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Abstract: In this paper, residue number system (RNS) based logic is proposed as a protection against
power side-channel attacks. Every input to RNS logic is encrypted as a share of the original input in
the residue domain through modulus values. Most existing countermeasures enhance side-channel
privacy by making the power trace statistically indistinguishable. The proposed RNS logic provides
cryptographic privacy that also offers side-channel resistance. It also offers side-channel privacy
by mapping different input bit values into similar bit encodings for the shares. This property is
also captured as a symmetry measure in the paper. This side-channel resistance of the RNS secure
logic is evaluated analytically and empirically. An analytical metric is developed to capture the
conditional probability of the input bit state given the residue state visible to the adversary, but
derived from hidden cryptographic secrets. The transition probability, normalized variance, and
Kullback–Leibler (KL) divergence serve as side-channel metrics. The results show that our RNS
secure logic provides better resistance against high-order side-channel attacks both in terms of power
distribution uniformity and success rates of machine learning (ML)-based power side-channel attacks.
We performed SPICE simulations on Montgomery modular multiplication and Arithmetic-style
modular multiplication using the FreePDK 45 nm Technology library. The simulation results show
that the side-channel security metrics using KL divergence are 0.0204 for Montgomery and 0.0020 for
the Arithmetic-style implementation. This means that Arithmetic-style implementation has better
side-channel resistance than the Montgomery implementation. In addition, we evaluated the security
of the AES encryption with RNS secure logic on a Spartan-6 FPGA Board. Experimental results show
that the protected AES circuit offers 79% higher resistance compared to the unprotected AES circuit.

Keywords: power analysis; residue number system; secret sharing; side-channel attack

1. Introduction

Side-channel attacks (SCA) are hardware cryptanalytic techniques used to reveal a
secret data value, such as a key embedded into an algorithm by exploiting the imple-
mentation vulnerabilities. If two different values for a key or a subkey result in different
measurements of a physical attribute, such as power, timing, electromagnetic radiation,
or even acoustics, the privacy is lost through this physical leakage.

We differentiate power analysis attacks into two broad classes. When a secret is
revealed through a strong correlation between power samples and the secret data value, we
consider it to be a loss of side-channel privacy. If the secret is encrypted with a cryptographic
technique and is revealed through traditional cryptanalytic techniques, it is labeled as a
violation of cryptographic privacy. Most of the known techniques target side-channel
privacy. This paper targets both side-channel and cryptographic privacy. Residue number
systems (RNS) allow one to create multiple shares of a secret. Each of these shares can be
computed independently. The resulting shares can be combined into a single result. This
is akin to the traditional multiparty computation. RNS enables one form of multiparty
computation. Any homomorphic multiparty computation technique can be used within
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the context of this paper. Many hardware implementation optimizations of RNS systems
exist, making it more suitable for this research.

1.1. Related Work

In [1], Kocher et al. reported the first side-channel attack and showed that the power
consumption of the device is highly dependent on intermediate values of the cryptographic
algorithm. Internet of Things (IoT) devices are especially vulnerable to side-channel attacks
due to an adversary having physical possession of the devices at the edge. Zhao and
Suh [2] mount a power side-channel attack on an FPGA. This makes even a cloud rack
node vulnerable to power side-channels.

To prevent such attacks, it is essential to randomize or mask the intermediate values
to decouple them from the device power consumption. This is widely done through
the input encoding function of the side-channel countermeasure approach. The input
encoding function transfers the data into encrypted shares, which ensures security in terms
of cryptographic privacy and side-channel privacy. The cryptographic privacy refers to
the difficulty of decoding encrypted data through traditional cryptanalysis techniques.
Besides cryptographic privacy, the output shares of the encoding function exhibit another
interesting property called side-channel privacy. Side-channel privacy is the observable
difference in power side-channel leakage on the data transitions between “0” and “1.”
The primary objective of creating shares of the input data is to mask/randomize the power
consumption such that the side-channel observations of computations on the input value
“0” and “1” are indistinguishable.

Several countermeasure techniques have been proposed to counteract side-channel
attacks in [3,4]. Secret sharing schemes [5] form one of the most popular countermeasure
approaches which has been developed in cryptography for multiparty computation and
for sharing secrets. An adaptation of secret sharing schema for SCA splits each original
bit into multiple uncorrelated shares in order to prevent the device side-channel leakage.
The main idea behind secret sharing schemes is to split the input data into multiple shares.
All the data shares are processed independently in parallel. The result of computation at
the primary output end contains multiple resulting shares for each expected primary result.
These resulting shares are combined at the output end to reconstruct the primary output.
These techniques improve the resistance against power analysis attacks by providing
uniformity and data independence in power consumption of individual shares.

For perhaps the best known secret sharing schema, Ishai et al. [6] developed a bit-level
secret sharing technique by splitting each input bit into t + 1 shares. For each input value x,
t shares are derived from t random values rx1, rx2, rx3, . . . , rxt. (t + 1)st share is computed
as x ⊕ rx1 ⊕ rx2 ⊕ rx3 ⊕ . . .⊕ rxt. Their adversary model is a t-probing adversary, which
is a stronger adversary than a power side-channel adversary. A t-probing adversary can
probe up to any t circuit nodes per cycle. A t-private circuit does not reveal any information
about any bit x, even with a t-probing adversary. This provides both power side-channel
privacy and limited (to t nodes probing) cryptographic privacy. Park et al. [7,8] showed
several practical constructions of t-private gates that optimize its area, energy, and number
of random bits.

Mangard et al. [9] discussed a security flaw in private circuits. They stated that
glitches contributed significant power consumption and showed how such glitches weaken
the security of private circuits. Later, in [10], Zachary et al. showed a practical power
analysis attack using correlation enhanced collision attack. A secret sharing scheme similar
to t-private circuits called Threshold implementation was proposed by Nikova et al. [11].
This secret sharing technique is based on multiparty computation and provably secure
against differential power analysis (DPA) with fewer assumptions over hardware leakage.
However, the threshold implementation techniques are still vulnerable to higher-order
power analysis attacks described in [12].

Higher-order side-channel analysis (HO-SCA) is physical cryptanalysis that exploits
the combined leakage through the power consumption of multiple individual shares. This
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analysis uses higher-order statistical moments to recover the secret value of a cryptographic
algorithm [13]. Most of the existing countermeasures are still vulnerable to such higher-
order power analysis attacks for two reasons. First, the leakage of intermediate values
is distributed over shares, which is the primary SCA mitigation technique rather than
masking the share values. Further, these shares utilize a linear function to reconstruct the
original data. Hence, it is relatively easy for an adversary to model the leakage of the shared
secret implementation. Second, if the shares are processed together with common Vdd and
ground pins, the combined power consumption leads to leakage from such a susceptible
implementation on actual intermediate values. Further, if the secure implementation is still
in Boolean space, then the adversary can model the leakage with a hypothetical secret value,
along with some additional mask bits to correlate with the target implementation leakage.

Logic design styles to make power consumption independent of data values with dual
rail logic include Sense Amplifier Based Logic (SABL) [14,15], Wave Dynamic Differential
Logic (WDDL) [16]. Similarly, there are other techniques such as asynchronous logic de-
sign [17], clock randomization [18], and power distribution design through decoupling
unit [19] to hide the data-dependent leakage within the hardware. These design styles offer
power side-channel privacy, but not cryptographic privacy. The data is in an open, non-
encrypted form. The more robust countermeasure techniques, such as t-private scheme,
provide both power side-channel privacy and limited cryptographic privacy. A crypto-
graphic adversary needs to observe t + 1 shares in order to decrypt original values. Out
of practical considerations, the value of t cannot be very large. This opens up space for a
secure design style that is both power side-channel private and cryptographically private
within the design space for secure system implementations. Our proposed RNS secure
logic fills this need.

The residue number system is a well studied number theory system, utilized in the
field of computer arithmetic [20], and digital signal processing [21,22] applications to
achieve performance upgrades through parallel computation.

1.2. Proposed Approach

In this paper, we discuss a new secure design style based on [23,24]. Our approach is to
transform a bit in the Boolean domain into multiple encrypted shares derived from residues
in a residue number system. These residue shares exhibit homomorphism for the bit-wise
operations such as AND and XOR. Our proposed scheme is well suited for a multi-core
platform, where an application can exploit parallelism in security-related applications.
Each encrypted share can be processed in a separate core independently. In this work, we
present three different secure design styles with varying characteristics based on adversarial
complexity and resource overhead. There are many variations to the base schema for
residue generation depending on the adversary model and the desired resource overhead.
We explore this schema space to come up with three possible secure design styles with
varying characteristics. We evaluate the resistance of RNS secure circuits against various
side-channel adversary models. Further, we implement the RNS secure logic and report its
power side-channel resistance through power uniformity based metrics and success rates
of power side-channel attacks. The side-channel power analysis attacks typically deploy
machine learning (ML) classifiers such as linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA), and naive Bayes (NB). RNS secure logic exhibits the lowest
success rates for machine learning-based attacks compared to t-private logic.

The switching uniformity can be evaluated either analytically or through a distance
metric such as KL divergence [25]. A natural conclusion seems to be that as switching gets
more uniform or KL divergence of power distribution over various values for the secret
reduces, the success rate for power side-channel attacks should go down. However, we
have observed that even with an increase in KL divergence for power, the power side-
channel success rate has gone down. We speculate that cryptographic privacy, even if not
directly addressing power uniformity, thwarts power side-channel attacks. An interesting
trade-off between power side-channel privacy and cryptographic privacy to minimize the
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success rate of a power side-channel adversary exists, which we explored and discussed
in [26] (the cited paper is the conference version of current work with preliminary results
which was published in IEEE 31st International Conference on VLSI Design and 17th
International Conference on Embedded Systems, VLSID 2018).

Additionally, we develop an analytical metric for the RNS encoder to quantify the
conditional probability of the input bit state given the residue state. We analyze the
RNS secure circuit with respect to switching uniformity and propose some enhancement
techniques to achieve better uniformity. Further, we investigate the implementation of RNS
logic with public and private moduli. The side-channel resistance of these implementations
is studied. We also evaluate the security of our implementation through real power traces
using specialized side-channel board. The result confirms that it provides good security
against higher-order power side-channel attacks.

1.3. Motivation

RNS logic supports distributed computation over multiple shares while simultane-
ously retaining cryptographic and side-channel privacy. It enhances side-channel security
where the computation pertaining to a secret is performed by multiple devices or sensors.
Sensor and IoT arrays to monitor or control an environment can benefit from the RNS
logic. A computation C (S, x) involving a secret S and a parameter x can be performed on
multiple (k) sensors or devices as C(Si, x) with the share Si for 0 < i ≤ k. This hardens the
computation C against side-channel leakage.

1.4. Paper Organization

This paper is organized as follows. In Section 2, the basic principles of the RNS
secure circuit are described. Section 3 discusses the resilience characteristics of proposed
techniques with respect to switching uniformity and symmetry property. The adversary
models and hybrid schemes for better side-channel resistance are discussed in Section 4.
Section 5 presents the practical implementation of different circuits and their results. Finally,
Section 6 summarizes and concludes the paper.

2. Basic Principles

In this section, some basic principles for our approach are discussed. Our proposed
scheme maps from the message space to the residue code space. Message space consists of
binary values (“0” or “1”) and corresponding bit-level operations/gates. Residue code space
consists of residue values represented with l-bits. These residues use modulo operations
such as modular addition and modular multiplication.

In message space, we use
⊕

and & to denote the logical addition (XOR) and multiplica-
tion (AND) operations over Z2. Similarly, we denote + for addition and · for multiplication
in residue space over Zn. A q bit vector m = (x1, x2, x3, . . . , xq) denoted by x represents data
in message space and its equivalent residue code is represented by (X1,m, X2,m, X3,m, . . . ,
Xq,m) denoted as X.

RNS secure logic is based on a combination of homomorphic encryption and residue
number system. We use homomorphic encryption to create encrypted shares. The binary
input values are transformed from message space to residue code space. Additionally,
the homomorphism preserves the mathematical integrity of binary message space in the
residual value space. An input encoding stage, which need not be on the chip implemented
with the RNS secure logic shares, performs the binary message space to residue space
conversion. Any computing host can perform this conversion and transmit the residue
shares over any link including a network. The binary gates have equivalent modulo
operations which are applied over the encrypted shares. Once the results in residue space
are computed, they are decoded into the binary space. Once again, decoding need not occur
in the secure chip. The residue shares can be transmitted back to a client over a link, where
the decoding can be performed. We start by describing the construction of the RNS secret
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sharing scheme. Our approach comprises three stages, an input encoder, an RNS circuit, and
an output decoder.

Input encoder: The homomorphic secret sharing scheme encodes the input message
using a function called Input encoder (Enc ). The encoder Enc maps each binary input x to
an l-bit residue code denoted by Xmi , where mi is the chosen modulus. Modulus choice has
an important role in recovering the output back in binary value from residue code space
which will be described in the output decoder function. The variable l defines the size of
residue space. We first choose an l-bit random value rx and modulus mi from the relatively
prime moduli set M = {m1, m2, m3, . . . , mn} and mn is equals to 2l − 1. The encoding
function is modulo addition of random value rx with binary input x over mi and the
mathematical representation is given in Equation (1).

Xmi = (x + rx) mod mi (1)

The security of the RNS secret shares fully depends on the random value of rx and
modulus mi. Note that without the random value rx, the input binary bit x is exposed in the
residue domain. The modulus mi is typically chosen per chip implementation, whereas the
random values rx are assumed to be refreshed for every instantiation. They are generated
by a statistically tested random number generator.

Switching Uniformity

Note that the two main goals of a secure logic family are (1) uniform switching or
power distribution so that it is not data dependent, and (2) remove any correlation between
intermediate values. Note that the t-private logic achieves both these goals. Through an
induction-based proof, the inductive hypothesis establishes that input encoder output has
these properties. 1-prob(x) denotes the probability that node x state is 1. 1-prob(x) is a
fairly good indicator of its switching probability: 2∗ 1-prob(x) ∗ (1− 1-prob(x)). Note
that 1-prob(ri) of a random bit is 0.5, a random bit holds state 1 with probability 1/2.
Additionally, note that when an input bit x with arbitrary 0 ≤ 1-prob(x) ≤ 1 is exclusive-
ORed with a random bit ri, 1-prob(x⊕ ri) = 0.5. These two facts establish that all of the
(t + 1) shares output by an encoder have 1-prob equal to 0.5. The entropy of any two
random bits ri and rj is 2 bits, since they are not correlated (distribution of states 00, 01,
10, 11 is uniform). By this token, the entropy of t random bits is t, establishing the other
property. For the inductive hypothesis, consider the t-private gate for AND (&). The two
incoming vectors X = (x0, x1, . . . , xt) and Y = (y0, y1, . . . , yt) have these two properties
by inductive hypothesis. If each row of shift and add multiplication of X and Y forms a
share, the 1-prob(xiyj ⊕ xiyk) is 0.5 given that each share has 1-prob equal to 0.5. However,
there is a correlation between rows reducing their entropy. In fact, all the shares of X are
revealed within a row, along with one share of Y—yi thereby loses cryptographic privacy.
By using an additional random bit per row, the entropy is restored to t + 1. We aim to show
similar analytical uniform switching for secure RNS logic style.

Theorem 1. The output of the input encoder (Enc) is uniformly distributed over modulus mi or
the set {0, 1, . . . , mi − 1}.

Proof. Let P denote the plaintext in the binary space, X denote the encrypted share in the
residue space. The residue space MX = {0, 1, . . . ,mi − 1}. X = Encrx (x), where the random
value rx is uniformly distributed over MX .

P(R = rx) = P(X = X) =
1
α

,

∀ rx and X ε MX
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where α = |MX |. To prove this statement,

P(X = X|P = x) =
P(X = X) · P(P = x)

P(P = x)

= P(X = X) = P(R = rx)

Thus, the input encoder function maps the binary input without any bias on the
residue code space. For a given message, the output of input encoder is equiprobable for
the chosen modulus mi. The same encoder function can be used to generate different shares
by choosing different moduli mi with the same random value rx.

RNS circuit: Our goal is to transform the binary operators, such as AND and XOR, into
equivalent residue operators using the composition of modulo multiplication and modulo
addition in order to perform the operation securely. We constructed an RNS circuit that
computes the residue space equivalent of a Boolean AND as shown in Figure 1. The size of
this circuit is independent of the number of shares. It depends only on the modulus size (l).

x
y

x & y Modular
Multiplier

(Cmi )

Xmi

Ymi

Xmi .Ymi

Figure 1. RNS circuit AND.

Consider an AND gate in the binary space with inputs x, y and output z. i.e., z = x & y.
In our model, the Boolean AND operation is performed with modular multiplication of
Xmi and Ymi over moduli mi.

Zmi = Xmi ·Ymi (mod mi)

The perfect privacy of our proposed scheme requires that the intermediate values or
the output values be uniformly distributed with respect to the moduli mi. This leads to
uniform switching distribution as well with 1-prob of each of the output bits of a residue
output equal to 0.5.

Theorem 2. [Uniformity] Let f be any modulo function over mi with inputs Xmi , Ymi and output
Zmi . Then, the output Zmi is uniformly distributed over residue code space, given that inputs are
generated by an Input encoder (Enc).

Output Decoder: Each output share is computed independently for the given input
vector for each modulus mi. The output residue code Z is defined as linear congruence to
the output of binary value z with respect to modulus mi. To compute the resultant binary
output bit, we apply Chinese remainder theorem (CRT) on the output shares obtained from
the RNS circuit.

Theorem 3 (Chinese Remainder Theorem). Suppose that f ⊂ M, where all the elements are
pairwise co-prime. let Zm1 , Zm2 , ... ,Zmk be integers ε f. Then the system of congruences, z ≡ Zmi

(mod mi) for 1 ≤ i ≤ k, has a unique solution modulo M = m1×m2× · · · ×mk, which is given by:

z ≡ Zm1 ·M1 ·M?
1 + Zm2 ·M2 ·M?

2 + . . . + Zmk ·Mk ·M?
k ,

where Mi = M/mi and M?
i ≡ (Mi)

−1 (mod mi) for 1 ≤ i ≤ k.

Proof. Notice that gcd(Mi,mi)=1 for 1 ≤ i ≤ k. Therefore, the Zmi ’s all exist. Now, notice
that since Mi ·M?

i ≡ 1 (mod mi), we have Zmi ·Mi ·M?
i ≡ Zmi (mod mi) for 1 ≤ i ≤ k. On
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the other hand, Zmi ·Mi ·M?
i ≡ 0 (mod mj) if j 6= i. Thus, we see that z ≡ Zmi (mod mi) for

1 ≤ i ≤ k.

To apply Chinese remainder theorem, it is important that the modulus values mi used
to create shares have to be relatively prime to each other. Further, in order to remove the
mask, the value e has to be subtracted from the output of CRT followed by mod 2 operation.
For this example, the value e is calculated as rxy + xry + rxry.

The RNS secret sharing scheme follows a variant of (k, t, n)-threshold scheme [27].
Our threshold scheme is defined in Definition 1. The RNS secret sharing scheme requires a
minimum of 2 shares to decode the result residue shares to binary output. Additionally,
the shares chosen for decoding must be computed with moduli that are co-prime.

Definition 1. (2,k,n) threshold secret sharing scheme: Let n be an integer, n ≥ 3, and 3 ≤
k ≤ n. A (2, k, n)-threshold secret sharing scheme is a method for generating shares for x as P =
{Xm1 ,Xm2 , . . . Xmn } such that

• For any A ⊂ P such that |A| < 2, learning the element x should be difficult.
• For any A ⊂ P such that |A| = 2, reconstruction of element x is possible, given that

gcd(mi, mj) = 1.
• For any A ⊂ P such that |A| ≥ k, reconstruction of the element x becomes easier, given the

set {Xmi |iεA} are relatively prime.

3. RNS Logic Resilience Characteristics

In this section, we discuss the resilience characteristics of our proposed scheme. We
first review the more general definition of the masking technique and then we will show
how our proposed approach is resilient to side-channel attacks.

Definition 2. Masking: An intermediate value v masked with r results in a masked value vr = f (v, r)
which is independent of v. The intermediate value is said to be masked, if the power consumption of vr
is independent of v.

In general, there are known techniques and frameworks for side-channel attacks.
An adversary identifies the vulnerable point of an encryption algorithm which is denoted
as the targeted intermediate value. The intermediate values are typically computed from the
targeted secret and some other input under adversary control. The targeted intermediate
value should have high controllability for the adversary to perform successful practical
attack. The adversary develops an a priori relationship model between the secret and the
targeted intermediate value. This model allows an adversary to distinguish the secret value
based on the side-channel leakage from the intermediate value.

3.1. Symmetry Property

In an RNS secure logic, the encoding scheme converts all the binary inputs to residue
space using Equation (1). The random value rx masks the binary value by applying the
modulo addition operation. Unlike the other side-channel countermeasures, the shares
are created by modular addition. This has the potential to reveal the relationship between
a residue and the corresponding input bit through the distributions of bits within the
residue. Over the space of all the hidden parameters, modulus mi, and the random value
rx, an input bit 0 maps to many residues—set R0. Similarly, input bit 1 maps to a set of
residues R1. Ideally, the two sets R0 and R1 should not be distinguishable to the adversary.
This property called residue indistinguishability or symmetry hides the input to residue
relationship. The sample RNS residue encoding is shown in Table 1 for 2-bit residue space
over all possible rx and moduli mi. The valid moduli set for 2-bit encoding is {2, 3}.
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Table 1. Sample residue computation for l = 2.

x r Xm1 Xm2

0 00 00 00
0 01 01 01
0 10 00 10
0 11 01 00

1 00 01 01
1 01 00 10
1 10 01 00
1 11 00 01

The columns Xm1 and Xm2 are the outputs of the RNS encoding computed with the
modulus values 2 and 3, respectively. Based on input binary values, the residue output
shares are organized into two sets, one for binary “0” and another for binary “1”. In Table 1,
The blue circle shows the share values for binary “0” and the red circle shows the share
values for binary “1”. The Xm1 ∪ Xm2 contains {00, 01, 10} for x=0. Similarly for x=1, the Xm1

∪ Xm2 contains {00, 01, 10}. The residue sets for x = 0 and x = 1 contain the same residue
values. Given the residual share values, it is difficult for an adversary to infer the binary
input value without knowing the random secret rx and moduli mi.

We extend this observation into a quantitative measure called symmetry. Symmetry
is the probability that adversary fails to distinguish the input bit state given the residue
value distribution. In a realistic attack, the adversary does not have access to the residue
values. It infers a residue state through a power side-channel. Traditionally, these power
models are Hamming-weight-driven. Hence, the primary differentiating characteristic
between different residues is their Hamming weight difference. The adversary attempts to
gain incremental information about the input bits state 0 or 1 by measuring infinitesimal
differences in the average Hamming weight associated with the residues of input bit 0 and
1. If these average Hamming weights are identical, perfect symmetry exists, denying the
adversary this information. Equation (2) models this intuition for a fixed modulus value
mi. The targeted chip is functional with a fixed mi, and hence the uncertainty/averaging
space for the adversary comes from the random mask rx. The average Hamming weight
distributions are plotted in Figure 2 for various values of residue size.

S(x)mi =
2l−1

∑
r=0

HW((x + r)mod mi)

2l (2)

where i varies from 1 to dMe. r is a random value.
As reported in [25], we use KL divergence SCA metric to study the symmetry of

residue shares with respect to binary values. We computed the KL divergence metric to
find the distance between the two distributions for input bits 0 and 1 for all l = 3, 4, 5.
Smaller KL divergence values indicate that the 0 and 1 distributions are close to each other,
and hence less differentiable and more symmetric. Table 2 reports both KL divergence and
the symmetry values over the residue space sizes.
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Figure 2. Distributions of residue shares.

Table 2. Results of symmetry and ML classification for residue shares.

Classifier
Success Rate

l = 3 l = 4 l = 5

LDA 50.05% 51.39% 50.57%

QDA 52.08% 50.89% 50.68%

Naives Bayes 62.50% 47.96% 47.92%

Symmetry 0.80 0.91 0.99

KL
divergence(DLmax) 0.1165 0.0227 0.00634

Machine learning offers a powerful model-building technique to an adversary to
correlate the Hamming weight of the residue reflected in the measured power trace and
the input bit state. We assess the machine learning classifiers to validate the symmetry
metric/property to demonstrate that higher symmetry results in lower correlation. These
results are reported in Table 2. The success rate column should be interpreted within the
context of a random decision. Since the decision in this context is guessing the input bit
state for a given residue Hamming weight, a random coin toss has success probability
of 0.5. Any higher success probability indicates machine learning’s advantage. The key
thing to note is that as symmetry increases, the success rate of ML gets closer to a random
guess. Note that we gave an advantage to the ML classifier by having it guess the input
bit state from the actual residue state rather than the Hamming weight of the residue. It is
evident that the RNS encoding scheme provides strong cryptographic privacy to mitigate
the power side-channel attack.

3.2. Symmetry in a Software Implementation of RNS

Our proposed encoding scheme is based on homomorphic encryption, which can be
used to provide security to cloud-based applications as well. Recall that residue sizes were
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limited to a small number, such as five, by practical circuit implementation constraints.
In software, however, the residue sizes l can be scaled to a large number. We extended our
symmetry analysis to software implementations with larger values for l. Due to processor
implementation characteristics, l would need to be a multiple of byte size. We experimented
with l equal to 16 and 32 bits (2 and 4 bytes). This gave us an asymptotic view of symmetry
metric effectiveness.

Computing the symmetry values for l = 16, 32 is tedious and requires 2l iterations
based on Equation (3). For l = 5, symmetry value is already at 0.99. With higher l values,
it would converge towards 1 with error converging to 0. Hence, we did not compute the
actual symmetry values. We, however, applied the three machine learning classifiers, (LDA,
QDA, and NB), to predict input binary values from the residue share values. The x-axis
in Figure 3 denotes ratio, which is the ratio of training dataset size to the test dataset size.
Note that a higher ratio should make machine inference converge to a truer success rate.
The y-axis captures the success rate of ML classifier. Once again, the ML classifier has an
advantage only if its success rate is better than the random 50%. We expect symmetry to be
better with l = 32 than with l = 16. It is reflected in Figure 3 with a tighter band around
50% success rate line for l = 32 classifier results compared to the l = 16 classifier results.
The differences between the classifiers have to do with their native characteristics.

Figure 3. Success rate of the RNS encoding.

It is clear that the adversary will not gain any advantage even with model-based
attacks. Over the unknowns r, m, let f 0

X = |Enc(0, r, m) = X| for 0 ≤ r ≤ 2l − 1 and
2 ≤ m ≤ 2l − 1. f 0

X gives the frequency with which a 0 is encoded in to the residue X for
uniformly distributed unknowns r, m. We can similarly define f 1

X , the frequency with which
a 1 is encoded into the residue X. Ideally f 0

X = f 1
X for all X. A weaker symmetry allows

f 0
X 6= f 1

X, but then insists on f 0
X = f ′0X and f 1

X = f ′1X for all residues X and X′. However,
in reality, often ∃X, X′ such that f 0

X 6= f ′0X or f 1
X 6= f ′1X . These differences create a skew in the

transition probability of residue bits, potentially targetable by an adversary. We investigate
the transition probability distribution and discuss in Figure 4 a technique to achieve more
balanced transition probability for RNS secure circuits.
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Figure 4. RNS secure circuit’s multi-lane computation.

3.3. Multi-Lane Computation

In addition to the residue indistinguishability property, our proposed scheme has
an interesting characteristic called multi-lane computation. The RNS encoding function
creates encrypted shares with respect to the moduli mi. These share values are congruent
with each other, which allows the hardware designer to implement separate hardware for
each share. This is a unique characteristic of RNS secure circuit.

In ideal scenarios, the secret sharing scheme splits the input data at the primary inputs
end and combines the primary output shares at the end of computation. For side-channel
countermeasures, a secret sharing scheme such as t-private circuits divides the input data
into t + 1 shares. Each original gate is replaced by special gates capable of handling t + 1
shares for each input. An input x is encoded with t random shares x0, x1, . . . , xt−1 with
xt = x0 ⊕ x1 ⊕ · · · ⊕ xt−1 ⊕ x. For intermediate values, the t + 1 shares are created by the
intermediate gate design. Use of a random bit to create shares randomizes the transition
probability of the bit to 0.5 for both transitions minimizing the power based information
leakage. In t-private logic, when intermediate shares that are correlated (as in an & gate)
are created, an additional random bit is used to restore this balanced transition property.
In another logic family, threshold implementation, the intermediate bits of an & gate are
handled through balancing of terms. The relevant aspect of these secret sharing scheme
circuits is that the shares of a bit are entangled or not separable at each gate.

In contrast, for RNS secure circuits, the share values support homomorphic computa-
tion on each share. We convert a Boolean circuit into its equivalent RNS circuit where the
computation with respect to the shares derived from modulus mi can proceed in its own
computation lane. This gives rise to t independent computation lanes, which need only be
combined at the output stage at the end of computation lane. Each share can be processed
with its own hardware lane as shown in Figure 4. The RNS secure circuits for t-shares are
denoted as Cm1 , Cm2 , . . . , and Cmt . The power consumption data captured from each RNS
lane are denoted as Pm1 , Pm2 , . . . , and Pmt , respectively. The ith RNS lane takes the input
Xi and Yi, and generates the residue output Si.

In this setup, the power side-channel adversary attacks each share independently
which we call singular attack mode. For this attack mode, we assume that the adversary
controls some of the binary inputs to the circuit before the lane shares are created in an
encoder and observes the power consumption for all the relevant lanes. In power analysis,
higher order attacks (HOA) have been shown to be more powerful. A corresponding attack
could use the correlations between multiple lanes to extract the binary input to residue
shares mapping. There are no existing methods on combining the leakage data of different
share computations. Since we do not have a good mathematical model, lane correlation-
based attacks are difficult to perform against RNS secure circuit. In singular attack mode,
we partition the Lane i binary primary inputs into < Xi, Yi >, where the inputs < Xi > are
controllable by the adversary, but < Yi > are private. We assume that there are bX binary
input bits in the set < Xi > and bY binary input bits in the set < Yi > with N = bX + bY.
The adversary’s goal is to retrieve the binary secret using the power leakage Pmi that is
captured during the execution of a given function on input data < Xi, Yi > in the ith lane.
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The power leakage of the RNS secure circuit computing a function f in Lane i is given in
Equation (3).

Pmi = LYi ( f ) + L Yi ( f ) + ε (3)

where, LYi ( f ) is power leakage due to sensitive variable.
LYi ( f ) is power leakage due to non-sensitive variable.
ε is Lane i device noise.

For a successful attack, the LYi ( f ) needs to be significant, which means that there
should be a distinct difference in the probability density function for P(L|Yi = 0) and
P(L|Yi = 1). However, the symmetry property of the RNS circuit ensures that the distance
between the probability density function is minimal. Recall that each of the N input bits in
< Xi, Yi > results in an l-bit residue, which is further exclusive-ORed with an l-bit random
word within the encoder. Hence, the unknown search space consists of N ∗ l random bits
that are statistically not correlated. This increases the unknown search space for a key
hypotheses to 2N∗l . RNS secure circuits with different hardware lanes allow the designer to
operate each lane at different clock frequency which affects the temporal alignment of the
leakages from each lane.

For probing side-channel, the adversary has to probe all the shares of the same value
in each lane at the same time. This requires large amount of resources with high precision,
which is currently impractical. Even if the adversary is able to extract the residue shares,
inferring the corresponding binary input x is still difficult without knowing the hidden
parameters, random value rx, and modulus mi, as we have discussed before. In a multi-
core device, each encrypted share could be processed independently on separate cores
with a staggered unpredictable schedule. Moreover, power pins associated with different
cores are isolated. The adversary will have to observe and capture the leakages of each
share/lane/core separately.

4. Power Side-Channel Adversary

In this section, we will discuss the strength of the RNS secret sharing scheme and
introduce hybrid schemes to achieve better resistance against any power side-channel
attacks. We first define our basic assumptions for SCA target circuit. We assume that the
adversary can control only binary input values. The encrypted shares are not exposed to an
adversary which is in line with commonly accepted adversary models for a countermeasure
technique. A power analysis attack is a type of a side-channel attack that exploits the leakage
obtained in the form of power consumption from the target circuit. Masking techniques
are used to randomize power consumption to make sure that the measured leakage is
independent of any processed data. RNS secret sharing scheme is also a type of a masking
scheme, which uses homomorphic encryption to mask the intermediate values. RNS secure
circuits are highly resistant to power analysis because of their resilience characteristics
defined in Section 3. More formally, we could describe the strength of RNS secret sharing
scheme as follows.

The Definition 3 says that the adversary can successfully model the leakage, to distin-
guish the intermediate values between 0 and 1. This could be achieved only if the input
value strongly determines the intermediate value.

Definition 3. [1] Let C be a circuit under investigation with secret values ẏ. The differential power
analysis is defined by

4y,ẏ(N, j) =
∑N

i=1D(Xi, yj)Cẏ(Xi)

∑N
i=1D(Xi, yj)

−
∑N

i=1(1−D(Xi, yj))Cẏ(Xi)

∑N
i=1(1−D(Xi, yj))

where D is a function for the key hypotheses.

Our RNS secret sharing scheme applies homomorphic encryption to the input values
using the random value rx and the moduli mi. Our encoding scheme completely weakens
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the control of input binary values over intermediate values by creating encrypted shares.
Hence, the power analysis adversary is unable to model the leakage D(Xi, yj) for a suc-
cessful attack. Additionally, the residue indistinguishability characteristics of the RNS
secure circuit more or less equalize the power consumption values Cẏ(Xi) between all the
transitions. Hence, the adversary is not able to distinguish the leakages with respect to the
output binary level transitions. We believe that the cryptographic privacy of our proposed
scheme also makes it difficult to distinguish based on power leakage.

In order to study the power leakage characteristic of our RNS circuit, we computed
the switching probability for each output bit of RNS encoding scheme, as defined in
Equation (1) with l = 3. The input signal probabilities were propagated in a gate level
description of an encoding scheme, and the results are plotted in Figure 5. The input
values are single bit binary values which are exclusive-ORed with a least significant bit
of a random value. The carry chain of this computation is designed using a logical AND
gate and propagated to the following bits of random values to the most significant bit.
The modular function truncates the overflow with respect to a chosen modulus value.
This perturbs the uniformity of our scheme. The result shows that the output transition
probability of our encoding scheme is skewed with the input signal probability. We have
found that the modulus reduction reduces the effect of random value rx and makes the
transition probability biased. Hence, it is more likely to be vulnerable to power analysis
attacks with larger circuits.

Figure 5. Transition probability of RNS encoding scheme.

To make the transition probability of the RNS circuit unbiased, we introduced a
random renewal scheme as in an AND gate of t-private logic. In a random renewal scheme,
we performed bitwise exclusive-OR function between a random value Ri,j and the output
of the encoder. The variables i and j refer to the input and the circuit stage, respectively.
The random value Rx,j and Ry,j is l-bits wide with each bit distributed independently
and uniformly. This makes the output transition probability of an RNS encoder 0.5 and
unbiased. The modified secure RNS circuit is shown in Figure 6. The random renewal
exclusive-OR operation maintains homomorphism over the residue values only with true
multiplication. Therefore, no modulus reduction is performed. Once the recovery exclusive-
OR operation has been done, the residue values are obtained by modulo reduction with
appropriate modulus value mi. To maintain the unbiased transition probabilities, random
renewal techniques should be applied at each stage with independent random values.
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Figure 6. Secure RNS circuit with random renewal scheme.

A hybrid logic family that merges t-private circuits with RNS circuits could have
additional advantages. In this hybrid logic, the RNS shares are still created in the usual
manner. However, the residue output bits are further encoded for t-private logic. For 2-
hybrid logic, each share bit is split into two additional bit shares in the usual 2-private
scheme—x, x⊕ Rx. We used t-private logic gates to implement the equivalent RNS secure
circuits, as shown in Figure 7. The t-private logic gate uses the secret random values to
maintain the uniform switching property throughout the design. This technique provides
higher security against side-channel attacks both in terms of secret search space and
randomization of side-channel leakage—as we show experimentally in Section 5.
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Figure 7. Secure RNS circuit with t-private circuit.

5. Results

We have implemented an RNS circuit for a boolean AND gate with l = 3 using the
45 nm FreePDK Standard Cell library and Cadence analogue simulator (Spectre). We
have conducted exhaustive simulations over residue space using ocean script. We have
measured peak current and power consumption of all the possible input transitions (212).
We performed two styles of analysis of the simulated data: one uses a single random
value for encoding the input variables, and the other one uses different random values
for encoding the different input variables. First, we computed the average values for each
class of output transition with respect to the binary values. Then, we have calculated
the coefficient of variation and Kullback–Leibler divergence for each logic scheme shown
in Table 3.
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Table 3. SCA metrics for various RNS schemes with a single random value.

Transition
RNS Secure Circuit Random Renewal Scheme Random Renewal with t-Private

Power (µW) Peak Current
(mA) Power (µW) Peak Current

(mA) Power (µW) Peak Current
(mA)

0→ 0 103.06 1.04 799.81 2.616 1112.56 4.505

0→ 1 101.49 0.88 798.86 2.595 1114.35 4.511

1→ 0 102.25 0.65 799.30 2.610 1107.93 4.507

1→ 1 103.65 0.65 798.21 2.586 1109.50 4.508

Average (µ) 102.618 0.862 799.05 2.602 1111.12 4.508

Standard
Deviation (σ) 0.945 0.158 0.0058 0.0120 0.00026 0.0022

Coefficient of
Variation ( σ

µ ) 0.0092 0.1835 0.00007 0.0004 0.000023 0.00049

KL Divergence
(DLmax) - 4.539 - 1.8409 - 0.7312

In addition to the base RNS scheme, we have evaluated the SCA metric for ran-
dom renewal techniques with separate, per-share random variables. The hybrid scheme
that includes t-private logic also uses separate, per-share random variable in the encoder.
With increased randomness due to the random variables in the t-private logic and addi-
tional random variables per encoder, we expected to see lower standard deviation and
KL divergence. Intuitively, increased randomness resulted in increased uniformity in the
switching distribution.

The coefficient of variation is a well known SCA metric used to quantify the effec-
tiveness of the countermeasures. The lower the value, better the resistance against power
analysis attacks. In our scheme, the coefficient of variation is likely to converge towards
lower values for larger circuits. The probability density function of peak current was
calculated for each output transition with respect to the binary values and the results are
plotted in Figure 8.

Additionally, we computed another SCA metric using Kullback–Leibler (KL) diver-
gence for our analysis which defines the failure probability of the attack. We compute the
KL divergence between all pairs of transitions and find the maximum values to identify
the transition pair with higher deviation. KL divergence is a measure of how far apart,
and hence how distinguishable, two probability distributions are. Table 3 indicates that base
RNS scheme is the least SCA-resistant, followed by random renewal, followed by random
renewal with t-private as most resistant. Even when we use multiple, separate random
values per-share, the relative SCA-resistance follows the same order: base RNS < random
renewal < random renewal with t-private. Furthermore, observing Tables 3 and 4 together,
each of the schemes (1) base RNS, (2) random renewal and (3) random renewal with t-
private, shows higher resistance with a per-share random value instead of a single shared
random value. The total SCA-resistance order among these six schemes appears to be
base RNS–single random < random renewal–single share < base RNS–multiple random <
random renewal with t-private–single random < random renewal–multiple random <
random renewal with t-private–multiple random.

As shown in Table 4, the KL divergence SCA metric value is 0.1620 for the random
renewal-multiple random scheme, which corresponds to about an 80% failure probabil-
ity [25], leading to an expected machine learning success rate of 20%. Similarly, the KL
divergence SCA metric is 0.0688 for random renewal with the t-private-multiple random
scheme. This corresponds to a failure probability of 90%.
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Table 4. SCA Metrics for various RNS schemes with separate random values.

Transition
RNS Secure Circuit Random Renewal Scheme Random Renewal with t-Private

Power (µW) Peak Current
(mA) Power (µW) Peak Current

(mA) Power (µW) Peak Current
(mA)

0→ 0 102.78 0.92 799.80 2.620 1113.70 4.517

0→ 1 102.00 1.05 798.86 2.618 1115.00 4.525

1→ 0 102.07 1.03 799.29 2.616 1109.80 4.515

1→ 1 104.90 0.77 798.21 2.617 1110.70 4.516

Average (µ) 102.93 0.947 799.04 2.618 1112.30 4.518

Standard
Deviation (σ) 1.351 0.128 0.0058 0.0015 0.0002 0.00401

Coefficient of
Variation ( σ

µ ) 0.0131 0.1348 0.00007 0.00057 0.000017 0.00088

KL Divergence
(DLmax) - 1.212 - 0.1620 - 0.0688
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Figure 8. Probability density of maximum current.

In order to validate the KL divergence driven metric and its anticipated failure proba-
bility, we also applied machine learning based classification such as linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA), and naive Bayes (NB). We have
recorded the peak current for RNS secure circuit and its variants for 5000 randomly gener-
ated inputs. For each classifier, we classified the measured leakage data into a training set
and validation set with a ratio of 4:1. The success rate was then computed for each classifier
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and the results are given in Table 5. The random renewal schemes are more resistant than
either of the base t-private or base RNS schemes. Generally, the SCA resistance order base
t-private < base RNS < random renewal < random renewal with t-private is maintained
for all the classifiers with a few exceptions. In t-private logic, each AND and OR gate,
requires additional t random variables. This however, would complicate SPICE simulations
significantly. Hence, we ended up using weaker versions of t-private logic where all AND
gates share the same single random variable and so do all OR gates. This explains some of
the unexpected results in Table 5.

Table 5. Success rate on t-private, base RNS, random renewal, random renewal with t-private with a
single shared random variable.

Classifier t-Private RNS Secure Circuit Random Renewal Scheme Random Renewal with t-Private

LDA 36.9% 25.28% 25.05% 30.80%

QDA 31.4% 25.55% 25.57% 35.71%

Naives Bayes 40.3% 27.64% 24.74% 23.49%

5.1. Modular Multiplication

For RNS logic, a basis for arithmetic functions could be addition and multiplication.
These adders and multipliers operate on l-bit values. Overflow can occur both at X + Y
and X ∗Y. Modular reduction results in X + Y by simply ignoring the carry bit. However,
a modular reduction is much more expensive at X ∗ Y. Moreover, for an RNS circuit to
perform the modular reduction, it has to know the modulus mi. This creates yet another
vulnerability—wherein the RNS circuit has to protect mi. For an adversary model, where
mi must be kept secret at an encoder/client cloud node, it would be beneficial not to have
to perform modular reduction with respect to mi on-chip. The modular reduction can be
delayed significantly through the use of Montgomery multiplication [28]. In summary,
Montgomery reduction is performed in a field that is a power of two so that a processor
can perform it efficiently. This defers actual mi modular reduction to the circuit boundaries.
We evaluated Montgomery reduction-based RNS circuits for machine learning-based secret
leakage and for correlation power attacks (CPA) effectiveness. We have implemented a
Montgomery reduction scheme on the 3-bit residue shares with the auxiliary modulus 23.
The architecture was designed based on the idea proposed in [29], and the required area is
253 GE (gate-equivalent). We have measured the peak current, and the power consumption
for 25,000 randomly generated inputs and studied the SCA metrics.

In Montgomery multiplication, the reduction modulus is required to be an integral
power of two, which forces the modulus mi to an odd value, given that the reduction
modulus needs to be co-prime with the original modulus. Montgomery reduction reduces
the available modulus set (mi) for a given l-bit representation by eliminating even moduli.
We have constructed a hardware structure for modular reduction called Arithmetic modular
reduction in order to maximize this set. In Section 3, we stated that for practical hardware
circuits, the residue size is limited to small values, such as 3 or 5. This allows us to compute
the canonical form for modular reduction function on residue size of three. The circuit
implementation was done using FreePDK 45 nm standard cell library whose area is 582
GE. We performed circuit simulations to capture the peak current values for Montgomery
reduction and Arithmetic reduction schemes.

We compare Arithmetic modular reduction schemes against Montgomery reduction
schemes for power side-channel attack resistance [25] in Table 6. The KL divergence
value for Montgomery reduction is 0.0204, which corresponds to 90% failure probability.
The SCA metric with KL divergence for Arithmetic modular reduction is 0.0024, and the
corresponding failure probability is close to 99%. Note that the power consumption of the
Arithmetic reduction scheme is higher than that of the Montgomery reduction schemes,
with a more uniform peak current profile. We also applied ML-classifiers to determine the
secret bit. The success rates of various classifiers are given in Table 7. The success rates
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of Montgomery reduction and Arithmetic modular reduction are around 35%, showing
protection compared to the random guess success rate of 50%. The result clearly shows
that the adversary does not have any significant advantage over a random guess of the
secret values.

Table 6. SCA metrics for modular multiplication.

Transition
Montgomery Modular Multiplication Arithmetic Modular Multiplication

Power (µW) Peak Current
(mA) Power (µW) Peak Current

(mA)

0→ 0 1616.91 4.9815 2224.20 6.8296

0→ 1 1613.20 4.9711 2224.10 6.8305

1→ 0 1614.90 4.9759 2224.50 6.8315

1→ 1 1611.21 4.9642 2224.50 6.8314

Average (µ) 1614.06 4.9732 2224.33 6.8307

Standard
Deviation (σ) 2.10298 0.007359 0.178536 0.000769

Coefficient of
Variation ( σ

µ ) 0.00130 0.00147 0.00008023 0.00112

KL divergence
(DLmax) - 0.0204 - 0.0024

Table 7. Classifier output for modular multiplication.

Classifier Montgomery Arithmetic

LDA 36.64% 33.72%

QDA 37.04% 35.77%

Naives Bayes 19.48% 22.78%

We have also evaluated the side-channel security for both Montgomery reduction
and Arithmetic modular reduction to determine the minimum number of samples to
reveal the secret using the CPA tool. The objective of a CPA adversary is to infer the
secret input value by correlating the measured power consumption with the power model
derived for the target implementation. We generated 25,000 random values for control
inputs. Corresponding residue shares using RNS encoding with random value rx = 3 and
modulus mi = 7 were then created. The secret input y=1 was also encoded with the random
value ry = 5 using RNS encoder. The residue share values were input to the Montgomery
reduction block, whose power was captured. The hypothetical power model was derived
by targeting the output of the Montgomery reduction using a hamming distance power
model. The hypothetical matrix was generated for unknown space of size 27, i.e., secret
input (1-bit) + random value rx (3-bit) + random value ry (3-bit) = total (7-bit). With
the modulus value, the unknown search space size increases to 210, which we are unable to
process with our computational resources. We correlated the measured power consumption
with the hypothetical power model, and the results are reported in Figure 9.
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Figure 9. CPA attack on Montgomery multiplier.

In Figure 9, the black represents the correct key hypotheses, and the wrong key guess
hypotheses are highlighted in gray. The wrong keys envelop the correct key hypothesis,
and also, there is no distinct peak in the correlation. Hence, the adversary does not have
any advantage in distinguishing the correct secret value from the raw search space. We also
believe that adding the modulus value to the search space will increase the complexity for
the adversary. We conducted a similar experiment on an Arithmetic-style implementation,
and the results are given in Figure 10. We used the same set of random values for both
experiments. The hypotheses results remained the same for the Arthimetic multiplier; the
secret value has low correlation values compared to wrong key hypotheses. Thus, the CPA
adversary failed to recover secret key values from Montgomery reduction and Arithmetic
reduction circuits.

Figure 10. CPA attack on Arithmetic multiplier.

5.2. FPGA Evaluation

To evaluate the security of our scheme in a physical platform, we implemented AES
encryption on the Sakura-G board using Xilinx ISE 14.6. The board consists of two spartan-
6 FPGAs: the XC6SLX9 device contains a communication protocol to send/receive data
between analysis PC and victim FPGA (XC6SLX75). The board interface was based on
openADC to capture the power trace using chipwhisperer software [30]. We implemented
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both a base design with no protections and the RNS secure design of AES encryption in
the victim FPGA. The unprotected AES was implemented in a round-based architecture,
which takes 128-bit plaintext and 128-bit key as input and generates the 128-bit ciphertext.
The state array updates intermediate around results with a 128-bit register. A key choice in
the RNS circuit design is modulus size, which effects the RNS circuit design complexity
and security. In this design, we picked 3-bit moduli. With this design choice, we needed
three RNS shares. RNS encoding converts each plaintext bit into three 3-bit RNS shares
using the modulo values 3, 4, and 5. The modulo values were chosen such that they were
co-prime to each other. The RNS circuit, for each share/lane, was implemented on the
victim FPGA separately. Resource utilization is given in Table 8. The RNS-protected AES
circuit requires 6063 FPGA slices, which is six times the slice needs of unprotected imple-
mentation. The RNS-protected implementation takes RNS shares as input and computes
the output represented in RNS shares. The key expansion and AES core round functions
were constructed using RNS logic with a 384-bit state register(Si) to store the intermediate
values, where i represents the round number. The configurations and experimental setup
details are listed in Table 9. We measured 100,000 power traces of the victim FPGA during
the ten rounds of the secure RNS AES circuit as the voltage drop across 1Ω resistor, as
shown in Figure 11.

Table 8. Hardware resource utilization of AES.

Implementation Slice Registers Slice LUTs Slice Occupied

AES encryption 1002 3208 998

AES—RNS circuit Mod3 1437 7089 1971

AES—RNS circuit Mod4 1437 7158 1994

AES—RNS circuit Mod5 1437 7913 2098

Total Resources (Mod3 + Mod4 + Mod5) 4311 22,160 6063

Table 9. Experimental setup parameters.

Parameter Length/Size

AES plaintext size 128 bit

AES secret key size 128 bit

AES plaintext residue share size 384 bit

AES secret key residue share size 384 bit

size of residue share per bit (l) 3 bit

modulus values 3 bit

data recorded 100,000

training dataset 80,000

test dataset 20,000

Evaluation of the RNS-protected AES implementation using machine-learning classi-
fiers was based on features extracted from the power traces. The feature vector was created
with peak power consumption values and the Hamming distance value of the state regis-
ters. The state register update caused significant power consumption synchronized with
clock cycles. The Hamming distance between the RNS output S10 and S9 round values was
calculated and introduced into feature arrays to perform byte-level classification. The fea-
ture vector array was labeled with corresponding RNS key byte values for key expansion
of the tenth round. The machine learning classifiers LDA, QDA, and naive Bayes, were
used to predict the key values from the feature vector array. The success rates of key byte
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prediction for various classifiers and implementations are shown in Figure 12. The continu-
ous line represents the success rate values for the unprotected AES, and the dashed lines
represent the success rate values of the RNS-protected implementation. From the results, it
is observed that the protected implementation had a success rate that is 79.66% lower than
the success rate of the base implementation. In RNS circuits, the input encoding and output
decoding functions are off-chip computations. This makes it difficult for the traditional
CPA attack to reveal the binary secrets.

Figure 11. Power trace of AES RNS circuit.

Figure 12. Classifier results on secure implementation.

6. Conclusions

IoT nodes in a cyber-physical system are attractive targets for physical side-channel
attacks. The physical side-channel attacks benefit from the physical possession or being
in the vicinity of the device. This paper has presented a novel logic design style based on
residue number systems that offer increased resistance to power side-channel attacks.

We have developed new secure logic based on secret sharing and residue number
system. We illustrated the transformation of a boolean function representation into residue
operations, such as modular multiplication and modular addition. Several variants of
secure RNS logic family based on the encoder design and number of independent random
variables are presented. We develop the resilience characteristics of the RNS secure circuits
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against a power analysis attack. KL divergence captures the statistical differentiability of
the power trace distribution for various secret values. A low KL divergence value signifies
that the differentiability is very low making the circuit side-channel leakage resistant.
Our results show KL divergence value of 0.1165 for 3-bit residue designs. For residue
representation with small modulus values, an adversary has significant cryptanalytic
capability to model the relationship between a primary input bit and its residues. Several
variants of the secure RNS logic family varying in the encoder design and number of
independent random variables were presented. The enhancement techniques, such as
random renewal and hybrid scheme, restore the switching uniformity in the RNS residues
and increase the entropy of the moduli’s space.

The resistance of the RNS secure logic family was studied for a boolean AND gate.
It was quantified using normalized variance and KL divergence as SCA metrics. We also
studied the success rates of common machine learning classifiers such as QDA, LDA,
and naive Bayes. The SPICE simulations for standard RNS circuits resulted in a KL
divergence value of 4.539, whereas the random renewal scheme and hybrid scheme with
t-private logic exhibit much reduced KL divergence of 1.8409 and 0.7312, respectively. This
attests to the increased side-channel resistance of random renewal and hybrid schemes. The
machine learning success rate based SCA metric shows that these enhancements improve
the targeted design resistance.

The RNS secure logic can be supported with both public and private moduli. We
incorporated Montgomery reduction-based multiplication and its variant—Arithmetic
reduction—to enable private moduli. The KL divergence for Montgomery and Arithmetic
reductions were 0.0204 and 0.0024, respectively. This paper also presents a protected AES
implementation using RNS secure logic on an FPGA platform. The side-channel security
was evaluated using ML classifier success rates on the real signals collected from this FPGA.
The protected implementation resulted in a 79.66% lower success rate (higher resistance)
compared to an unprotected AES circuit. These results collectively show that the RNS logic
exhibits high resistance to power analysis attacks.
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RNS Residue Number System
ML Machine Learning
AES Advanced Encryption Standard
SCA Side-Channel Attack
DPA Differential Power Analysis
HO-SCA Higher-Order Side-Channel Attack
SABL Sense Amplifier Based Logic
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WDDL Wave Dynamic Differential Logic
LDA Linear Discriminant Analysis
QDA Quadratic Discriminant Analysis
NB Navie Bayes
KL divergence Kullback–Leibler divergence
CRT Chinese Remainder Theorem
CPA Correlation Power Analysis
FPGA Field Programmable Gate Array
IoT Internet of Things
GE Gate Equivalence
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