in Appendix A.
Time histograms for average UAV time results obtained from Tables A1–A12 are shown in
Figure 12.
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Figure 12. Time histograms for average results in simulation tests: (a) three UAVs’ time histogram;
and (b) five UAVs’ time histogram.

In Figure 12, POWELL-BINPAT achieves better results in the mission assignment task
for three and five UAVs compared with the BINPAT and SIMPLE-BINPAT approaches.
This fact can be noted by evaluating the coefficient of variation (CV) in each mission; in this
context, the behavior of the coefficient of variation is shown in Figure 13.

In Figure 13, the CV indicates the uniformity in the distribution of the mission for
each UAV. In general terms, the results obtained with the short-track scenario are lower
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compared with the values obtained for the long-track scenario. Moreover, the coefficient
of variation is more sensitive to changes in the mission parameters and the number of
UAVs in the SIMPLE-BINPAT method. Although the changes are milder in BINPAT; in
POWELL-BINPAT, the values tend to be lower and more uniform in all cases. Finally, the
average maximum time for each method is presented in Table 5.
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Figure 13. CV behavior obtained from experiments reported in Appendix A: (a) short-track scenario
results; and (b) long-track scenario results.

Table 5. Average maximum time for the simulation experiments.

SIMULATION SCENARIO

Short Track Long Track

SIMPLE-BINPAT 300.42 795.58

BINPAT 330.08 754.25

POWEL-BINPAT 322.00 735.42

In Table 5, SIMPLE-BINPAT has the lower maximum time in the short-track scenario;
however, this is similar to the other approaches. The main differences can be noticed in the
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long-track scenario, where SIMPLE-BINPAT has a poor performance and POWELL-BINPAT
is better than the other algorithms.

4.3. Real-Flight Test Results

The scenario for the real test results was similar to the short-track stated in Section 4.2.
A picture of the pictures of the real implementation is shown in Figure 14 and the routes
completed with the POWELL-BINPAT method obtained from the datalog are presented in
Figure 15.
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Figure 15. UAV positions reported by datalog in 3 UAV flights using POWELL-BINPAT: (a) main
view; and (b) side view.
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The altitude of the mission was 20 m and the space between lanes was 10 m; moreover,
the cruise velocity was set to 5 m/s for each UAV.

Time results are presented in Table 6 and the time histograms are shown in Figure 16.

Table 6. Time results for a real flight with three UAVs.

UAV
METHOD

SIMPLE-BINPAT BINPAT POWELL-BINPAT

UAV1 289.00 279.00 285.00

UAV2 305.00 298.00 282.00

UAV3 276.00 268.00 271.00

Max 305.00 298.00 285.00

Av 290.00 281.67 279.33

SD 14.53 15.18 7.37

CV 5.01 5.39 2.64
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280.00

290.00

300.00

310.00

SIMPLE-BINPAT BINPAT POWELL-BINPAT

Time histogram results for real flights

UAV1 UAV2 UAV3

Figure 16. Time histogram for real flight with 3 UAVs.

The implementation results show a behavior similar to the simulation in the Gazebo
software. POWELL-BINPAT optimizes the total mission time by minimizing the difference
in the individual flight time of each UAV. The real flight results are thus consistent with
those obtained in multiple simulations.

Finally, an early implementation of BINPAT for two UAVs with simple area decom-
position could be found at the Policía Municipal de Madrid: https://www.youtube.com/
watch?v=m6CssNmgwH0 Youtube Channel (accessed on 10 March 2022).

5. Conclusions and Future Work

This paper presents a complete software framework, algorithms, and a special archi-
tecture for the practical implementation of area coverage missions for multiple UAVs. This
system was generalized to be used with different sensors in function of the application,
with the only possible variations being that of the sensor footprint (to calculate the lane
width and waypoint separation).

The results of the validation tests show the performance of the algorithms in multiple
hypothetical scenarios. The hypotheses are corroborated through the Gazebo simulator
and during real-flight tests. The two main highlights of BINPAT and POWELL-BINPAT

https://www.youtube.com/watch?v=m6CssNmgwH0
https://www.youtube.com/watch?v=m6CssNmgwH0
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are the low computation time for multiple waypoint paths and the ability to optimize the
mission times.

Additionally, dynamic re-planning tests are proposed; i.e., if one or more drones are
lost during the mission, the system will detect the missing waypoints and reorganize all
the routes for the available UAVs.

As confirmed, the success of the algorithms largely depends on the correct calculation
of the cost matrices; in this case, it has been tested with routes generated in the 2D space at
a constant altitude. For future development, various 2D approaches and 3D trajectories
could be analyzed (containing altitude changes along the path).
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Appendix A. Simulation Results

This appendix shows the mission time data in seconds of simulation tests that validate
the algorithms for three and five UAVs. The performance was evaluated whilst the altitude
and the lane distance of the mission were changing.

Appendix A.1. Time Results for Short-Track Scenario

Table A1. Time results using the SIMPLE-BINPAT algorithm and three UAVs in a short-track scenario.

SIMPLE-BINPAT

UAV1 318.00 330.00 344.00 266.00 277.00 287.00

UAV2 331.00 345.00 356.00 268.00 280.00 293.00

UAV3 312.00 326.00 337.00 226.00 237.00 248.00

Max 331.00 345.00 356.00 268.00 280.00 293.00

Av 320.33 333.67 345.67 253.33 264.67 276.00

SD 9.71 10.02 9.61 23.69 24.01 24.43

CV 3.11 3.07 2.85 10.48 10.13 9.85

Distance 10.00 10.00 10.00 5.00 5.00 5.00

Altitude 35.00 45.00 55.00 35.00 45.00 55.00

Table A2. Time results using the BINPAT algorithm and three UAVs in a short-track scenario.

BINPAT

UAV1 214.00 258.00 280.00 383.00 385.00 426.00

UAV2 232.00 294.00 313.00 396.00 399.00 412.00

UAV3 244.00 261.00 272.00 410.00 411.00 396.00

Max 244.00 294.00 313.00 410.00 411.00 426.00

Av 230.00 271.00 288.33 396.33 398.33 411.33

SD 15.10 19.97 21.73 13.50 13.01 15.01

CV 6.19 7.65 7.99 3.29 3.17 3.79

Distance 10.00 10.00 10.00 5.00 5.00 5.00

Altitude 35.00 45.00 55.00 35.00 45.00 55.00

Table A3. Time results using the POWELL-BINPAT algorithm and three UAVs in a short-
track scenario.

POWELL-BINPAT

UAV1 243.00 262.00 266.00 397.00 385.00 401.00

UAV2 258.00 284.00 286.00 400.00 413.00 426.00

UAV3 245.00 280.00 273.00 373.00 401.00 412.00

Max 258.00 284.00 286.00 400.00 413.00 426.00

Av 248.67 275.33 275.00 390.00 399.67 413.00

SD 8.14 11.72 10.15 14.80 14.05 12.53

CV 3.32 4.19 3.72 3.97 3.50 3.04

Distance 10.00 10.00 10.00 5.00 5.00 5.00

Altitude 35.00 45.00 55.00 35.00 45.00 55.00
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Table A4. Time results using the SIMPLE-BINPAT algorithm and five UAVs in a short-track scenario.

SIMPLE-BINPAT

UAV1 225.00 236.00 249.00 287.00 302.00 314.00

UAV2 232.00 247.00 259.00 283.00 302.00 308.00

UAV3 249.00 260.00 271.00 234.00 246.00 358.00

UAV4 222.00 233.00 245.00 259.00 271.00 284.00

UAV5 222.00 231.00 245.00 290.00 304.00 316.00

Max 249.00 260.00 271.00 290.00 304.00 358.00

Av 230.00 241.40 253.80 270.60 285.00 316.00

SD 11.38 12.10 11.19 23.84 25.77 26.72

CV 4.95 5.01 4.41 8.81 9.04 8.46

Distance 10.00 10.00 10.00 5.00 5.00 5.00

Altitude 35.00 45.00 55.00 35.00 45.00 55.00

Table A5. Time results using the BINPAT algorithm and five UAVs in a short-track scenario.

BINPAT

UAV1 237.00 260.00 258.00 322.00 335.00 318.00

UAV2 204.00 231.00 231.00 319.00 332.00 350.00

UAV3 210.00 262.00 260.00 388.00 298.00 352.00

UAV4 229.00 233.00 233.00 380.00 295.00 312.00

UAV5 244.00 271.00 269.00 323.00 336.00 355.00

Max 244.00 271.00 269.00 388.00 336.00 355.00

Av 224.80 251.40 250.20 346.40 319.20 337.40

SD 17.22 18.20 17.14 34.47 20.80 20.63

CV 7.66 7.24 6.85 9.95 6.52 6.12

Distance 10.00 10.00 10.00 5.00 5.00 5.00

Altitude 35.00 45.00 55.00 35.00 45.00 55.00

Table A6. Time results using the POWELL-BINPAT algorithm and five UAVs in a short-track scenario.

POWELL-BINPAT

UAV1 228.00 254.00 251.00 289.00 303.00 311.00

UAV2 213.00 226.00 239.00 315.00 324.00 355.00

UAV3 237.00 242.00 266.00 304.00 319.00 329.00

UAV4 240.00 245.00 266.00 325.00 338.00 338.00

UAV5 246.00 257.00 273.00 327.00 339.00 351.00

Max 246.00 257.00 273.00 327.00 339.00 355.00

Av 232.80 244.80 259.00 312.00 324.60 336.80

SD 12.83 12.19 13.77 15.78 14.88 17.75

CV 5.51 4.98 5.32 5.06 4.58 5.27

Distance 10.00 10.00 10.00 5.00 5.00 5.00

Altitude 35.00 45.00 55.00 35.00 45.00 55.00
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Appendix A.2. Time Results for Long-Track Scenario

Table A7. Time results using the SIMPLE-BINPAT algorithm and three UAVs in a long-track scenario.

SIMPLE-BINPAT

UAV1 817.00 870.00 985.00 606.00 693.00 680.00

UAV2 834.00 917.00 856.00 652.00 843.00 799.00

UAV3 749.00 1225.00 1050.00 567.00 759.00 832.00

Max 834.00 1225.00 1050.00 652.00 843.00 832.00

Av 800.00 1004.00 963.67 608.33 765.00 770.33

SD 44.98 192.83 98.74 42.55 75.18 79.95

CV 5.62 19.21 10.25 6.99 9.83 10.38

Distance 10.00 10.00 10.00 15.00 15.00 15.00

Altitude 35.00 45.00 55.00 35.00 45.00 55.00

Table A8. Time results using the BINPAT algorithm and three UAVs in a long-track scenario.

BINPAT

UAV1 859.00 889.00 973.00 676.00 652.00 745.00

UAV2 891.00 973.00 1010.00 675.00 714.00 697.00

UAV3 915.00 986.00 946.00 696.00 763.00 633.00

Max 915.00 986.00 1010.00 696.00 763.00 745.00

Av 888.33 949.33 976.33 682.33 709.67 691.67

SD 28.10 52.65 32.13 11.85 55.63 56.19

CV 3.16 5.55 3.29 1.74 7.84 8.12

Distance 10.00 10.00 10.00 15.00 15.00 15.00

Altitude 35.00 45.00 55.00 35.00 45.00 55.00

Table A9. Time results using the POWELL-BINPAT algorithm and three UAVs in a long-track scenario.

BINPAT

UAV1 855.00 970.00 967.00 606.00 629.00 636.00

UAV2 894.00 938.00 961.00 671.00 692.00 700.00

UAV3 898.00 900.00 999.00 625.00 643.00 652.00

Max 898.00 970.00 999.00 671.00 692.00 700.00

Av 882.33 936.00 975.67 634.00 654.67 662.67

SD 23.76 35.04 20.43 33.42 33.08 33.31

CV 2.69 3.74 2.09 5.27 5.05 5.03

Distance 10.00 10.00 10.00 15.00 15.00 15.00

Altitude 35.00 45.00 55.00 35.00 45.00 55.00



Sensors 2022, 22, 2297 23 of 25

Table A10. Time results using the SIMPLE-BINPAT algorithm and five UAVs in a long-track scenario.

SIMPLE-BINPAT

UAV1 579.00 637.00 682.00 494.00 653.00 596.00

UAV2 619.00 678.00 752.00 510.00 596.00 618.00

UAV3 583.00 644.00 686.00 461.00 542.00 547.00

UAV4 544.00 588.00 596.00 562.00 581.00 683.00

UAV5 685.00 727.00 801.00 551.00 639.00 673.00

Max 685.00 727.00 801.00 562.00 653.00 683.00

Av 602.00 654.80 703.40 515.60 602.20 623.40

SD 53.46 51.59 77.75 41.49 44.85 56.19

CV 8.88 7.88 11.05 8.05 7.45 9.01

Distance 10.00 10.00 10.00 15.00 15.00 15.00

Altitude 35.00 45.00 55.00 35.00 45.00 55.00

Table A11. Time results using the BINPAT algorithm and five UAVs in a long-track scenario.

BINPAT

UAV1 614.00 675.00 737.00 460.00 525.00 555.00

UAV2 633.00 698.00 756.00 514.00 595.00 629.00

UAV3 577.00 690.00 698.00 462.00 549.00 558.00

UAV4 608.00 683.00 717.00 430.00 538.00 522.00

UAV5 672.00 720.00 806.00 488.00 576.00 584.00

Max 672.00 720.00 806.00 514.00 595.00 629.00

Av 620.80 693.20 742.80 470.80 556.60 569.60

SD 35.00 17.22 41.46 31.70 28.52 39.84

CV 5.64 2.48 5.58 6.73 5.12 6.99

Distance 10.00 10.00 10.00 15.00 15.00 15.00

Altitude 35.00 45.00 55.00 35.00 45.00 55.00

Table A12. Time results using the POWELL-BINPAT algorithm and five UAVs in a long-track scenario.

POWELL-BINPAT

UAV1 560.00 634.00 675.00 489.00 556.00 591.00

UAV2 602.00 654.00 774.00 531.00 571.00 619.00

UAV3 614.00 720.00 704.00 501.00 528.00 579.00

UAV4 557.00 659.00 733.00 502.00 552.00 592.00

UAV5 645.00 709.00 789.00 532.00 582.00 627.00

Max 645.00 720.00 789.00 532.00 582.00 627.00

Av 595.60 675.20 735.00 511.00 557.80 601.60

SD 37.34 37.28 47.44 19.40 20.52 20.39

CV 6.27 5.52 6.45 3.80 3.68 3.39

Distance 10.00 10.00 10.00 15.00 15.00 15.00

Altitude 35.00 45.00 55.00 35.00 45.00 55.00



Sensors 2022, 22, 2297 24 of 25

References
1. Ragab, A.R.; Isaac, M.S.A.; Luna, M.A.; Flores Peña, P. WILD HOPPER Prototype for Forest Firefighting. Int. J. Online Biomed.

Eng. 2021, 17, 148–168. [CrossRef]
2. Chung, S.J.; Paranjape, A.A.; Dames, P.; Shen, S.; Kumar, V. A Survey on Aerial Swarm Robotics. IEEE Trans. Robot. 2018, 34,

837–855. [CrossRef]
3. Zhou, Y.; Rao, B.; Wang, W. UAV Swarm Intelligence: Recent Advances and Future Trends. IEEE Access 2020, 8, 183856–183878.

[CrossRef]
4. Skorobogatov, G.; Barrado, C.; Salamí, E. Multiple UAV Systems: A Survey. Unmanned Syst. 2020, 8, 149–169. [CrossRef]
5. Hedrick, G.; Ohi, N.; Gu, Y. Terrain-aware path planning and map update for mars sample return mission. IEEE Robot. Autom.

Lett. 2020, 5, 5181–5188. [CrossRef]
6. Madridano, A.; Al-Kaff, A.; Martín, D. Trajectory planning for multi-robot systems: Methods and applications. Expert Syst. Appl.

2021, 173, 114660. [CrossRef]
7. Wu, H.; Li, H.; Xiao, R.; Liu, J. Modeling and simulation of dynamic ant colony’s labor division for task allocation of UAV swarm.

Phys. Stat. Mech. Its Appl. 2018, 491, 127–141. [CrossRef]
8. Luna, M.A.; Ragab, A.R.; Ale Isaac, M.S.; Flores Pena, P.; Campoy Cervera, P. A New Algorithm Using Hybrid UAV Swarm

Control System for Firefighting Dynamical Task Allocation. In Proceedings of the 2021 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), Melbourne, Australia, 17–20 October 2021; pp. 655–660.

9. Otto, A.; Agatz, N.; Campbell, J.; Golden, B.; Pesch, E. Optimization approaches for civil applications of unmanned aerial vehicles
(UAVs) or aerial drones: A survey. Networks 2018, 72, 411–458. [CrossRef]

10. Jing, W.; Deng, D.; Wu, Y.; Shimada, K. Multi-UAV Coverage Path Planning for the Inspection of Large and Complex Structures.
In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA,
24 October–24 January 2021; pp. 1480–1486.

11. Barrientos, A.; Colorado, J.; Cerro, J.D.; Martinez, A.; Rossi, C.; Sanz, D.; Valente, J. Aerial remote sensing in agriculture: A
practical approach to area coverage and path planning for fleets of mini aerial robots. J. Field Robot. 2011, 28, 667–689. [CrossRef]

12. Lottes, P.; Khanna, R.; Pfeifer, J.; Siegwart, R.; Stachniss, C. UAV-based crop and weed classification for smart farming. In
Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017;
pp. 3024–3031.

13. Nattero, C.; Recchiuto, C.T.; Sgorbissa, A.; Wanderlingh, F. Coverage algorithms for search and rescue with uav drones. In
Proceedings of the Workshop of the XIII AI*IA Symposium on Artificial Intelligence, Pisa, Italy, 10–12 December 2014; Volume 12.

14. Balampanis, F.; Maza, I.; Ollero, A. Coastal areas division and coverage with multiple UAVs for remote sensing. Sensors 2017,
17, 808. [CrossRef]

15. Cabreira, T.M.; Brisolara, L.B.; Ferreira, P.R., Jr. Survey on coverage path planning with unmanned aerial vehicles. Drones 2019,
3, 4. [CrossRef]

16. Valente, J.; Sanz, D.; Del Cerro, J.; Barrientos, A.; de Frutos, M.A. Near-optimal coverage trajectories for image mosaicing using a
mini quad-rotor over irregular-shaped fields. Prec. Agric. 2013, 14, 115–132. [CrossRef]

17. Li, Y.; Chen, H.; Er, M.J.; Wang, X. Coverage path planning for UAVs based on enhanced exact cellular decomposition method.
Mechatronics 2011, 21, 876–885. [CrossRef]

18. Coombes, M.; Chen, W.H.; Liu, C. Boustrophedon coverage path planning for UAV aerial surveys in wind. In Proceedings of the
International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017; pp. 1563–1571.

19. Cabreira, T.M.; Di Franco, C.; Ferreira P.R.; Buttazzo, G.C. Energy-aware spiral coverage path planning for uav photogrammetric
applications. IEEE Robot. Autom. Lett. 2018, 3, 3662–3668. [CrossRef]

20. Di Franco, C.; Buttazzo, G. Coverage path planning for UAVs photogrammetry with energy and resolution constraints. J. Intell.
Robot. Syst. 2016, 83, 445–462. [CrossRef]

21. Muñoz, J.; López, B.; Quevedo, F.; Monje, C.A.; Garrido, S.; Moreno, L.E. Multi UAV Coverage Path Planning in Urban
Environments. Sensors 2021, 21, 7365. [CrossRef] [PubMed]

22. Nedjati, A.; Izbirak, G.; Vizvari, B.; Arkat, J. Complete coverage path planning for a multi-UAV response system in post-earthquake
assessment. Robotics 2016, 5, 26. [CrossRef]

23. Cho, S.W.; Park, H.J.; Lee, H.; Shim, D.H.; Kim, S.Y. Coverage path planning for multiple unmanned aerial vehicles in maritime
search and rescue operations. Comput. Ind. Eng. 2021, 161, 107612. [CrossRef]

24. Choi, Y.; Choi, Y.; Briceno, S.; Mavris, D.N. Energy-constrained multi-UAV coverage path planning for an aerial imagery mission
using column generation. J. Intell. Robot. Syst. 2020, 97, 125–139. [CrossRef]

25. Maza, I.; Ollero, A. Multiple UAV cooperative searching operation using polygon area decomposition and efficient coverage
algorithms. In Distributed Autonomous Robotic Systems; Springer: Tokyo, Japan, 2007; Volume 6, pp. 221–230.

26. Avellar, G.S.; Pereira, G.A.; Pimenta, L.C.; Iscold, P. Multi-UAV routing for area coverage and remote sensing with minimum time.
Sensors 2015, 15, 27783–27803. [CrossRef]

27. Hong, Y.; Jung, S.; Kim, S.; Cha, J. Autonomous Mission of Multi-UAV for Optimal Area Coverage. Sensors 2021, 21, 2482.
[CrossRef] [PubMed]

28. Dimou, A.; Kogias, D.G.; Trakadas, P.; Perossini, F.; Weller, M.; Balet, O.; Patriakakis C.Z.; Zahariadis, T.; Daras, P. FASTER: First
Responder Advanced Technologies for Safe and Efficient Emergency Response. Technol. Dev. Secur. Pract. 2021, 1, 447–460.

http://doi.org/10.3991/ijoe.v17i09.25205
http://dx.doi.org/10.1109/TRO.2018.2857475
http://dx.doi.org/10.1109/ACCESS.2020.3028865
http://dx.doi.org/10.1142/S2301385020500090
http://dx.doi.org/10.1109/LRA.2020.3005123
http://dx.doi.org/10.1016/j.eswa.2021.114660
http://dx.doi.org/10.1016/j.physa.2017.08.094
http://dx.doi.org/10.1002/net.21818
http://dx.doi.org/10.1002/rob.20403
http://dx.doi.org/10.3390/s17040808
http://dx.doi.org/10.3390/drones3010004
http://dx.doi.org/10.1007/s11119-012-9287-0
http://dx.doi.org/10.1016/j.mechatronics.2010.10.009
http://dx.doi.org/10.1109/LRA.2018.2854967
http://dx.doi.org/10.1007/s10846-016-0348-x
http://dx.doi.org/10.3390/s21217365
http://www.ncbi.nlm.nih.gov/pubmed/34770670
http://dx.doi.org/10.3390/robotics5040026
http://dx.doi.org/10.1016/j.cie.2021.107612
http://dx.doi.org/10.1007/s10846-019-01010-4
http://dx.doi.org/10.3390/s151127783
http://dx.doi.org/10.3390/s21072482
http://www.ncbi.nlm.nih.gov/pubmed/33918491


Sensors 2022, 22, 2297 25 of 25

29. Stanford Artificial Intelligence Laboratory. Robotic Operating System. 2018. Available online: https://www.ros.org (accessed on
12 January 2022).

30. Ermakov, V. MAVROS. Available online: http://wiki.ros.org/mavros (accessed on 12 January 2022).
31. Huang, W.H. Optimal line-sweep-based decompositions for coverage algorithms. In Proceedings of the 2001 ICRA, IEEE

International Conference on Robotics and Automation (Cat. No. 01CH37164), Seoul, Korea, 21–26 May 2001; Volume 1, pp. 27–32.
32. Barna, R.; Solymosi, K.; Stettner, E. Mathematical analysis of drone flight path. J. Agric. Inform. 2019, 10 , 15–27. [CrossRef]
33. Hunter, J.D. Matplotlib: A 2D graphics environment. IEEE Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
34. QGroundControl . Available online: http://qgroundcontrol.com/ (accessed on 12 January 2022).
35. Jonker, R.; Volgenant, A. A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing

1987, 38, 325–340. [CrossRef]
36. Crouse, D.F. On implementing 2D rectangular assignment algorithms. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 1679–1696.

[CrossRef]
37. Powell, M.J. An efficient method for finding the minimum of a function of several variables without calculating derivatives.

Comput. J. 1964, 7, 155–162. [CrossRef]
38. Virtanen, P.; Gommers, R.; Oliphant, T.E. SciPy 1.0 Fundamental Algorithms for Scientific Computing in Python. Nat. Methods

2020 , 17, 261–272. [CrossRef] [PubMed]
39. Cel M.; Dave, C. QFlightInstruments. Available online: http://marekcel.pl/?lang=en&page=qfi (accessed on 22 January 2022).
40. Dauni, P.; Firdaus, M.D.; Asfariani, R.; Saputra, M.I.N.; Hidayat, A.A.; Zulfikar, W.B. Implementation of Haversine formula for

school location tracking. J. Phys. Conf. Ser. 2019, 1402, 077028. [CrossRef]
41. Koenig, N.; Howard, A. Design and use paradigms for gazebo, an open-source multi-robot simulator. In Proceedings of the

2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, 28 September–2 October 2004;
Volume 3, pp. 2149–2154.

https://www.ros.org
http://wiki.ros.org/mavros
http://dx.doi.org/10.17700/jai.2019.10.2.533
http://dx.doi.org/10.1109/MCSE.2007.55
http://qgroundcontrol.com/
http://dx.doi.org/10.1007/BF02278710
http://dx.doi.org/10.1109/TAES.2016.140952
http://dx.doi.org/10.1093/comjnl/7.2.155
http://dx.doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543
http://marekcel.pl/?lang=en&page=qfi
http://dx.doi.org/10.1088/1742-6596/1402/7/077028

	Introduction
	Problem Definition
	Methodology
	Architecture Proposal
	Multi-UAV CPP Algorithm
	Area Decomposition
	Multi-UAV Routing
	Routing Optimization

	Software Implementation
	Hardware Implementation
	Transformation between Relative and Absolute Coordinates

	Results and Discussion
	Algorithm Validation
	Simulation Results
	Real-Flight Test Results

	Conclusions and Future Work
	Appendix A
	Appendix A.1
	Appendix A.2

	References

