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Abstract: Pipeline operational safety is the foundation of the pipeline industry. Inspection and
evaluation of defects is an important means of ensuring the safe operation of pipelines. In-line
inspection of Magnetic Flux Leakage (MFL) can be used to identify and analyze potential defects.
For pipeline MFL identification with inspecting in long distance, there exists the issues of low
identification efficiency, misjudgment and leakage judgment. To solve these problems, a pipeline
MFL inspection signal identification method based on improved deep residual convolutional neural
network and attention module is proposed. A improved deep residual network based on the VGG16
convolution neural network is constructed to automatically learn the features from the MFL image
signals and perform the identification of pipeline features and defects. The attention modules are
introduced to reduce the influence of noises and compound features on the identification results in
the process of in-line inspection. The actual pipeline in-line inspection experimental results show that
the proposed method can accurately classify the MFL in-line inspection image signals and effectively
reduce the influence of noises on the feature identification results with an average classification
accuracy of 97.7%. This method can effectively improve identification accuracy and efficiency of the
pipeline MFL in-line inspection.

Keywords: long-distance oil and gas pipeline; MFL in-line inspection; feature identification; residual
network; convolutional block attention module

1. Introduction

Oil and gas pipeline transportation is one of the five major transportation industries,
along with railway, highway, aviation, and water transportation [1]. Since long-distance
oil and gas pipelines have merits of low transportation cost, stable transportation capacity,
and uninterrupted transportation, they have become the most important means of large-
scale oil and gas transportation in the world [2]. Oil and gas pipelines have been built in
land, sea, mountains, and other geographical environments around the world on a large
scale, being the lifeblood of modern industry and national economy [3]. The most basic
requirement for pipeline operation is safety and stability. With the increase of service age
and the change of geological conditions, the pipeline is vulnerable to welds, oil and gas
corrosion, and man-made damage, resulting in pipeline failure. If it is not discovered and
performed effective maintenance in time, oil and gas leakage or explosion accidents will
occur which endanger people’s lives and result in environmental pollution and serious
social impacts [4]. Therefore, it is necessary to conduct regular corrosion inspections and
pipeline health conditions management according to the inspection results. Many years
of pipeline operation practice at home and abroad show that the whole-life inspection
and evaluation of pipelines is one of the most critical methods to ensure the integrity and
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reliability of pipelines. In-line inspection is the most important technical means for the
detection or perception of the condition of oil and gas pipelines [5].

In-line inspection technology is a pipeline inspection method using an intelligent
in-line inspection tool. This tool is installed in different types of nondestructive detection
equipment or related sensors on the vessel according to the type of pipeline defects, of
which the pig for cleaning dirt or impurities is refitted into an intelligent in-line tool
integrating data acquisition, signal processing, storage control, and other functions [6,7].
This intelligent in-line inspection tool driven by the medium in the pipeline collects the
information of the entire pipeline through various sensors and electronic systems. These
data are used to determine the type and size of pipeline defects through later offline
analysis of inspection data to provide an effective method to guarantee the safe operation
of the pipeline [8]. Developed industrial countries have attached great attention to the
research and development of oil and gas pipeline inspection technologies. After decades of
development, a series of mature technologies and equipment have been developed both at
home and abroad, and have been used for thousands of kilometers of oil and gas pipeline
inspection, and good results have been achieved providing a huge safety guarantee for oil
and gas pipeline operators [9].

MFL is the most commonly used in-line inspection method for determining the metal
loss in oil and gas pipelines. MFL has the advantages of wide application range, such as
without couplant, high detection reliability and accuracy, and can effectively detect metal
loss caused by corrosion or scratches and external metal objects [10]. However, for long
distance inspection of oil and gas pipelines, some problems exist, such as low efficiency,
misjudgment, and omission of subsequent signal identification and analysis. Therefore,
the focus of current research is to identify and discriminate MFL inspection signals with
high efficiency and reliability. With the development of MFL in-line inspection technology,
scholars have conducted relevant research on signal identification and analysis. Liu [11]
designed a defect identification algorithm based on a random forest, which was used to
recognize various types of defects in MFL inner-detection data. Chen [12] proposed an
iterative neural network to reconstruct three-dimensional defect profiles from three-axial
MFL signals in pipeline inspection, which was robust even in the presence of reasonable
noise. MR Kandroodi [13] proposed an axial flux detection algorithm for defect detection
based on image processing approaches and morphological methods, which was validated
through examinations of simulated defects and real experimental MFL data. Sorabh [14]
proposed a three-dimensional finite element model and static simulation that studied
the dependency of the characteristic defect dimensions and the leakage flux signal. In
recent years, with the development of artificial intelligence, deep-learning methods have
been applied in the field of pipeline MFL inspection. After the preprocessed data are
input into the deep learning model, the model automatically performs feature extraction
for identification and classification, which achieves good identification results. Wang [15]
proposed a pipeline magnetic flux leakage image detection algorithm based on a multi-scale
SSD network, which automatically identified the location of the girth weld, spiral weld,
and defects in the magnetic flux leakage data. Yang [16] proposed a method for magnetic
flux leakage image classification based on sparse self-coding, which had good feature
extraction and generalization abilities. Lu [17] proposed a novel visual transformation
CNN to estimate the defect size in specimens from the MFL.

However, the pipeline MFL in-line tool is prone to being affected by impact and
vibration during operation, resulting in high signal background noises [18]. The tool
sensors are often lifted off owing to the continuous touching of the girth and spiral weld,
resulting in a decrease in signal strength. In addition, because of the long inspection distance
of the pipeline, the features or defects of the pipeline are compound, and the superposition
of different features or defects will affect the identification accuracy. Deep learning methods
have become a hotspot in the research of signal identification and fault diagnosis in recent
years. At present, researches of pipeline MFL signal identification method based on deep
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learning frameworks have obtained results [19,20]. The complexity of pipeline MFL signals
brings limitation on identification accuracy by using traditional methods.

Therefore, to further improve the identification accuracy for the complex pipeline MFL
signals, a pipeline MFL inspection feature identification model based on an improved deep
residual convolutional neural network is proposed. The experiment results showed that
the proposed method not only automatically learns the features from the MFL inspection
images and performs the classification and identification of pipeline features and defects
such as welds, tees, flanges, and corrosion, but also solves the problems of the great
influence of noise, compound features, and other factors on the feature identification results
in the process of in-line inspection. Compared with other methods, the proposed method
effectively improves the classification of pipeline features, and provides an effective method
for pipeline features identification.

The main contributions of this paper are as follows:

(1) An MFL in-line inspection method based on attention module and convolution resid-
ual modules is proposed for oil and gas pipeline, which effectively improve the
pipeline features inspection accuracy and efficiency.

(2) Aiming at the influence of the complex operating environment, high noises, composite
defects to MFL in-line inspection of oil and gas pipelines, attention module composed
of channel attention and spatial attention are designed to fully extract MFL image
feature information.

(3) To solve the problem of gradient dispersion caused by the increase of the number of
network layers, an improved residual convolutional neural network is constructed to
reduce the error of the deep network as well as the amount of calculation parameters,
and effectively improve the training efficiency.

The remaining parts of the paper are as follows. Section 2 provides the methods
which include the basic CNN and the MFL in-line inspection technology for pipelines
and the proposed method for the pipeline MFL signal identification. Section 3 shows the
experiment and result analysis. Section 4 is the conclusion.

2. Methods
2.1. Related Work
2.1.1. Convolutional Neural Network (CNN)

A CNN is a typical feed forward neural network and one of the most popular deep
learning algorithms. It can learn the mapping relationship between the input and output
using a large amount of data. As long as the known convolutional network model is trained
with sample data, it can obtain a network model with good performance to extract the local
features of the images. This network model has been widely applied in image identification
and classification, face recognition, audio retrieval, natural language processing, visual
tracking, and other fields [21,22]. Yuan proposed an intelligent fault diagnosis method
for rolling bearings based on wavelet time-frequency map and CNN. The improved CNN
with strong generalization, feature extraction and identification can effectively identify the
fault types of rolling bearings [23]. D Neupane presented the method that detects bearing
failures using the continuous wavelet transform and classifies them using a switchable
normalization-based convolutional neural network [24]. To solve the problem of a lack of
labeled samples with the same distribution in real industry, J He proposed a deep transfer
learning method based on special 1D-CNN for rolling bearing fault diagnosis [25]. Zheng
designed a new fault diagnosis method using deformable CNN, deep long short-term
memory and transfer learning strategies. The method can be used for insufficient labeled
vibration data and inevitable dynamic changes of multiple working conditions [26]. The
CNN is composed of an input layer, convolutional layer, pooling layer, full connection
layer, and output layer, as shown in Figure 1. The input layer realizes the input of the
original image dataset, the convolutional layer obtains the feature map through convolution
calculation, and the pooling layer performs a downsampling operation on the feature map
to reduce the data dimension. The number of convolutional layers and downsampling
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layers are often determined according to the actual situation. The full connection layer
mainly realizes data mapping [27].
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Figure 1. Structure of convolutional neural network.

A convolutional layer is used to extract the features of the input images. The image
with pixel size of M× N is represented as P = f (x, y), f (x, y) is the gray value of the point
in the x-th row and y-th column of the image P. The convolution kernel is represented as
K(x, y), with a size of a× b. C(s, t) is the convolution operation matrix of image P and
convolution kernel K.

C(s, t) = f (x, y)× k(x, y) =
a

∑
x=1

b

∑
y=1

k(x, y) f (s + x− 1, t + y− 1) (1)

where 1 ≤ s ≤ M− a + 1, 1 ≤ t ≤ N − b + 1. The convolution operation continuously
moves the convolution kernel on the image matrix and convolutes it with the corresponding
segment to form a new image matrix. The primary function of the convolutional layer is
feature extraction. Through a convolution operation, signal features can be enhanced and
noises can be reduced.

The pooling layer, also known as the down-sampling layer, divides the input feature
maps into many non-overlapping rectangular regions. The maximum value extraction
of each region is called max pooling, and the average value extraction of each region is
called average pooling. The essence of pooling is the dimensionality reduction. Pooling
operations downsample the feature image obtained by the convolution layer through the
downsampling layer, which can reduce the amount of calculation and avoid over fitting.

Convolution operations only have the ability of linear mapping, and cannot meet the
needs of feature extraction. A nonlinear function called the activation function is often
added after the convolution operation. Common activation functions include the Sigmoid,
tanh, ReLU, and Softmax functions. Among these, the ReLU function is the most widely
used. The main advantages of the ReLU function are: 1©when x > 0, the gradient is 1, there
is no gradient saturation problem, and the convergence speed is fast; and 2©when x < 0, the
output is 0, which increases the network sparsity and improves the generalization ability.

The full connection layer is located behind the convolutional and pooling layers to
organize and synthesize the extracted features. The input of the first full connection layer
is the feature maps obtained by feature extraction through convolution and pooling. The
last output layer is a classifier that can classify signals. Softmax is commonly used as the
classifier.

Before training the CNN, the parameters in the network model were initialized. Then,
forward propagation was performed. Through a series of operations, such as convolution,
pooling, and activation functions, the hidden layer in the network structure is used for
feature extraction and mapping. The high-level semantic information is extracted from
the input image layer by layer, and the image category information is obtained through
the full connection layer. In the network training stage, the error between the predicted
value and the real value is calculated and fed forward layer by layer from the last layer
using the back propagation algorithm, which is supervised by the network model to update
the parameters of each layer to reduce the error. Then, the feed forward operation and
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back propagation are repeated until the network model converges. The classification and
identification ability of a CNN mainly depends on the learning ability of the network for
the images, that is, the feature extraction ability of the convolution kernel for images. The
quality of the convolution kernel is determined by its internal weight, and the selection of
the weight in the network is very important.

2.1.2. VGG16 Deep Convolutional Neural Network

The VGG16 network is a deep network model developed by the Computer Vision
Team of Oxford University and researchers of Google DeepMind in 2014. The network
has 16 training parameters, with a simple network structure and excellent generalization
performance when transferred to other image data [28,29]. The VGG16 model exhibited
excellent performance in classification and achieved the best effect on multiple datasets at
that time. At present, the VGG16 network is still widely used as a feature extraction network
to extract features, mainly including the input, convolutional, pooling, full connection,
and Softmax layers. The input images are preprocessed images of the same size, and the
features are extracted by the convolutional layer to obtain a certain number of feature
maps. Then, the feature maps are input into the pooling layer for downsampling to
generalize the feature maps, and the ReLU function is used as the activation function
behind each convolutional layer, which makes the function nonlinear. Qian used the
VGG-16 convolutional neural network as the core network structure, and constructed an
intelligent identification model of rice pests based on VGG16 convolutional neural network
according to the individual characteristics of rice pests and natural scenes [30]. J Duan
proposed a fully automatic online monitoring method incorporating a K-means clustering-
based haze judgment module, a lightweight U-net segmentation model with the fusion of
none-weight VGG16 features. This method can accurately segment the pellets from both
hazy and haze-free images with the help of the haze judgment module [31]. Z Omiotek
presented a method combining flame image processing with a deep convolutional neural
network that ensures high accuracy of identifying undesired combustion states based on
the pretrained VGG16 model [32]. In order to solve the problems of few images, a lot
of manual annotation and low efficiency in the process of chip image classification, Ma
proposed a VGG16 network chip image classification method based on transfer learning.
It can automatically learn image features in the process and effectively reduce the cost of
manual annotation [33].

The network structure diagram of VGG16 is shown in Figure 2. The orange part
represents the input signal images. If the size of the input signal image is 224 × 224 × 3,
3 indicates that the image is colored, and 224 is the pixel value of the image. Black cubes
are convolutional layers that are mainly used to extract features. The red cubes are pooling
layers, which are mainly used to retain the main features of the images.

Firstly, the image is convoluted twice with 64 convolution kernels of 3 × 3 in size
and 1 in stride, and the size after convolution operation becomes 224 × 224 × 64, then a
max pooling calculation is performed, with the pooling unit size of 2 × 2 and the stride
of 2; Next, two convolution operations of 128 convolution kernels and one max pooling
calculation are carried out for the image, and the size becomes 112 × 112 × 128, during
which the pooling unit size is 2 × 2, the stride is 2 and the output is 56 × 56 × 128. Then,
three convolution operations of 256 convolution kernels and one max pooling calculation
are carried out for the image, during which the convolution kernel size is 3 × 3 with
the stride of 1, the pooling unit size is 2 × 2 with the stride of 2, the output size after
convolution calculation is 56 × 56 × 256, and the output size after pooling calculation is
28 × 28 × 256. Then, the calculation of three convolutional layers are performed for the
image, with 512 convolution kernels of the same size and stride as that of the previous
convolutional layer, and the output size is 28 × 28 × 512. One max pooling calculation is
performed, with the same pooling unit size and stride as that of the previous pooling layer,
and the output size is 14 × 14 × 512. Next, the calculations of three convolutional layers
are performed for the image, with 512 convolution kernels of the same size and stride
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as that of the previous convolutional layer, and the output size is 14 × 14 × 512. Then,
the max pooling calculation is performed for the image, with the same pooling unit size
and stride as that of the previous pooling layer, and the output size is 7 × 7 × 512. After
completing the above calculation, three fully connected layer operations are performed
on the image, where the blue cubes are the fully connected layers, and the final output is
the category probability of the image. Each convolutional layer is connected to a ReLU
activation function.
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Figure 2. VGG16 network model.

Although VGG16 has a simple structure, it contains a large number of weights, re-
sulting in a long training time, difficulty in parameter adjustment, and requirement of
large storage memory, which is not conducive to MFL in-line inspection under complex
working conditions. On this basis, simply increasing the network depth for accuracy
improvement can easily cause gradient explosion or gradient disappearance, and large
amount of computing. Therefore, the network needs to be improved.

2.2. Proposed Attention Module MFL In-Line Inspection Technology for Pipeline
2.2.1. MFL In-Line Inspection Tool

As shown in Figure 3, the MFL in-line inspection tool is often composed of a driving
cup, magnetic flux leakage unit, caliper, recording and battery system, and odometers,
which are connected by a Cardan joint in the middle. The MFL unit consists of a yoke,
a permanent magnet, several steel brushes and Hall sensors. It is a central part of the
inspection tool and can collect signals of the magnetic field and MFL on the magnetized
pipeline wall. Different sizes of in-line inspection tool have different numbers of Hall
sensors covering the circumference of the pipeline. When there are more Hall sensors, the
collected signals are clearer. Driven by the medium transported in the pipeline, the tool can
move forward inside the pipeline under the pressure difference in front of and behind the
driving cup to identify and inspect the corrosion defects inside and outside the pipeline,
wall thickness variation, weld defects, and pipeline features. Additionally, the tool can
provide information on defects, including area, depth, orientation, and position.
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2.2.2. Principle and Disturbance for Pipeline MFL In-Line Inspection

The technical principle of MFL in-line inspection is to judge the severity of defects in an
inspected workpiece by measuring the MFL on the surface of a magnetized ferromagnetic
material. After a ferromagnetic material is magnetized by an externally applied magnetic
field, if it is continuous and uniform, the magnetic lines of force in the material will be
constrained inside the material and will not penetrate the surface of the material, as shown
in Figure 4a [34]. However, if there are any defects on the surface or inside the ferromagnetic
material, there is low magnetic permeability and high magnetic reluctance at the position
of the defect. The magnetic lines of force first pass through the area with a lower magnetic
reluctance. When the magnetic induction intensity inside the material is high or the defect
is large, the material near the defect cannot bear a higher magnetic flux. Thus, a portion
of the magnetic flux flows out of the workpiece from the position of the defect, passes
through the workpiece above the defect, and then reenters the workpiece. In this manner, a
magnetic leakage field is formed outside the workpiece, as shown in Figure 4b [34]. The
total magnetic flux through the cross-sectional area of the steel plate is [35]:

φ = B1S1 (2)

where S1 is the area of pipeline wall without defects. According to the principle of continu-
ous boundary flux, the flux Bo on the outer surface of the workpiece is:

Bo = B1
µs

µ1
(3)

where B1 is the magnetic induction intensity in the workpiece without defects, µs is the
relative permeability of air, µ1 is the relative permeability of the workpiece, µs < µ1. When
the in-line inspection tool passes through the pipeline defect, the B1 changes to B2. Some
magnetic induction lines overflow the pipeline wall surface and produce magnetic flux
leakage. The magnetic sensor is used to collect the magnetic leakage field and convert
it into electrical signals. Electrical signals were calculated to determine the condition of
the defects.
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Figure 4. Principles of magnetic flux leakage inspection [34]. (a) Distribution of magnetic lines of
force without defect, (b) Distribution of magnetic lines of force with defect.

The MFL signal of the pipeline contains all the information for the inspected pipeline.
Through the analysis of the MFL, the size and position of pipeline welds, defects, and other
features can be obtained. The MFL is a three-dimensional vector, which is divided into axial
component along the pipeline forward direction, radial component perpendicular to the
pipeline wall and circumferential component along the pipeline circumferential direction.

After MFL in-line inspection, the actual detected values of each channel in the sensors
of the tool are imaged using line tracing points, and the curved image is generated first.
Generally, the tool samples according to a certain sampling spacing in the forward direction
of a pipeline. The smaller the sampling point spacing and the more circumferential the
channels, the higher the accuracy of the tool and the more thorough the inspection of the
pipeline. In the curved image, the abscissa represents the travel distance of the tool, and
the ordinate represents the magnitude of the MFL collected by each channel.

However, for image classification based on deep learning, the contrast of the curved
image is poor, and the feature extraction of the network is difficult. Therefore, pseudo-
color image processing technology can be used to process curved images to improve their
resolution. Pipeline MFL pseudo-color image is used to directly map the converted MFL
signal data to the RGB space, encode the three components, and finally fuse the three
components into a pseudo-color image according to different proportions to obtain a
complete MFL pseudo-color image [36,37]. MFL pseudo-color image can be expressed as:

I(x, y) =


i(0, 0) i(0, 1) i(0, 2) . . . i(0, N)
i(1, 0) i(1, 1) i(1, 2) . . . i(1, N)

. . . . . . . . .
i(M, 0) i(M, 1) i(M, 2) . . . i(M, N)

 (4)

where the i(x, y) represents the pseudo-color image pixel corresponding to the actual MFL
inspection value. M is the number of sensor channels for MFL in-line inspection tool. The
more sensors used, the greater the number of signal channels, and the pseudo-color image
of MFL is clearer. N is the sampling spacing in the forward direction of a pipeline. The
smaller the sampling spacing, the clearer the pseudo-color image of MFL. Figure 5 shows a
comparison of the real defect, MFL curve, and pseudo-color image.

In the process of in-line inspection, the MFL signal will be affected by pipeline internal
environment, impact vibration, and other factors, such as the corrosion defects, welds,
wax, or waste in the pipeline. These factors will lead to the lift-off of the sensors. The
lift-off sensors will produce interference signals from the dynamic lift-off, thus affecting
the inspection results. Figure 6 shows the MFL signals of the sensor with different lift-off
values at the same corrosion defect. The lift-off of the sensors are 0 mm, 1 mm, and 2 mm,
respectively. When the sensor is close to the pipeline wall (with 0 mm lift-off), the inspection
signal amplitude is the largest and the signal is clear; when the sensor is lifted away by
1 mm and 2 mm respectively, it can be seen from the figure that the leakage magnetic
field strength detected by the sensor becomes weaker. If the sensor is lifted-off to a certain
distance, it will cause inspection failure. In addition, pipeline defects or features do not
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exist singly. Different defects or features will also compound together. As the input of deep
neural network, the pseudo-color image of magnetic flux leakage detection is also affected
by the lift-off value or compound signals, which makes feature extraction more difficult.
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2.2.3. Convolutional Attention Module for MFL In-Line Inspection

The internal noise, composite defects or features of the pipeline will increase the
differences between similar samples and reduce the differences between different types
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of samples, resulting in the reduction of the accuracy of feature identification of pipeline
MFL inspection. Therefore, it is necessary to improve the deep convolution network and
propose a new mechanism to enhance the signal feature extraction ability of the network.
The attention model was derived from a human visual attention model. While processing
data, the visual system quickly focuses on the target areas that need to be focused by
scanning the global scene, and allocates limited computing resources to these key parts.
This mechanism can greatly reduce the amount of data to be processed, ignore unimportant
information, and provide more manageable and relevant information for higher-level
perceptual reasoning and complex visual processing. It is one of the core technologies
in deep learning worthy of attention and in-depth understanding. The convolutional
block attention module (CBAM) is an attention module combining spatial with channel
information. CBAM adopts max-pooling and average-pooling to generate weights through
the channel and spatial dimensions [38,39]. Adding the attention mechanism module
can further extract the interested small defects target area from the background, thus the
network can better learn small target defects. At the same time, the interference of the
background to the target is suppressed, thus improving the learning ability of the network
to the detailed features of small targets and enhance the ability of feature learning.

The method introduces the attention mechanism and designs the spatial attention
module (Spatial_AM) and the channel attention module (Channel_AM). In Channel_AM,
the property of maximum pooling is used to capture the inter class information between
MFL image pixels, and the average pooling is used to capture the intra class information
between pixels. These two information as weights are applied to the original feature map
as attention to assist feature extraction. The module is connected between the feature map
extraction module and the feature map decoding module. At the same time, the Spatial_AM
is also designed. By using the spatial attention mechanism composed of global pooling,
convolution, and activation function, the semantic information extraction is further refined,
and the information is multiplied with the original feature map as a weight.

• Channel attention module

When extracting features in the channel dimension, average pooling and max pooling
are considered simultaneously. Figure 7 shows the design scheme of the channel attention
module.
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batch regularization and activation function Sigmoid are used to transform this associa-
tion into nonlinear change [43]. To avoid excessive loss of feature information caused by 
pooling, it was multiplied by the feature map without average pooling. The result of mul-
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Figure 7. Channel attention module.

The module consists of convolution, batch regularization, and an activation function,
which can extract mixed information by integrating channel and semantic information.
Then, the average pooling module, convolution and activation function ReLU are adopted
to process the features, where ADD is the addition operation and MUL is the multiplication
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operation, to obtain the function Xc
avg; at the same time, the max pooling module, convolu-

tion and activation function ReLU are used in parallel with the average pooling module for
another feature extraction to obtain the function Xc

Max. The designed attention feature map
has features of both average pooling and max pooling. The attention feature is multiplied
with the input feature map and superimposed with the input feature to as the weight to
influence the input feature map. Finally, a structure similar to the jump connection was
used to reduce the negative impact of the attention module on the input feature map, and
the Sigmoid activation function was used to output the final feature map [40,41]. The
calculation process is as follows.

Mc(X) = σ( f (AvgPool(X); MaxPool(X)))

= σ
(

f
(

Xc
avg; Xc

Max

)) (5)

The designed module can not only efficiently guide the acquisition of intraclass
information through the average pooling operation, but also extracts more edge information
through the max pooling operation, which can efficiently improve the acquisition of feature
information.

• Spatial attention module

By using the spatial attention module, useful information in the input image can be
focused on. Figure 8 shows the designed spatial attention module, which focuses on the
spatial or semantic feature information in the feature map [42]. By use of global average
pooling, the length and width of the feature map are compressed into one, leaving only
the spatial information. Then, the convolutional layer is used to learn the association
between spatial information and classification information (semantic information), and
batch regularization and activation function Sigmoid are used to transform this association
into nonlinear change [43]. To avoid excessive loss of feature information caused by pooling,
it was multiplied by the feature map without average pooling. The result of multiplication
is input to the next module as the weight to influence the input feature map, so as to
complete the task of refining semantic information.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 25 

 

 

In
pu

t

Co
nv

ol
ut

io
na

l

BN

Si
gm

oi
d

Ou
tp

ut

Gl
ob

al
Po

ol

 
Figure 8. Spatial attention module. 

2.3. Intelligent Identification of MFL In-Line Detection Signal of Oil and Gas Pipeline Based on 
Deep Residual Convolutional Neural Network 

In the actual process of in-line inspection, the signal-to-noise ratio of the inspection 
signals is low because of the influence of the pipeline internal environment, impact vibra-
tion, and other factors. Additionally, compound defects or features will increase the dif-
ferences between samples of the same category and reduce the differences between sam-
ples of different categories, thus reducing the accuracy of feature identification. In this 
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sidual network model and designing an attention model to enhance the feature learning 
ability of MFL in-line inspection signals to improve the identification accuracy of pipeline 
MFL feature signals under different conditions. 
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a residual block [46,47]. The essence of the ResNet design is to ensure that the internal 
structure of the model has the ability of identity mapping so that the deep network has 
the same performance as the shallow network. Through identity mapping, there is no 
degradation due to continued stacking in the process of stacking the network. The block 
structure of the Identity Residual module (Identity_RES) is shown in Figure 9. 
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2.3. Intelligent Identification of MFL In-Line Detection Signal of Oil and Gas Pipeline Based on
Deep Residual Convolutional Neural Network

In the actual process of in-line inspection, the signal-to-noise ratio of the inspection
signals is low because of the influence of the pipeline internal environment, impact vi-
bration, and other factors. Additionally, compound defects or features will increase the
differences between samples of the same category and reduce the differences between
samples of different categories, thus reducing the accuracy of feature identification. In
this study, a new deep neural network model is effectively constructed by constructing a
residual network model and designing an attention model to enhance the feature learning
ability of MFL in-line inspection signals to improve the identification accuracy of pipeline
MFL feature signals under different conditions.
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2.3.1. Residual Network Design

Deep convolutional networks have an efficient feature extraction ability and can form
more abstract high-dimensional features by combining low-dimensional features. It is
generally believed that the more layers of the network, the richer the features that can be
extracted, and the stronger the representation ability. However, as the number of network
layers increases, the gradient of back propagation will become unstable and become ex-
tremely large or small, which makes the model difficult to train and converge, resulting in
the gradient dispersion or explosion. On the other hand, with the network layers increases,
the network performance tends to be saturated or even declines sharply, and the network
information cannot be transmitted effectively, resulting in network degradation [44,45].

To solve the problems of gradient dispersion or explosion and network degradation
caused by network deep stacking, Kaiming He et al. proposed a new network structure,
namely, residual network (ResNet), which constructs a new deep network by introducing
a residual block [46,47]. The essence of the ResNet design is to ensure that the internal
structure of the model has the ability of identity mapping so that the deep network has
the same performance as the shallow network. Through identity mapping, there is no
degradation due to continued stacking in the process of stacking the network. The block
structure of the Identity Residual module (Identity_RES) is shown in Figure 9.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 25 

 

 

In
pu

t

Co
nv

ol
ut

io
na

l

BN Re
LU

Co
nv

ol
ut

io
na

l

BN
F(x)

H(x)=F(x)+x

x Identity

Re
LU

Ou
tp

ut
 

Figure 9. Identity residual module. 
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where Equation (10) represents the actual updated gradient of the loss when passing 
through the N-th layer. The first part in the formula represents the preserved gradient of 
directly transmitting the original features through the identity channel. The second part 
is the residual gradient related to the weight parameters of the residual network. If the 
output size of the previous layer and the input size of the current layer do not match each 
other, it is necessary to add a convolutional layer to match the output of the previous 
layer, that is, the Convolutional Residual module (Conv_RES). The structure of the con-
volutional residual module is shown as in Figure 10. Where the convolution kernel size 
on the identity is set to 1 × 1, the stride is set to 1 × 2, and the number of convolution 
kernels N depends on the specific structure. 

Figure 9. Identity residual module.

The output H(x) in model is:

H(x) = F(x) + x (6)

where F(x) is the residual mapping after learning, H(x) is the low-level mapping of the
partial fitting, and x is the input vector. Usually, F(x) is expressed as F(x, {Wn}) to highlight
the relationship between the input weights and update weights. Therefore, the n-th residual
unit can be expressed as

yn = h(xn) = F(x, {Wn}) (7)

xn+1 = fReLU(yn) (8)

where xn+1 and xn represent the output and input of the n-th residual unit, respectively.
h(xn) represents unit mapping, and fReLU is the ReLU activation function. As can be seen
from Equation (9), the features for learning from layer n to layer N are

xN = xn +
N−1

∑
i=n

F(xi, Wi) (9)

∂loss
∂xn

=
∂loss
∂xN

· ∂xN
∂xn

=
∂loss
∂xN

(
1 +

∂

∂xN

N−1

∑
i=n

F(xi, Wi)

)
(10)
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where Equation (10) represents the actual updated gradient of the loss when passing
through the n-th layer. The first part in the formula represents the preserved gradient of
directly transmitting the original features through the identity channel. The second part
is the residual gradient related to the weight parameters of the residual network. If the
output size of the previous layer and the input size of the current layer do not match each
other, it is necessary to add a convolutional layer to match the output of the previous layer,
that is, the Convolutional Residual module (Conv_RES). The structure of the convolutional
residual module is shown as in Figure 10. Where the convolution kernel size on the identity
is set to 1 × 1, the stride is set to 1 × 2, and the number of convolution kernels N depends
on the specific structure.
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2.3.2. MFL In-Line Inspection Signal Identification Based on Improved Deep Residual 
Network 

In this paper, an MFL signal identification method based on improved residual con-
volutional neural network is proposed, in which a new network is constructed by improv-
ing the residual network and introducing an attention module. The feature identification 
model proposed in this method has the following advantages: (1) A convolution network 
is adopted to extract features from the original data, which reduces the difficulty of feature 
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introduced to deepen the depth of the deep network but to effectively reduce the compu-
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The improved residual convolutional neural network model based on VGG16 pro-
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and classification of the actual network structure are listed in Table 1. 
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2.3.2. MFL In-Line Inspection Signal Identification Based on Improved Deep Residual
Network

In this paper, an MFL signal identification method based on improved residual convo-
lutional neural network is proposed, in which a new network is constructed by improving
the residual network and introducing an attention module. The feature identification
model proposed in this method has the following advantages: (1) A convolution network
is adopted to extract features from the original data, which reduces the difficulty of feature
extraction and enhances the universal applicability of pipeline defects and pipeline features.
(2) The attention layer is added to obtain the weighted feature map under the joint action
of channel attention and spatial attention to further extract the image feature information
and reduce the noises impact on the feature identification results during the inspection in
the pipeline. (3) Two different residual modules (identity and convolution) are introduced
to deepen the depth of the deep network but to effectively reduce the computing number
of parameters, decrease the errors of the deep network, save the training time, and improve
the training effect.

The improved residual convolutional neural network model based on VGG16 pro-
posed in this method is illustrated in Figure 11. The input of the entire network is a
pseudo-color image of the MFL in-line inspection. After data preprocessing, the image size
was set to 112 × 112 × 3. After normalization, the RGB value is converted to the range of (0,
1). The normalized image is input to the first convolutional layer which has sixteen 3 × 3
convolution kernels with a stride of 1, then is input into Channel_AM and Spatial_AM after
passing through the batch standardization layer and activation layer. It then enters three
consecutive identical residual modules, each of which includes 16 convolution kernels with
a size of 3 × 3 and a stride of 1, and has an output of 112 × 112 × 16. Next, the feature
map is fed into the convolutional residual module, and on the one hand, the feature map
A is obtained through ReLU activation function→ convolution→ batch standardization
→ ReLU activation function→ convolution→ batch standardization, on the other hand,
feature map B is obtained after convolution→ batch standardization. More features can
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be extracted from feature maps A and B through the superposition of the merging layer,
and the size of the output feature map was 56 × 56 × 32. Then, the feature map passes
through two identical residual modules, one convolutional residual module, and two
identical residual modules, and an output image of 28 × 28 × 64 is obtained. The obtained
feature map was fed into the global mean pooling layer to reduce the number of parameters
and overfitting. Finally, it was connected to the full connection layer using Softmax for
classification. The specific parameters for the feature identification and classification of the
actual network structure are listed in Table 1.
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vent and effectively reduce accidents and save pipeline maintenance funds, which is an 
important method to ensure pipeline safety. The status of in-line tool before and after run-
ning are shown in Figure 12. It can be seen from Figure 12, that there are wax, dirt, and 
other impurities in the pipeline, which affect the quality of the long-term signal acquisi-
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Table 1. Structure and parameters of the improved deep residual network based on VGG16.

Layer Number Network Kernel Size Stride Kernel
Number Output Other

1 Input 112 × 112 × 3
2–4 Conv + BN + ReLU 3 × 3 1 × 1 16 112 × 112 × 16 Same
5–15 Channel_AM 112 × 112 × 16

16–22 Spatial_AM 112 × 112 × 16
23–43 (Identity_RES + ReLU) × 3 112 × 112 × 16
44–52 Conv_RES1 + ReLU 56 × 56 × 32
53–66 (Identity_RES + ReLU) × 2 56 × 56 × 32
67–75 Conv_RES2 + ReLU 56 × 56 × 32
76–89 (Identity_RES + ReLU) × 2 28 × 28 × 64

90 POOL 8 × 8 21 × 21 × 64 Global
91 FC 1 × 1 × 6
92 Softmax 1 × 1 × 6
93 Classification 1 × 1 × 6

3. Experiment and Results Analysis
3.1. Establishment of Pipeline MFL Feature Image and Sample Set

An in-line inspection tool is driven by the pipeline transport medium (crude oil or
natural gas) to run in the pipeline, inspect, and locate the deformation, corrosion, and other
damages to the pipeline in real time. Most oil and gas pipelines are buried underground.
Through in-line inspection of the pipeline, various defects and damages can be found in
advance, and the risk degree of each pipeline section can be understood to prevent and
effectively reduce accidents and save pipeline maintenance funds, which is an important
method to ensure pipeline safety. The status of in-line tool before and after running are
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shown in Figure 12. It can be seen from Figure 12, that there are wax, dirt, and other
impurities in the pipeline, which affect the quality of the long-term signal acquisition of the
tool. In addition, the tool is susceptible to welds and other influences, resulting in the lift-off
of the sensor and other phenomena, further making the inspection signals vulnerable to
noise interference.
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During the inspection, the tool collects MFL signals with obvious features when
passing by pipeline accessories and defects, such as welds, tees, valves, and metal loss
or increase. Identifying the type of pipeline accessories according to the features of the
signals, recording their locations, and other relevant information are important for MFL
inspection signal analysis. Figure 13 shows MFL pseudo-color feature images of six types of
pipeline defects, namely, Girth Welds (GW), Spiral Welds (SW), Tees (Tee), metal Corrosion
(COR), Illegal Hot Tapping (IHT), and Flanges (FL). GW is the weld that joints the two
pipes together. The GWs are orthogonal to the pipeline centerline in MFL signal. SW is a
weld obtained by welding a coiled sheet of material into a tubular part in a spiral manner.
In the MFL signal, it can be seen that the SW has an angle with the centerline of the pipeline.
Tee can be regarded as a large metal loss signal in the MFL signal, and the outer contour is
circular. Different sizes of Tees show different sizes of metal loss signals on MFL images.
COR includes two types of pitting defects and extensive corrosion. Due to the different
depths and sizes of pipeline corrosion defects, the leakage magnetic fields inspected by the
in-line inspection tool are different. As a result, different corrosion defects have different
expressions on the magnetic flux leakage image. IHT means that criminals have damaged
the pipeline in order to steal oil and gas, resulting in a through hole defect in the pipeline.
It can be seen from the MFL signal that the middle part is the metal loss signal. Due to
the external valve, the metal increase signal is also generated. FLs are another way of
connecting pipelines, in addition to the two weld signals, there is a larger metal increase
signal in the middle. These six types of MFL signals can be collected by the sensors of
the in-line inspection tool. However, due to different pipeline sizes, the tool operates in a
complex environment inside the pipeline and other factors, the same type and different
sizes of defects have different performances in the MFL images. Especially for the three
signals of Tee, COR, and IHT which all contain metal loss characteristics, and identification
of small and medium corrosion defect, the accurate identifying and judging is challenging.
Efficient, accurate, and automatic identification can significantly improve the efficiency of
MFL data analysis.

The training process of a deep convolutional neural network for target image iden-
tification and classification is a supervised neural-network training method. The input
of the CNN is MFL images, and the feature types of the MFL images must be defined
manually. Therefore, it is necessary to create experimental datasets and label files for
various feature types. The datasets contain features images of various pipelines as far as
possible. In the method, a database of MFL pseudo-color images was established, including
six categories (GW, SW, Tee, COR, IHT, and FL). The dataset contains a total of 9000 pipeline
MFL pseudo-color images, in which 6000 images were randomly selected as the training
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set, with 1000 images for each of the six categories features and defects, and the remaining
3000 images as the testing set, with 500 images for each of the six categories features and
defects. The image size was set as 112 × 112 × 3.
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3.2. Selection of Hyperparameters

The purpose of convolutional neural network training is to minimize the final loss. The
final loss function adopted by the model is a cross-entropy function expressed as follows:

J(ω, b) =
1
m

(
m

∑
i=1

(−y(i)lgŷ(i) − (1− y(i))lg(1− ŷ(i)))

)
(11)

where m represents the number of samples, y(i) represents the label of the i-th sample, and
J represents the neural network output value of the i-th sample.

Batch training was conducted in the experiment, and the final parameters were selected
as follows. The batch size was set as 128, and the random inactivation probability of the
dropout neurons was set as 0.3, and the Adam algorithm with adaptive learning rate
was selected as the optimization algorithm. The learning rate attenuation strategy was
adopted for learning, for which the learning rate would be reduced by 20% when the
testing accuracy was no longer improved, and the lower limit of the learning rate was set
as 0.00001.

3.3. Neural Network Model Training

Network training was conducted for 80 cycles, totaling 5600 iterations for training.
The curve of the model loss value changing with the number of iterations in the training
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process and the prediction accuracy curve of the training and testing changing with the
number of iterations are shown in Figure 14.

The experimental results showed that the loss value of the model decreased rapidly
and the accuracy increased rapidly in the first 2000 training sessions. At approximately
the 3000th training session, the model began to converge, and finally when the training
reached 3500 iterations, the loss value of the model tended to be stable. It can be seen that
the final parameter setting was appropriate, and the accuracy rate and loss value change
trends were good.
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3.4. Model Performance Evaluation

The confusion matrix of the classification results obtained using the proposed method
is shown in Figure 15. The performance of the trained neural network model was evaluated
by classification accuracy of testing set, and the following evaluation indexes were used:

(1) Recall: This is the proportion of the correctly predicted samples of a certain category
to the total positive samples number of this category in the testing set, reflecting the ability
of the model to find defects.

recall =
TP

TP + FN
(12)

(2) Precision (PRE): This is the proportion of true samples in the samples of predicted
as positive within a certain category of testing samples, reflecting the accuracy of the testing.
The calculation formula is as follows:

Precison =
TP

TP + FP
(13)

(3) Accuracy (ACC): The accuracy is used to measure the proportion of the number of
correctly predicted samples to the total number of samples. The higher the accuracy, the
better the performance of the model. The calculation formula is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

True Positive (TP) is the number of positive examples that are correctly divided. False
Positive (FP) is the number of false positives that are incorrectly divided. False Negative
(FN) is the number of negative examples that are incorrectly divided. True Negative (TN)
is the number of negative examples that are correctly divided.

As shown in Figure 15 and Table 2, the improved residual convolutional neural
network model based on VGG16 proposed in this method can achieve 97.7% identification
accuracy for six types of features. The recall and accuracy rates of GW are 100% and 99.4%,
respectively; and the recall and accuracy rates of SW are 97.6% and 96.4%, respectively; the
recall and accuracy rates of Tee are 95.2% and 97.3%, respectively, the recall and accuracy
rates of COR are 95.6% and 94.8%, respectively; the recall and accuracy rates of the IHT are
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98.8% and 98.6%, respectively; and the recall and accuracy rates of FL are 99.4% and 100%,
respectively.
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Table 2. Performance of the proposed method.

GW SW Tee COR IHT FL

Recall 100% 97.6 95.2% 95.6% 98.8% 99.4%
PRE 99.4% 96.4% 97.3% 94.8% 98.6% 100%
ACC 97.7%

To further illustrate the accuracy of feature identification for the constructed network, t-
distributed stochastic neighbor embedding (t-SNE) [48] was used to reduce the dimensions
of the test dataset, realize the visualization in two dimensions, and observe the distribution
of sample data to determine whether it is possible to be classified. The selected training
sample dataset was reduced to two dimensions by t-SNE method, and a two-dimensional
distribution map of the training samples was obtained, as shown in Figure 16a. It can
be found that the training sample set has certain clustering and has the possibility of
being classified, and the data distribution is found to be nonlinear to a certain extent,
which also poses a challenge to the nonlinear mapping ability of the classification model.
Figure 16b shows the classification effect of testing sample set by the first Conv_RES1 +
ReLU module, and it can be seen that by three consecutive Identity_RES + ReLU modules
and one Conv_RES1 + ReLU module, the testing data set has a certain classification
trend. Figure 16c shows the classification and identification effect of testing the sample
set by the second Conv_RES2 + ReLU module, and it can be seen by two consecutive
Identity_RES + ReLU modules and one Conv_RES2 + ReLU module, that the testing data
set has been effectively aggregated and classified; Figure 16d shows the final classification
and identification results of the testing sample set by passing Softmax, and the overall
feature identification accuracy is 97.7%. The main reason for the classification errors is that
the MFL image features were not obvious for some small oil illegal hot tappings which
were misidentified as general corrosion defects, and some large metal corrosion defects
were mistakenly identified as illegal hot tappings.
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3.5. Comparisons with Other Methods

To test and verify the performance of the proposed improved residual convolutional
neural network based on VGG16, three methods of deep CNN—AlexNET [49], ResNet-
50 [50], and VGG16—were selected for comparison with the proposed method. Comparison
results of the four methods is presented in Table 3 and Figure 17. As shown in Table 3 and
Figure 17, when the identification is based on Alexnet network, the PRE and recall of SW
and Tee reaches lower than 80%. When the identification is performed using the VGG16
network, the PRE and recall of six types corrosion defects MFL signals all improved and
reaches higher than 80%. When the identification based on ResNet-50 network, the PRE of
GW defect reaches 96.7%, the PRE of SW defect reaches 91.9%, the PRE of Tee defect reaches
94.9%, the PRE of COR defect reaches 95.2%, the PRE of IHT is 95.3% and the PRE of FL is
100%. The PRE of six types corrosion defects by the proposed method are 99.4%, 96.4%,
97.3%, 94.8%, 98.6%, and 100%, respectively. The recall of the six types of corrosion defects
by the proposed method are 100%, 97.6%, 95.2%, 95.6%, 98.8%, and 99.4%, respectively.
The PRE and recall by the proposed method are the highest compared with the previous
three methods. A comparison of the results of the above four identification methods reveals
that the proposed method has the highest identification accuracy for the GW, SW, Tee, and
IHT defect. It can be found that for the MFL features of a single pipeline, the identification
accuracy of COR and IHT is low because the two signal features are similar, especially
when the IHT has a smaller size, COR has a larger size, or the external branch pipe feature
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of IHT is not obvious, misjudgment often occurs. The identification accuracy of FL is the
highest because FL signals are the easiest to identify compared to other feature signals.

It can be seen that the average identification accuracies of AlexNET, VGG16, ResNet-
50, and the proposed method are 83.5%, 92.67%, 95.7%, and 97.7%, respectively. The
analysis of four deep convolutional neural networks shows that the identification accuracy
of ResNet-50 and the proposed method are higher than those of AlexNET and VGG16, and
the proposed method obtained the best classification results.

Table 3. Accuracy comparison of different methods.

Identification
Model Index GW SW Tee COR IHT FL

Number of
Network

Layers

AlexNET
Recall 99.6% 54.8% 79.6% 81.2% 95.4% 90.2%

8PRE 82.9% 76.8% 74.1% 83.9% 85.3% 97.6%
ACC 83.5%

VGG16
Recall 100% 86.8% 86.6% 90.4% 96% 96.2%

41PRE 97.1% 87.3% 89.6% 87.4% 95.2% 99.4%
ACC 92.67%

ResNet-50
Recall 99.6% 93.2% 90.2% 94.2% 97.2% 99.6%

50PRE 96.7% 91.9% 94.9% 95.2% 95.3% 100%
ACC 95.7%

The
proposed
method

Recall 100% 97.6% 95.2% 95.6% 98.8% 99.4%
93PRE 99.4% 96.4% 97.3% 94.8% 98.6% 100%

ACC 97.7%
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To more intuitively show the feature classification accuracy of different methods, t-SNE
and confusion matrix are used to show different classification results. Figure 18 shows the
classification results of the pipeline features using AlexNET, VGG16 NET, and ResNet-50.
From Figure 18a it can be seen that some of GW, SW, and Tee samples are confused, and IHT
and FL samples are not well separated. In Figure 18b,c, the classification effects improve
and most samples are effectively separated. From the classified features distribution by



Sensors 2022, 22, 2230 21 of 24

the proposed method shown in Figure 16d, it can be seen that by the proposed method the
six types of pipeline features can be effectively separated and each type of pipeline feature
sample clusters well.
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In the proposed method the attention layer is introduced to obtain the channel atten-
tion module, which can fully extract the MFL image feature information and reduce the
influence of noises on the feature identification results during the pipeline inspection. Two
different residual modules (identity and convolution modules) are introduced to deepen
the depth of the deep network, effectively reducing the number of computing parameters,
reducing the errors of the deep network, and effectively preventing the gradient dispersion
or explosion and network degradation caused by network deep stacking. In addition, differ-
ent residual modules can better model MFL features for pipeline defects, the stacked deep
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residual network can perceive more detailed information contributing to the identification
of pipeline features, and effectively improve the identification accuracy.

4. Conclusions

Long-distance oil and gas pipelines are an important lifeline of the national economy.
During long-term service and operation, the pipeline will be affected by corrosion and third-
party construction, resulting in pipeline leakage or explosion, which poses a great threat to
property, life safety, and the natural environment. Periodic inspection and maintenance of
pipelines using MFL in-line inspection and other methods are important for maintaining
the integrity of the pipeline. The rapid and accurate identification and analysis of pipeline
MFL in-line inspection data can improve the efficiency of pipeline maintenance. However,
during in-line inspection for girth welds and spiral welds, the difference in weld direction
is likely to cause a decrease in the identification accuracy. For defects, such as corrosion
and hot-tappings, due to the influence of sensor lift-off, the difference in defect size, the
influence of noise during motion, and the compound features, it is difficult to effectively
identify and classify different defects and features inspected by MFL. To improve pipeline
MFL signal identification and classification accuracy, a pipeline MFL inspection signal
identification method based on improved deep residual convolutional neural network is
proposed. The main contents and innovations of this study are as follows:

(1) In view of the influence of complex operating environments, high noises, compound
defects, and features on the feature identification results in the pipeline, the attention
module method is constructed. The channel attention and spatial attention structures
are adopted to fully extract the image feature information to improve the classification
accuracy.

(2) Aiming at the problem that the gradient dispersion caused by the increase in network
layers makes it difficult for the model to converge and network degradation, an
improved residual convolutional neural network based on VGG16 is constructed. The
identity and convolution residual modules are introduced to reduce the errors of the
deep network and the number of computing parameters, and improves the training
efficiency.

(3) By field test, the pipeline feature types were analyzed and sample sets of the MFL
pseudo-color images were established. Experiment results indicate that the identifica-
tion accuracy of six types of pipeline features and defects reached 97.7%.

This paper presents a pipeline MFL inspection signal identification method based
on improved deep residual convolutional neural network. The special attention linked
deep residual network is constructed to optimize the VGG16 and attention modules are
embedded. The improved network can extract exact MFL features, and effectively prevent
gradient dispersion due to more network layers. The application of this method greatly
improves the accuracy and efficiency of identification for MFL features and defects, and
provides methods for the safe operation of oil and gas pipelines.
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