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Abstract: Pneumothorax is a thoracic disease leading to failure of the respiratory system, cardiac
arrest, or in extreme cases, death. Chest X-ray (CXR) imaging is the primary diagnostic imaging tech-
nique for the diagnosis of pneumothorax. A computerized diagnosis system can detect pneumothorax
in chest radiographic images, which provide substantial benefits in disease diagnosis. In the present
work, a deep learning neural network model is proposed to detect the regions of pneumothoraces in
the chest X-ray images. The model incorporates a Mask Regional Convolutional Neural Network
(Mask RCNN) framework and transfer learning with ResNet101 as a backbone feature pyramid
network (FPN). The proposed model was trained on a pneumothorax dataset prepared by the Society
for Imaging Informatics in Medicine in association with American college of Radiology (SIIM-ACR).
The present work compares the operation of the proposed MRCNN model based on ResNet101
as an FPN with the conventional model based on ResNet50 as an FPN. The proposed model had
lower class loss, bounding box loss, and mask loss as compared to the conventional model based
on ResNet50 as an FPN. Both models were simulated with a learning rate of 0.0004 and 0.0006 with
10 and 12 epochs, respectively.

Keywords: deep learning; medical imaging; mask RCNN; image segmentation; pneumothorax

1. Introduction

Pneumothorax is a thoracic disease condition in which the lungs of a human being
collapse, causing air to leak into the pleural cavity, which is the area surrounding the lungs
and the walls of the chest. The leaked air then pushes the outside boundary of the lung and
results in the collapse of lungs. This may be a complete collapse of the lungs or a collapse
of just one part.

Pneumothorax can occur due to an injury to the chest which causes a tear on the
lung surface, allowing air to get trapped in the pleural cavity, due to some underlying
lung diseases such as pneumonia, chronic obstructive pulmonary disease (COPD), etc.,
or if the air trapped in the pleural cavity does not escape and continues to grow [1,2]. A
person suffering from pneumothorax may have sudden pain in the chest or difficulty with
breathing. Pneumothorax can be life-threatening, as it can lead to cardiac arrest, failure of
the respiratory system, or, in extreme cases, even death. As per [3,4], there are 99.9 cases
of spontaneous pneumothorax per 100,000 hospital admissions annually. According to
Martinelli et al. in [5], Pneumothorax has been identified as one of the important factors
complicating the cases of the coronavirus disease COVID-19 and increasing the rate of
hospital admission. The proper diagnosis and medication is important to increase the
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survival rate and prevent any life threat caused by this disorder. It is difficult to diagnose
pneumothrax by physical examination of a patient.

Chest radiographic images or chest X-ray (CXR) imaging is the primary diagnostic
imaging technique employed in the diagnosis of pneumothorax, as it provides a quick
diagnosis. The interpretation of chest radiographic images for diagnosing pneumothorax
is difficult [6,7]; images may have some superimposed structures, patterns of different
thoracic diseases has diverse appearances, sizes, and locations on CXR images, and the
varying postures of patients while capturing the X-ray image can create distortion. In
addition, the accurate pixel-level annotations in CXR can be done by highly experienced ra-
diologists, resulting in high expenses. The experienced radiologists are not easily available
in undeveloped areas. In [8], the author identified a shortage of expert radiologists who can
detect the presence of an abnormality from a chest X-ray, even when the X-ray equipment
is available. This has created an interest in computerized diagnosis of pneumothorax from
chest radiographic images. A computerized diagnosis system can detect pneumothorax in
chest radiographic images which provide substantial benefit in disease diagnosis.

In the last few years, a computerized diagnosis of disease using artificial intelligence
(AI) has emerged as a major research topic in the area of medical diagnosis. AI systems
can improve the performance of any disease diagnosis system by minimizing the number
of errors during the interpretation of the image [9]. The deep learning model has been
significant in the medical image analysis field. The use of deep learning algorithms has led
to development in the field of biomedical image analysis. The new deep learning model
has been developed for the task of classification and segmentation of medical images for
presence of disease.

Image segmentation is a process of partitioning a given digital image into different
segments. The pixels in the image with similar attributes are grouped together. Image
segmentation [10] is classified into two categories: semantic segmentation and instance
segmentation. Semantic segmentation is a method of assigning labels to all the pixels
in an image such that the pixels connected to each other by certain properties belong to
the same label. Instance segmentation involves partitioning of boundaries of individual
objects in an image at pixel level. In [11], the authors stated that instance segmentation
detects and delineates each object of interest in the image. The segmentation of lesions in
medical images can aid in monitoring the geometric changes in the size of lesions and in
calculating dosage of medicine. The use of deep neural networks can aid in improving
the health care system and providing access to detection of disease in the absence of chest
radiograph experts.

In the present work, a deep learning model is proposed for segmenting regions with
traces of pneumothorax in chest X-ray images. The proposed model uses Mask RCNN with
ResNet101 as a backbone feature pyramid network. The model has been trained utilizing
transfer learning by using pretrained weights of pneumonia identification algorithm [12].
The model was trained on a SIIM-ACR pneumothorax segmentation challenge dataset
which is available on Kaggle and can be accessed at: https://www.kaggle.com/c/siim-acr-
pneumothorax-segmentation (accessed on 18 January 2022).

The major contributions of this study are as follows:

(i) SIIM-ACR pneumothorax segmentation dataset has been preprocessed using data
augmentation and upsampling techniques.

(ii) An MRCNN model based on ResNet101 as a backbone feature pyramid network (FPN)
is proposed to detect the areas of pneumothorax in chest X-ray images.

(iii) The performance of the proposed neural network model with ResNet101 FPN was
analyzed and compared with the conventional model using ResNet50 as FPN.

(iv) The performance of the proposed neural network model was compared with the
existing models.

The rest of the paper is organized as follows: Section 2 explains the related research in
the area of deep-learning-based medical image segmentation. Section 3 presents the dataset
used for training the proposed model. Section 4 discusses the architecture of the proposed
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model. Section 5 describes the workflow of the proposed model. The result analysis of the
proposed model is conferred in Section 6. Section 7 concludes the present research work
and gives future scope.

2. Related Research

A deep learning model has been extensively employed in the field of medical image
analysis for classification and segmentation of diseases. The classification of medical im-
ages can be done using various deep learning models. As compared with classification,
the techniques for localization of abnormalities in medical images give more information
regarding disease diagnosis and probabilistic prognosis. DL-based image segmentation
models can predict the label for each pixel in the image [13]. The authors in [14] pre-
sented a fully automated framework employing 2D and 3D CNN to segment cardiac MR
images. In [15], the authors introduced a recurrent neural network (RCN) architecture
to perform segmentation of the pancreas in abdominal MRI and CT images. The model
design consisted of a deep convolutional subnetwork with the output layer connected
to a long short term memory (LSTM) network. In [16], the authors reported a 3D deep
residual network for volumetric segmentation of the brain in MR images. Authors in [17]
proposed a cascaded FCN model to segment the liver and the lesions within the ROI. A
dense 3D conditional random field was employed to produce final segmentation. In [18],
the authors proposed a 3D deeply supervised network (DSN) with fully convolutional
architecture for automatic segmentation of the liver in CT images. The designed model
attained fast convergence and good discrimination capability on the MICCAI-Sliver07
(Medical Image computing and computer assisted intervention) dataset. Dhungel et al. [19]
reported a deep convolution and deep belief network for segmenting breast masses in
Mammography images. The authors employed two different loss minimization parameter
learning algorithms, CRF and structured SVM, with CRF being faster. Poudel et al. [20]
developed a recurrent fully convolutional network (RFCN) to detect and segment the heart
in cardiac MR images. Hamidian et al. in [21] converted 3D CNN into 3D FCN to segment
pulmonary nodules in chest CT images. In [22], Stollenga et al. suggested a recurrent
neural network taking advantage of multidimensional LSTM for pixel-wise segmentation
of MR images of the brain. In [23], Zhang et al. proposed a model with the dilated and
separable convolution into residual U-Net architecture for segmenting brain tumors in
MR images. Milletari et al. [24] employed a V-Net model to segment the prostate in MRI
images. Mulay et al. [25] suggested a nested edge detection and Mask RCNN network for
segmentation of the liver in CT and MR images. Gordienko et al. [26] reported a U-Net
based CNN for segmentation of the lungs on CXRs images.

The DL-based segmentation techniques can be utilized for locating abnormalities
in chest radiographic images. In [27], GooBee et al. proposed three different networks,
namely CNN, FCN, and MIL (multi instance learning), for classification and localization of
pneumothorax in chest X-ray images. In [28], Taylor et al. suggested a deep convolutional
network to identify pneumothorax in the chest X-ray dataset. In [29], authors designed
a CheXLocNet algorithm based on Mask R-CNN to segment the area of pneumothorax
from chest radiographs. The authors employed Mask RCNN with ResNet-50 as a backbone
feature pyramid network. In [30], the authors proposed a two-stage U-Net model with
ResNet 34 as a backbone neural network for segmentation of pneumothorax. The authors
concluded that two-stage training of U-Net showed better network convergence. In [31],
the authors suggested a design consisting of an ensemble of three LinkNet networks
with se-resnext50, se-resnext101, and SENet154.In the present work, a mask regional
convolutional neural network (MRCNN) model with ResNet101 as a backbone feature
pyramid network has been proposed for segmentation of regions containing pneumothorax
in chest X-ray images.
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3. Dataset Analysis

The Society for Imaging Informatics in Medicine, in collaboration with American
College of Radiology (SIIM-ACR), collected the CXR data for pneumothorax and released
it on Kaggle. The SIIM-ACR dataset was used for training, validation, and testing of the
proposed model, and is available at: https://www.kaggle.com/c/siim-acr-pneumothorax
-segmentation (accessed on 18 January 2022). The dataset contained three files: DICOM
training images, DICOM testing images, and run-length encoded files.

A DICOM (Digital Imaging and Communications in Medicine) format consists of
header data and an image, both of which are packed into a single file. The header of the
DICOM file consists of a series of tags that provide information concerning the patient’s
name, age, sex, demographics, and various other parameters (as shown in Figure 1).
Important information regarding the patient can be extracted from these tags. The images
in the DICOM files contained either frontal AP (anterior–posterior) or frontal PA (posterior–
anterior) chest radiographs for a particular patient.

Sensors 2022, 22, x FOR PEER REVIEW  4 of 24 
 

 

3. Dataset Analysis 
The Society for Imaging Informatics in Medicine, in collaboration with American Col-

lege of Radiology (SIIM-ACR), collected the CXR data for pneumothorax and released it 
on Kaggle. The SIIM-ACR dataset was used for training, validation, and testing of the 
proposed model, and is available at: https://www.kaggle.com/c/siim-acr-pneumothorax-
segmentation (accessed on 18 January 2022). The dataset contained three files: DICOM 
training images, DICOM testing images, and run-length encoded files. 

A DICOM (Digital Imaging and Communications in Medicine) format consists of 
header data and an image, both of which are packed into a single file. The header of the 
DICOM file consists of a series of tags that provide information concerning the patient’s 
name, age, sex, demographics, and various other parameters (as shown in Figure 1). Im-
portant information regarding the patient can be extracted from these tags. The images in 
the DICOM files contained either frontal AP (anterior–posterior) or frontal PA (posterior–
anterior) chest radiographs for a particular patient. 

 
Figure 1. Snapshot of metadata stored in a DICOM Image. 

The dataset consisted of 12,052 images in DICOM format that were 1024 × 1024 pixels. 
There were around 10,675 training images and 1377 testing images. The training and test-
ing images were stored in separate folders, and the images had a .dcm extension. A DI-
COM training image from the dataset with a .dcm extension is shown in Figure 2a. 

The run-length-encoded files were in the form of an excel file with .csv extension, stor-
ing the annotations mask for the dataset images. These excel files had the data in the form 
of run-length-encoded (RLE) code. The RLE file contained two columns: image ID, indicat-
ing the image number, and the encoded pixel column, indicating the pixel numbers with 
mask values for the given image ID. The RLE code was decoded to generate the segmenta-
tion mask. The segmentation mask obtained from the RLE file is shown in Figure 2b. 

Figure 1. Snapshot of metadata stored in a DICOM Image.

The dataset consisted of 12,052 images in DICOM format that were 1024 × 1024 pixels.
There were around 10,675 training images and 1377 testing images. The training and testing
images were stored in separate folders, and the images had a .dcm extension. A DICOM
training image from the dataset with a .dcm extension is shown in Figure 2a.

The run-length-encoded files were in the form of an excel file with .csv extension,
storing the annotations mask for the dataset images. These excel files had the data in
the form of run-length-encoded (RLE) code. The RLE file contained two columns: image
ID, indicating the image number, and the encoded pixel column, indicating the pixel
numbers with mask values for the given image ID. The RLE code was decoded to generate
the segmentation mask. The segmentation mask obtained from the RLE file is shown in
Figure 2b.

https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation
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Figure 2. A training image from the dataset; (a) chest X-ray DICOM image (b) segmentation mask
obtained from RLE file.

4. Architecture of Proposed Mask RCNN Model

The segmentation model proposed in the present work is based on the Mask Regional
Convolutional Neural Network [32] with ResNet101 [33] as a backbone FPN. Mask RCNN
is a deep neural network model that generates bounding boxes as well as segmentation
masks for every instance of an object present in the given image. The architecture of the
proposed model is shown in Figure 3.
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4.1. Backbone ResNet101 Feature Pyramid Network (FPN)

The backbone deep neural network called the feature pyramid network is used to
extracting features. It consists of three parts: the bottom-up pathway, top-down pathway,
and lateral connections (shown in Figure 4). The bottom-up pathway of the proposed model
consists of ResNet101 [34] for extracting features from the input image. The proposed
model is different from the existing model [29] in terms of the backbone network. In the
proposed model, ResNet101 has been used as a backbone network, whereas in the existing
model [29], ResNet50 has been used. The ResNet101 is different from ResNet50 in terms
of the number of layers, as depicted in Table 1. The bottom-up pathway has one pyramid
level for each of the stages. The bottom-up pathway extracts the feature map from the
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input image. These feature maps undergo 1 × 1 convolutions for channel dimensionality
reduction. The output of the bottom-up pathway acts as a reference feature map for the
top-down pathway by a lateral connection.
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The feature maps from the two pathways are merged and use element-wise addition.
A 3 × 3 convolution is applied to each merged feature map to generate the final feature
map. The final set of feature maps generated by the FPN, termed {P2, P3, P4, and P5}, has
the same spatial sizes [35]. The use of the ResNet-101 FPN backbone improves the accuracy
and speed of the proposed model.

In the present work, the different layer of the proposed model was not trained from
scratch; the concept of transfer learning has been employed. Transfer learning [36] is a
powerful approach in which a model trained for one task can be utilized to initialize the
parameters of a model to be trained for another task. Transfer learning is a means for
faster and better training of the model with the limited amount of data. In the present
work, the weights of our backbone ResNet 101 model were initialized to the weights
pretrained on a pneumonia detection challenge. This improved the accuracy and saved
model training time.
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Table 1. Differences between ResNet50 and ResNet101 layers.

Layer Name ResNet50 Resnet101

Convolution 1 7 × 7, 64, stride 2

Convolution 2×

3 × 3 Max pool, stride 2 1× 1 64
2× 3 64
1× 1 256

× 3

 1× 1 64
2× 3 64
1× 1 256

× 3

Convolution 3×

 1× 1 128
3× 3 128
1× 1 512

× 4

 1× 1 128
3× 3 128
1× 1 512

× 4

Convolution 4×

 1× 1 256
3× 3 256
1× 1 1024

× 6

 1× 1 256
3× 3 256
1× 1 1024

× 23

Convolution 5×

 1× 1 512
3× 3 512
1× 1 2048

× 3

 1× 1 512
3× 3 512
1× 1 2048

× 3

Average pool, 1000-d FC, softmax

4.2. Regional Proposal Network

A regional proposal network (RPN) scans feature maps generated by a backbone
network and proposes the Region of Interest or RoI. The RPN creates the bounding boxes
called anchor boxes of different sizes and aspect ratios that stretch across the entire input
feature map [37]. Researchers have employed different techniques to compute the bounding
boxes [38,39]. In the present work, the RPN works as follows:

(i) Anchor generation: A sliding window convolution of 3 × 3 (with 512 filters and
padding = same) is applied to the feature maps obtained from the backbone feature
pyramid network. The center point of the sliding window represents an anchor. In
the proposed model, anchor boxes have a scale of {322, 642, 1282, 2562} pixels with
anchor ratios of {1:2, 1:1, 2:1}. Each sliding window of RPN generates K = 12 anchor
boxes with four scales and three aspect ratios. For the entire image, N = W × H × K
anchor boxes are generated with W*H being the size of input convolution feature
maps. Figure 5 shows the process of the anchor generation.

(ii) Classification scores and bounding box coordinates generation: The anchor or bound-
ing boxes generated in the previous step are passed to an intermediate layer of
3 × 3 convolution (with padding of one) and 256 output channels. As depicted in
Figure 6, the output is then passed to two layers of 1× 1 convolution: the classification
layer and regression layer. The classification layer generates a matrix of size (W, H,
k × 2) for N anchor boxes with two scores corresponding to the probability of an
object existing or not. The regression layer generates a matrix of size (W, H, k × 4)
for N anchor boxes with four values of the coordinates of each bounding box (see
Figure 5).

(iii) Non maximum suppression (NMS) algorithm: Out of the generated bounding boxes,
the best bounding boxes were selected using the non maximum suppression (NMS)
algorithm given below:

(a) Sort all of the created bounding boxes in decreasing order of their object score
confidence;

(b) Select the box with the highest object score confidence;
(c) Calculate the overlap or intersection over union (IoU) of the current box with the

other boxes that belong to the same object class;
(d) Remove all the boxes with IoU values greater than 0.7;
(e) Move to the next highest object score confidence;
(f) Repeat the above steps for all the boxes in the list.
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The selected parameters of the RPN for the proposed network are summarized in
Table 2.

Table 2. RPN parameters.

S. No. Simulation Parameter Parameter Value

1 RPN anchors per image 256

2 Anchor areas 322, 642, 1282, 2562

3 Anchor ratios 0.5, 1, 2

4 Anchor stride 1

5 RPN NMS Threshold 0.7
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4.3. Region of Interest (RoI) Align

The bounding boxes or region proposals generated by RPN have different scales,
and these different scale features are to be sent to a fully connected layer with a fixed
scale [40]. RoI align predicts the region of interest from the bounding boxes and uses
bilinear interpolation to generate fixed size, 7 × 7 feature maps. The following steps are
taken in the RoI align process:

(a) The region proposal candidates are generated by RPN. These region proposal coordi-
nates are floating point numbers, and their boundaries are not quantized.

(b) The region proposal candidate boxes are divided evenly into a fixed number of
smaller regions.

(c) In each smaller region, four points are sampled.
(d) The feature pixel values for each point are calculated using bilinear interpolation.
(e) The max-pooling operation is performed on each subregion to obtain the final

feature map.

The RoI alignment operation [41] is shown in Figure 6, in which the background
grid represents the feature map. The grid is divided into squares, and dots in this grid
represent the sample points in a 2 × 2 bin. The bilinear interpolation was applied to these
points and a fixed-size (7 × 7) feature map was generated. These fixed-size feature maps
were reshaped into a one-dimensional vector by a fully connected network. They further
consists of two fully connected layers of size 1024 to classify and predict RoIs category and
bounding box.

4.4. Segmentation Process

Mask RCNN uses convolution-based neural networks to extract masks for each RoI
and segments the image pixel wise [41]. This branch generates a fixed mxm size mask for
each class with Km2 dimensional output for each of the RoIs with K different classes. In our
study, a 28 × 28 mask was generated for each of the regions. During the model training, the
ground truth mask contained in the training dataset was downscaled to compute the value
of loss with the predicted mask. During the inference, the generated mask was up-scaled
to the original size of the ROI bounding box.

5. Workflow of Proposed Model

The workflow of the proposed model is represented in Figure 7.
The proposed Mask RCNN model with a backbone ResNet101 as an FPN is trained

on a SIIM-ACR pneumothorax dataset available on Kaggle. The model is implemented as
explained next.

5.1. Data Preparation

The SIIM-ACR pneumothorax dataset was downloaded from www.kaggle.com (ac-
cessed on 18 January 2022). The dataset consisted of three files containing DICOM training
images, DICOM testing images and excel file with mask information encoded using run-
length encoding. The operations performed on dataset as explained below:

5.1.1. Data Augmentation

Data augmentation [42] is a technique employed on the training dataset to improve
the performance of the deep learning model. These techniques increase the ability of the
model to generalize. In the present work, different augmentation techniques were applied
to the dataset. The different linear geometric transformation applied includes scaling, the
image can be scaled outward or inward; translation, involving moving the image along the
X or Y direction (or both); rotation, which rotates the image by a specified degree right or
left on an axis (between 1◦ and 359◦); and shearing, which transforms the orientation of the
image and shifts one part of the image, similar to a parallelogram. The images resulted as
shown in Figure 8.

www.kaggle.com
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The other augmentation techniques (see Figure 9) applied to the dataset include multi-
plication, which multiplies all pixels in an image by a random value sampled uniformly
from the interval [0.9, 1.1]; Gaussian blur, which is obtained by blurring an image using a
Gaussian function to reduce the noise level; contrast, which gives the degree of separation
between the darkest and brightest areas of an image; and sharpening, which highlights
edges and fine details in an image.
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5.1.2. Dataset Balancing and Splitting

The dataset consisted of 12,052 images in DICOM format with the size of 1024× 1024 pixels.
These images were resized to 512 × 512 pixels. There were around 10,675 training im-
ages and 1377 test images. The dataset had high class imbalance and consisted of only
22% positive pneumothorax cases. The number of positive samples in the training set was
increased to 53.2% by over-sampling the positive images. The training dataset was further
split into two parts: a training and validation dataset. The total numbers of images in the
training, validation, and testing datasets after the split are given in Table 3.

Table 3. Training, validation, and testing dataset (split).

Number of Before Sampling After Sampling

Training Images 10,675 15,629

Validation Images — 1320

Test Images 1377 1377

Images with Pneumothorax 2379 8316

Percentage of Positive Cases (%) 22.29 53.21

5.1.3. RLE to Mask Conversion

The annotation mask for the training data was stored in the run-length-encoded (RLE)
file with a .csv extension. RLE is a lossless compression method that replaces data sequences
having identical values (run) with the respective value stored once, and the length of the
run. The RLE file contained two columns, image ID and encoded pixels, for each figure. In
Figure 10, image ID and encoded pixels are shown for five images.

The image ID provides the image number. The encoded pixel column marked as
−1 indicates that there is no mask for the given image ID. In Figure 10, images no. zero
and one have encoded pixel values of −1. This means that there is no mask given for
these images due to absence of pneumothorax. The encoded pixels column has values in
run-length-encoded form to generate the mask with pneumothorax. In the generated mask,
the pixel value is zero for non pneumothorax regions and one for pneumothorax regions.
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The complete RLE array for one reference image ID is shown in Figure 11. The
reference image is an array with a size of 1024 × 1024 pixels, having a total number
of 1024 × 1024 = 1,048,576 pixels in the form of a vector. For the reference image, the
initial pixel position of the mask in the vector is 759,441, where its value is one. After that,
11 consecutive pixels have a value of one. Then, 1010 pixels consecutively have a pixel value
of zero. The next pixel position having value a value of one is 759,441 + 11 + 1010 = 760,462.
Some of the initial pixel positions and the final pixel positions for pixel values zero and one
are shown in Table 4. In this way, the complete mask could be generated for all the pixel
positions in the form of a vector. Then, the complete vector, with a size of 1,048,576 pixels,
was again converted into an array of size 1024 × 1024.
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Table 4. Pixel positions and length of pixels having values ‘0’ and ‘1’for mask generation for reference
image ID.

Initial Pixel Position Length of Pixels
Having Value ‘1’ Final Pixel Position Length of Pixels

Having Value ‘0’

759,441 11 759,452 1010

760,462 15 760,477 1007

761,484 18 761,502 1005

762,507 19 762,526 1005
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The pixel locations from 759,441 to 759,452, 760,462 to 760,477, 761,484 to 761,502, and
762,507 to 762,526 had a value of one. The same process was applied to all the values stored
in the array, and the pixel locations having a value of one were decoded. This process of
conversion generated the mask. The generated mask for the reference image ID is given in
Figure 12.
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5.2. Predefined Weights Loading

The proposed model uses pretrained weights from a past medical imaging algorithm
used for pneumonia identification, available in [43]. For this, initially Matterport’s Mask
RCNN model was installed from github using the command: !git clone Mask_RCNN.
Transfer learning was used to train the model [44]. The pretrained weights from pneumonia
identification were used as initial parameters for the model and were downloaded with
the help of the command: wget–quietmask_rcnn_coco.h5. The use of transfer learning
saved the computational expense that would otherwise manifest while training the network
from scratch.

5.3. Parameter Initialization

In the proposed model, different simulation parameters were initialized. The model
was simulated with a backbone as ResNet101. The details regarding the values of the
experimental parameters such as number of classes, image dimension, RPN parameters,
batch size, epochs, learning momentum, weight decay, etc., are given in Table 5.

Table 5. Experimental parameter values.

S. No. Simulation
Parameter Name

Parameter
Value S. No. Simulation

Parameter Name
Parameter

Value

1 Number of classes 2 7 GPU count 1

2 Image dimension 512 × 512 8 Images per GPU 11

3 RPN anchor scales 32,64,128,256 9 Weight Decay 0.0005

4 Train RoIs per image 32 10 Learning
momentum 0.9

5 NMS threshold 0.1 11 Steps per epoch 350

6 Batch size 11 12 Validation Steps 120

5.4. Multistage Training

The proposed model was trained on a training dataset consisting of 15,629 images. The
proposed model was trained in two stages. In stage 1, the model head layers were trained
for one epoch with the learning rate doubled, and no data augmentation was utilized. In
stage 2, all the layers of the selected model were trained. The model was simulated for two
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different learning rates, LR 0.0006 and 0.0004. Similarly, the proposed model was simulated
by taking two different values of epochs, i.e., 10 and 12, in stage 2. Each epoch consisted of
350 iterations. Table 6 represents the simulation parameters for stages 1 and 2, respectively.

Table 6. Simulation parameters for stage 1 and stage 2 training.

Sr. No. Simulation Parameters Parameter Value for
Stage 1

Parameter Value for
Stage 2

1 Learning rate 0.0012 0.0006
0.0008 0.0004

2 Number of epochs 1 10, 12

3 Layers trained heads all

4 Augmentation None yes

6. Results and Discussion

Python has emerged as one of the most simple and efficient languages for implement-
ing deep learning algorithms. It is used in various image classification and segmentation
tasks. The code for the present work was written in Python. The code was run on the
NVIDIA Tesla P100 GPU. The following important libraries of Python were utilized for
developing the proposed model: Keras, Tensorflow, openCV, pydicom, imaug, h5py, and
scikit-image.

6.1. Results for Segmentation of Pneumothorax

The proposed Mask RCNN model draws the dotted bounding box around each
detected region of pneumothorax. Further, it assigns class labels for each detected region
witha prediction confidence score. Moreover, it creates the object mask for each of the
pneumothorax regions. The image shown in Figure 13 depicts the different annotations
generated on a sample taken from the validation dataset. The proposed model generated
the segmentation mask and predicted the confidence score for each image efficiently.
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After the training of the proposed model, the test images were applied to the model
to generate the segmentation masks. The segmentation masks generated by the proposed
model are shown in Figures 14 and 15 for two different patient chest X-ray images.
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6.2. Analysis Based on Loss Scores

The loss score of a neural network represents the prediction error of the model. A
curve can be plotted to represent the loss generated by the predictions of a model. The
model is designed to minimize the loss function. The performance of the proposed model
was analyzed by evaluating the three different types of loss scores, as given below:

6.2.1. Results for Class Loss

Class loss represents the closeness of the model to predicting the correct class. There
are two classification losses in the MRCNN model.

(a) RPN class loss is defined as the RPN anchor classifier loss that represents the closeness
of the RPN in predicting the class label.

(b) MRCNN class loss represents the loss due to the classifier head of the Mask RCNN.

The classification loss employed in the model is the cross entropy loss function [38].
It represents the difference in the information contained in the predicted class probability
and the true class. It is defined as given in Equation (1).

Lcls(Pi, Pi
∗) = −∑

i
P∗i log(Pi) (1)
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where, Pi is the Predicted probability of anchor I representing an object class and Pi* is
the ground truth label for anchor i, being an object. In the present work, there are two
classes, background and pneumothorax, thus the formula to find class loss changes, as in
Equation (2):

Lcls(Pi,Pi*) = −Pi*logPi − (1 − Pi*)log(1 − Pi) (2)

Table 7 gives the minimum RPN class loss scores and MRCNN class loss scores for the
ResNet50 and ResNet101 backbones with the different learning rates and epochs. From
Table 7, it can be deduced that the value of total class loss is minimal for both the learning
rates in the case of the proposed model as compared to conventional models.

Table 7. Class loss values for validation data with different learning rates and epochs.

Model Backbone
Network

Learning
Rate

Total
Epochs

Minimum
RPN Class

Loss

Minimum
MRCNN Class

Loss

Total Class Loss = RPN Class
Loss + MRCNN Class Loss

Conventional
Model ResNet50

0.0004

12 0.353907 1.359199 1.713106

Proposed
Model ResNet101 12 0.355985 1.353964 1.709949

Conventional
Model ResNet50

0.0006

10 0.343072 1.309230 1.652302

Proposed
Model Resnet101 10 0.345099 1.273622 1.618721

It is also clear from Table 7 that the minimum class loss is at the learning rate 0.0006
with 10 epochs. Hence, Figure 16 is showing the generated class loss scores plot for the
proposed model for 10 epochs with a learning rate of 0.0006 only. During simulation, RPN
validation class loss is constant after the sixth epoch, and MRCNN validation class loss is
the least at the ninth epoch.
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Here, λ represents the balancing parameter set to 10. 
Nbox is the normalization term equal to the number of anchor locations, set to 256. 
Pi represents the predicted probability that anchor i is an object. 
Pi* L1 shows that regression loss is active for positive anchors (Pi* = 1) only. 
ti represents the predicted four coordinates. 
ti* represents ground truth coordinates. 

Figure 16. Class loss for the proposed model with LR = 0.0006, epochs = 10, (a) RPN class loss;
(b) MRCNN class loss.

6.2.2. Results for Bounding Box Regression Loss

The bounding box regression loss of a model represents the distance between the
true box coordinates and the predicted box coordinates. There are two types of bounding
box losses:

(a) RPN bbox loss provides the RPN bounding box loss values reflecting the distance
between the true boxes coordinates and the predicted RPN boxes coordinates.
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(b) MRCNN bbox loss provides the MRCNN bounding box loss values reflecting the
distance between the true boxes coordinates and the predicted MRCNN coordinates.
Smooth L1 loss [37,38] is used to represent bounding box regression as shown in
Equations (3) and (4).

Lbox(Pi, ti) =
λ

Nbox
∑

i
P∗i Lsmooth

1 (ti − t∗i ) (3)

Here, λ represents the balancing parameter set to 10. Nbox is the normalization term
equal to the number of anchor locations, set to 256. Pi represents the predicted
probability that anchor i is an object. Pi* L1 shows that regression loss is active
for positive anchors (Pi* = 1) only. ti represents the predicted four coordinates. ti*
represents ground truth coordinates.

Lsmooth
1 = 0.5

(
Ytrue −Ypred

)2
if |x| < 1

= |Ytrue −Ypred| − 0.5 otherwise
(4)

To compute this loss, the algorithm first finds the absolute difference between the true
and predicted values, (Ytrue − Ypred). It then checks if (Ytrue − Ypred) is less than one or not.
It further computes Lsmooth

1 . The total regression loss is computed using the formula given
in Equation (3).

Table 8 gives the minimum RPN bbox Loss scores and MRCNN bbox Loss scores for
the ResNet50 and ResNet101 backbones with the different learning rates and epochs. From
Table 8, it can be seen that the value of total bbox loss is minimal for both the learning rates
in the case of the proposed model as compared to conventional models. The minimum
RPN bbox loss is observed with ResNet 50 as a backbone with LR 0.0006 and 10 epochs
whereas MRCNN bbox loss is the least with the ResNet101 as a backbone with LR0.0006
and 10 epochs.

Table 8. BBox loss values for validation data with different learning rates and epochs.

Model Backbone
Network

Learning
Rate

Total
Epochs

Minimum
RPN BBox

Loss

Minimum
MRCNN BBox

Loss

Total Bbox Loss = RPN BBox
Loss + MRCNN BBox Loss

Conventional
Model ResNet50

0.0004
12 0.374971 0.389217 0.764188

Proposed
Model ResNet101 12 0.362586 0.388650 0.751236

Conventional
Model ResNet50

0.0006
10 0.327884 0.378461 0.706345

Proposed
Model Resnet101 10 0.323304 0.372548 0.645852

Figure 17 shows the generated bounding box loss plot for the proposed model simu-
lated for 10 epochs with a learning rate of 0.0006. In Figure 17a, at 10th epoch, the RPN
train box and validation box losses are the same. In Figure 17b, MRCNN validation box
losses are fluctuating.

6.2.3. Results for Mask Loss

Mask loss is the mean binary cross-entropy loss for the masks head [45,46]. It is defined
in Equation (5):

Lmask =
−1
m ∑

1≤ij≤m

[
yij log ŷK

ij + (1− yij) log(1− ŷK
ij )
]

(5)
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where, yij represents the label given to cell (i, j) in the ground truth mask; ŷk
ij represents the

label predicted for the same cell in the mask generated by the model.
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Table 9 lists the minimum mask loss scores for ResNet50 and ResNet101 with the
different learning rates and epochs. The MRCNN mask loss is the least with ResNet101 as
the backbone with LR 0.0006 and 10 epochs.

Table 9. MRCNN mask loss for validation data with different learning rates and epochs.

Model Backbone Network Learning Rate Total Epochs Minimum MRCNN
Mask Loss

Conventional Model ResNet50
0.0004

12 0.791617

Proposed Model ResNet101 12 0.788237

Conventional Model ResNet50
0.0006

10 0.777462

Proposed Model Resnet101 10 0.760439

Figure 18 represents the mask loss for training and validation loss for the proposed
model; the validation mask loss is fluctuating.
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6.2.4. Results for Total Loss

The total loss in the MRCNN model is the sum of class loss, bounding box regression
loss, and the mask loss as given in Equation (6).

Total loss, Ltotal = Lrpncls + Lmrcnncls + Lrpnbbox + Lmrcnnbbox + Lmask (6)

where, Lrpncls = RPN class loss, Lmrcnncls = MRCNN class loss, Lrpnbbox = RPN bounding box
loss, Lmrcnnbbox = MRCNN bounding box loss, and Lmask = mask loss.



Sensors 2022, 22, 2278 19 of 23

Table 10 gives the total loss score for the ResNet50 and ResNet101 backbones with the
different learning rates and epochs. From the results shown in Table 10, it was interpreted
that the proposed model has minimum loss scores with ResNet101 as the backbone and an
LR of 0.0006 simulated for 10 epochs.

Table 10. Total loss scores for validation data with different learning rates and epochs.

Model Backbone Network Learning Rate Total Epochs Minimum Total
Loss

Model Training
Time

Conventional Model ResNet50
0.0004

12 3.268911 31,380 s

Proposed Model ResNet101 12 3.249549 30,430 s

Conventional Model ResNet50
0.0006

10 3.136109 28,800 s

Proposed Model Resnet101 10 3.075138 27,640 s

Figure 19 represents the generated total loss scores plot for the proposed model with
ResNet101 as a backbone FPN, simulated for 10 epochs with a learning rate of 0.006.
The plot shows that overall validation loss for the proposed model is higher than the
training loss.
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6.2.5. Analysis of the Proposed Model for All the Losses

The proposed model and conventional model were simulated for two different learn-
ing rates, 0.006 and 0.0004, with two different epochs of 10 and 12. The loss scores for the
model were generated after the execution of all the epochs. The best epoch was selected
based on the generated scores. The proposed MRCNN model with ResNet101 asa backbone
has been compared with MRCNN with ResNet50 as a backbone. Figure 20 compares the
total loss values for the two models simulated with LR 0.0006 and LR 0.004. From Figure 20,
it was observed that the ResNet101 backbone model with a learning rate of 0.0006 has a
minimum loss of 3.075138, which is highlighted in purple. The Resnet101 shows minimum
RPN class loss, minimum MRCNN class loss, minimum RPN bbox loss, minimum MRCNN
bbox loss, and MRCNN mask loss for a learning rate of 0.0006.

6.3. Comparison with Existing Models

The proposed Mask RCNN model based on ResNet101 as a backbone FPN was used
to localize the regions containing pneumothorax automatically on the chest X-ray images.
The proposed model was also evaluated on the basis of IoU [47]. This defines the amount of
intersecting area between the predicted mask segment and the ground truth mask segment,
divided by the total area of union between the predicted mask segment and the ground
truth mask (Equation (7)).

IoU =
|A ∩ B|
|A ∪ B| (7)

where, A is the ground truth mask segment; B is the predicted mask segment.
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Our proposed model produced an IoU of 0.829 (at LR = 0.0006). The IoU of the
proposed model based on ResNet101 is higher as compared to the model based on ResNet50.
Table 11 compares the performance of the proposed model with existing models.

Table 11. Comparison with existing models on the basis of IoU.

Work Model Backbone IoU

Hongyu et al. [29] Mask RCNN ResNet50 0.81
Ayat Abdella et al. [30] U-Net ResNet34 0.7822

Jakhar et al. [48] U-Net ResNet50 0.826
Ours Mask RCNN ResNet101 0.829

The proposed Mask RCNN with ResNet101 as a backbone performed better than the
existing models, as shown in in Table 11.

However, the deep learning models suffered from over-fitting and parameter tuning
problems. Additionally, these models generally require image filters to remove the impact
of noise from images to achieve better results. Therefore, in the near future, we will use
metaheuristics techniques to tune the proposed model [49]. Additionally, various filters
such as a gain gradient image filter [50] or notch-based filter [51] were used to filter the
imaging datasets.

7. Conclusions and Future Scope

Deep learning algorithms help the machines to interpret the images. The advancement
in the field of AI-based image processing has opened an extensive range of opportunities
in the area of medical disease diagnosis and prognosis. We proposed a Mask RCNN model
with transfer learning for automatic segmentation of pneumothorax in chest X-ray images.
The proposed model used ResNet101 as a feature pyramid network. The proposed model
was compared with the conventional model utilizing ResNet50 as an FPN. Both the models
were trained on an SIIM-ACR pneumothorax dataset available at Kaggle. The models were
simulated with two different learning rates of 0.0006 and 0.0004 and two different epochs
values of 10 and 12. The simulation results demonstrate that the proposed model with
ResNet101 as an FPN has better performance as compared with the conventional model
with ResNet50 as an FPN.

The Mask RCNN model employed in the present work is based on instance segmen-
tation. As discussed in the previous section, it has certain limitations while working on
the edges of the image. Therefore, there are many different semantic image segmentation
models such as UNet, DeepLab, etc. that can be used for segmentation of pneumothorax in
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chest X-ray images. The future work will use these models for pneumothorax segmentation
to achieve higher accuracy. These deep learning models that are capable of generating au-
tomatic segmentation of pneumothorax on CXR images will benefit the health department
by providing early diagnosis of the disease and clear insight into the geometric size of the
abnormality. It can help doctors in taking crucial decisions regarding the medication.
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