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Abstract: This article addresses the problem of formation control of a quadrotor and one (or more)
marine vehicles operating at the surface of the water with the end goal of encircling the boundary of
a chemical spill, enabling such vehicles to carry and release chemical dispersants used during ocean
cleanup missions to break up oil molecules. Firstly, the mathematical models of the Medusa class of
marine robots and quadrotor aircrafts are introduced, followed by the design of single vehicle motion
controllers that allow these vehicles to follow a parameterised path individually using Lyapunov-
based techniques. At a second stage, a distributed controller using event-triggered communications
is introduced, enabling the vehicles to perform cooperative path following missions according to a
pre-defined geometric formation. In the next step, a real-time path planning algorithm is developed
that makes use of a camera sensor, installed on-board the quadrotor. This sensor enables the detection
in the image of which pixels encode parts of a chemical spill boundary and use them to generate and
update, in real time, a set of smooth B-spline-based paths for all the vehicles to follow cooperatively.
The performance of the complete system is evaluated by resorting to 3-D simulation software, making
it possible to visually simulate a chemical spill. Results from real water trials are also provided for
parts of the system, where two Medusa vehicles are required to perform a static lawn-mowing path
following mission cooperatively at the surface of the water.

Keywords: quadrotor control; autonomous surface vehicle control; cooperative path following;
online path planning; chemical spill boundary encircling

1. Introduction

The problems of perimeter detection, boundary searching, and encircling have been
widely researched topics with a variety of practical applications, ranging from the monitor-
ing of wildfire spread in forests [1], to the control and encircling of oil spills [2] and harmful
invasive algae blooms [3] at the surface of the ocean. In this paper, we will focus on the
problem of chemical spill encircling.

The two main phenomena that contribute to the transportation and spread of haz-
ardous chemicals over water, such as oil, are advection and diffusion. In the first, the
chemical is transported due to the flow of water, while the second refers to the motion of
the fluid caused by the existence of concentration gradients. One way of modelling the
flow field of the incompressible fluid is by solving iteratively the convection–diffusion
equations [4]. In the literature, many works address the problem of dynamic boundary
tracking at the surface of the ocean by proposing control schemes which require (at least
one) surface vessel to measure the concentration gradient of a hazardous contaminant.
These measurements of the chemical plume are used by potential field controllers with
the end goal of steering the robots to the boundary of the plume [5,6]. A completely dif-
ferent approach, adopted by Saldaña et al. [7], is to consider that a general environmental
boundary can be approximated by a closed curve that is slowly varying over time and that
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can be described by a general parametric equation. In his research, the author proposes a
model for the curve described spatially by a truncated Fourier series that changes its shape
smoothly over time. To achieve this, it is assumed that a team of Autonomous Surface
Vehicles (ASVs) are distributed equally around the chemical spill, and every vehicle is
capable of taking local measurements of the boundary as it moves around it. These local
measurements are then used to update the shape of the closed curve using recursive least
squares. Although this is a very general solution to the problem, it can be argued that the
use of a truncated Fourier series to represent a path for underactuated vehicles to follow is
a rather poor choice of function, as the resulting curve can self-intersect and exhibit sub-
stantial oscillations. Moreover, it does not take into consideration the physical constraints
imposed by the vehicles. In order to lift the limitations imposed by this method, more stable
parametric curves could be considered, such as Bernstein polynomials or B-splines [8].

In recent years, there has been a massive development of and demand for Autonomous
Underwater Vehicles (AUVs), due not only to their agility when it comes to the execution
of scientific and comercial missions, but also to their low cost when compared to traditional
ships, which require an on-board crew to be operated. Additionally, there has also been
an exponential growth in demand for Unmanned Aerial Vehicles (UAVs), with a special
emphasis on multirotor systems, which usually offer high-quality camera sensors at low
market prices. Aerial vehicles can have a top-down view of the environment, making them
the tool par excellence for surveillance and maintenance missions. On the other hand,
AUVs and ASVs can be used to carry and release chemical dispersants used in cleanup
missions to break oil molecules [9]. Together, these unmanned vehicles have huge potential
to automate and reduce the cost of ocean cleanup operations.

In this paper, we address the problem of chemical spill encircling and focus on the
development of a set of control and path planning tools that allow a team of robots
constituted of a quadrotor (equipped with an onboard camera) and ASVs to detect and
encircle the dynamical boundary of a chemical spill closely, as depicted in Figure 1. In
our proposal, the quadrotor is responsible for detecting in real time the boundary of a
chemical spill in the image stream produced by its onboard camera, and producing a
path that itself and one or more ASVs are required to follow cooperatively. To achieve
this, we start by proposing a set of single-vehicle motion control laws based on non-linear
Lyapunov techniques that allow individual ASVs to follow a pre-defined parametric curve,
based on previous works by Aguiar et al. [10–12]. These control techniques are then
extended to the case of quadrotor vehicles. Borrowing from the work of N. Hung and
F. Rego [13], a distributed controller using event-triggered communications is presented,
allowing the vehicles to perform Cooperative Path Following (CPF) missions, according to
a pre-defined geometric formation. Finally, a new real-time path planning framework that
uses growing unclamped (and uniform) cubic B-splines is proposed, which fits a 2-D point
cloud generated from the drone’s image stream.

Chemical Spill

ASV (1)

Water Surface

ASV (n)

UAV 
(quadrotor)

ASV (2)
(…)

Figure 1. Cooperative path following along an environmental boundary.

A set of real experiments are performed with the Medusa class of marine vehicles [14]
(property of ISR-DSOR) to access the real-life performance of the proposed path following
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and CPF algorithms. Additionally, the complete path planning solution is evaluated
by resorting to the Gazebo 3-D simulator, PX4-SITL [15], and UUVSimulator [16], using
a dynamic model of a Medusa vehicle and an Iris quadrotor equipped with a virtual
RGB camera.

2. Preliminaries
2.1. Notation

The unit vector e3 is defined as e3 = [0, 0, 1]T . For a vector x ∈ Rn, the symbol xi

denotes the ith element of the vector. We shall use ‖x‖ =
√

xTx to denote the Euclidean
norm of a vector. The notation K � 0 is used to denote a matrix K ∈ Rn×n that is positive
semi-definite. The symbol I is used to denote the identity matrix and 1 is a vector with all
elements equal to one. The symbols bxe, x ∈ R denote the x nearest integer, bxc denotes
the floor of x, and dxe denotes the ceiling of x. The symbol R(.) is used to denote a rotation
matrix with properties RT = R−1 and det(R) = 1. The map S(·) : Rn → Rn×n, n = 2, 3
yields a skew-symmetric matrix S(x)y = x× y, ∀x, y ∈ Rn. When considering an estimator
for an unknown variable x, we use the hat nomenclature x̂ to denote its estimate and x̃
when referring to the estimation error.

2.2. Graph Theory

A weighted digraph G = G(V , E ,A) consists of a set of N vertices V = [V1, ..., VN ]
T , a

set of directed edges E ⊆ V × V , and a weighted adjacency matrix A = [aij] ∈ RN×N , such
that aij > 0 if the edge that connects vertex i to j belongs to the graph, and 0 otherwise.
The set of in-neighbours of a vertex i is given by N in

i = {j ∈ V : (j, i) ∈ E}, and the set of
out-neighbours by N out

i = {j ∈ V : (i, j) ∈ E}. The in- and out-degree matrices Din and
Dout are a set of diagonal matrices defined by:

Din/out = diag(din/out
i ), with din

i = ∑
j∈N in

i

aij and dout
i = ∑

j∈N out
i

aji. (1)

A graph G is undirected if communication links are unidirectional. If G is an undirected
graph, then G is also balanced, i.e., Din = Dout := D, and its Laplacian matrix L is
symmetric, positive semi-definite, and defined according to L := (D − A). In these
conditions, it is well known that L has a simple eigenvalue at zero associated with eigen
vector 1, with the remaining eigen values being positive. Moreover, L1 = 0.

Remark: With the graph definition given above, we adopt the convention that an
agent i can receive information from its neighbors in N in

i and send information to its
neighbors in N out

i .

2.3. Uniform B-Spline Curves

A 2-D B-spline curve of degree k + 1 in R2 is a piecewise polynomial function formed
by several components of degree k, defined as:

C(γ) =
n

∑
i=0

Bi,k(γ)Pi, (2)

where P = {Pi ∈ R2, i = 0, ..., n} are a set of control points and Bi,k(γ) are the B-spline basis
functions. It follows from the Cox–De Boor’s recursive algorithm, according to L. Piegl and
W. Tiller ([8], Chapter 2.2), that:

Bi,0(γ) =

{
1, if γi ≤ γ ≤ γi+1

0, otherwise
, (3)

Bi,j(γ) =
γ− γi

γi+j − γi
Bi,j−1(γ) +

γi+j+1 − γ

γi+j+1 − γi+1
Bi+1,j−1(γ), (4)
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where the index j = 0, ..., k and the values γi belong to the m-dimensional knot vector
U = {γi}m

i=0, with the number of knots related to the degree of the curve and the number
of control points by m = k + 1 + n.

For the particular case of 2-D, uniform, non-clamped cubic B-splines with n− k + 1
segments, each segment’s x- and y-coordinates of the parametric curve can be described
according to the vectorial notation [17] as follows:

Ci(γ) :=
[
Cx

i (γ) Cy
i (γ)

]T , (5)

with Cx
i (γ) and Cy

i (γ) computed according to:

Cx/y
i (γ) :=

1
6
[
(γ− i)3 (γ− i)2 (γ− i) 1

]
−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0


︸ ︷︷ ︸[

Bi,3(γ) Bi+1,3(γ) Bi+2,3(γ) Bi+3,3(γ)
]


Px/y

i
Px/y

i+1

Px/y
i+2

Px/y
i+3

, (6)

where γ ∈ [0, n− k + 1] and i := bγc, such that γ− i ∈ [0, 1] and each curve segment is
only defined by four distinct control points. Defining a unidimensional vector with all
control points P = [Px

0 , ..., Px
n , Py

0 , ..., Py
n ]

T ∈ R2(n+1), where both x- and y-coordinates are
concatenated, and a vector of distinct curve parameters γ = [γ0, ..., γq] ∈ Rq+1 at which we
wish to evaluate our curve, C(γ) ∈ R2(q+1) is given by:

C(γ) = B(γ) · P, (7)

where B(γ) ∈ R2(q+1)×2(n+1) is a diagonal by blocks matrix, and for each line of B, only
four basis functions are different then zero and computed according to (6).

3. Vehicle Modelling

Let {U} denote an inertial reference frame and {B} a body-fixed reference frame
attached to the geometric center of mass of each vehicle, according to Figure 2.
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Figure 2. Adopted reference frames for a surface vehicle (left) and a quadrotor (right).

3.1. ASV Model

The ASV vehicle is modeled as a rigid body whose motion is restricted to a 2-D plane
at the surface of the water, such that the roll and pitch angles are zero, i.e., φ = θ = 0. Let
the kinematic equations of the vehicle be given by:[

ẋ
ẏ

]
︸︷︷︸

ṗ

=

[
cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

]
︸ ︷︷ ︸

U
B R(ψ)

[
u
v

]
︸︷︷︸

v

+

[
vcx
vcy

]
︸ ︷︷ ︸

vc

, (8)

ψ̇ = r, (9)
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where p := [x, y]T denotes the ASV position expressed in {U}, v := [u, v]T denotes the
body-velocity vector, U

B R(ψ) ∈ R2×2 denotes the rotation matrix, and v := [vcx, vcy]T

denotes the ocean current, expressed in {U} and assumed to be constant, irrotational, and
bounded. The ASV model is considered to be underactuated, with the input of the system
being given by u = [u, r]T ∈ R2.

3.2. Quadrotor Model

The kinematic equations that describe the motion of a rigid body in 3-D space can be
described by a double integrator model, according to:

p̈ := ge3 −
1
m

U
B R(θ)Te3︸ ︷︷ ︸
u

+d, (10)

where p := [x, y, z]T denotes the quadrotor’s position expressed in {U}, θ := [φ, θ, ψ]T

denotes the orientation vector of {B} expressed in {U}, and u ∈ R3 can be regarded as
the input of the system, comprising both the attitude of the vehicle and the total thrust T.
The vector d ∈ R3 represents unmeasured external disturbances, such as wind, acting on
the vehicle, assumed to be constant and bounded such that ‖d‖ ≤ dmax. The 3-D rotation
matrix adopted for the quadrotor model follows the Z-Y-X convention, and is given by:

U
B R(θ) = Rz(ψ)Ry(θ)Rx(φ). (11)

4. Path Following

The path following (PF) problem concerns the problem of making a vehicle move
along a desired path pd(γ) parameterised by a variable γ (for example, the arc-length of the
curve). The key idea is that each vehicle must approach a virtual target that moves along
the path with a desired speed profile vd(γ), according to Figure 3. Since the end goal is to
have more than one vehicle performing path following with a pre-defined inter-vehicle
formation, this speed profile is given as the sum of another single-vehicle speed profile and
an inter-vehicle coordination term, according to:

vd(γ) := vL(γ) + vcoord, with |vL(γ)| ≤ vmax
L , (12)

where vL(γ) is a desired speed profile defined only as a function of the path, vmax
L is a

pre-defined speed upper-bound, and vcoord is the speed coordination term that will be used
in Section 5 to enable the CPF behaviour. It is important to notice that the desired speed
profile vL(γ) should be the same for all the vehicles, enabling them to follow a given path
at the same rate. On the other hand, the speed coordination term vcoord will not be the same
for all vehicles and will be used to adjust the progression speed of each individual robot
based on how aligned they are with each other.

Remark 1. Speed profile vd(γ) might not correspond directly to an inertial speed, especially if the
curve is not parameterised in terms of the arc-length. Nonetheless, a relation between the inertial
speed and the desired speed profile is addressed in detail in Section 6.4.
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ASV

Desired PathVirtual Target

𝒑!(𝛾)

𝒑 UAV Quadrotor

Virtual Target

𝒑!(𝛾)

𝒑

(a) (b)

Figure 3. Path following schematic: (a) ASV path following. (b) Quadrotor path following.

Problem 1. Given a generic vehicle (ASV or quadrotor), consider the geometric path pd(γ) :
[0, ∞] → R2/R3 for the ASV/quadrotor respectively, parameterised by a continuous variable
γ ∈ R and vd(γ, t) ∈ R a desired speed profile for a virtual target moving along the desired path.
Furthermore, consider pd(γ) to be C2 and have its first and second derivatives with respect to γ
bounded. Assume the vehicle is equipped with inner-loop controllers allowing it to track a desired
control reference ud ∈ R2/R3, assumed to be bounded, by recruiting the appropriate forces and
torques to apply to the vehicle. Design a feedback control law for the system input ud and virtual
target γ̈ such that:

• the vehicle’s position converges to a tube around the desired position that can be made arbitrarily
small, i.e., ‖p(t)− pd(γ)‖ converges to a neighbourhood of the origin;

• the speed of the virtual target moving along the path converges to the desired speed profile, i.e.,
|γ̇− vd(γ, t)| → 0 as t→ ∞.

4.1. ASV Path Following

Following the approach proposed by Aguiar et al. [10–12], consider the global dif-
feomorphic coordinate transformation which expresses the position error defined in the
body-frame of the vehicle {B} as:

ep(t) := B
U R(ψ)(p(t)− pd(γ)), (13)

and let the speed-tracking error be defined as:

eγ := γ̇− vd(γ, t). (14)

With these definitions, the body-fixed position error dynamics are given by:

ėp(t) = B
U Ṙ(ψ)(p(t)− pd(γ)) +

B
U R(ψ)(ṗ(t)− ṗd(γ)). (15)

We recall that the derivative of a rotation matrix can be expressed as the product of a
skew-symmetric matrix with the transposed rotation matrix, that is:

B
U Ṙ(ψ) = −S(r)B

U R(ψ). (16)

Replacing (16) in (15) yields the position error dynamics expressed in the body-fixed
frame as:

ėp(t) = −S(r) B
U R(ψ)(p(t)− pd(γ))︸ ︷︷ ︸

ep(t)

+v + B
U R(ψ)vc︸ ︷︷ ︸

vc

−B
U R(ψ)

∂pd(γ)

∂γ
γ̇. (17)

Since there is no direct control in the sway motion, the goal is to generate surge speed
and heading rate control references. Therefore, we must make these references appear
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explicitly in the error expression. By introducing an offset δ = [0, δ]T ∈ R2 (with δ < 0) in
the standard position error, it is possible to re-write (17) as:

ėp(t) = −S(r)(ep − δ) +

[
1 0
0 −δ

]
︸ ︷︷ ︸

∆

[
u
r

]
︸︷︷︸

u

+

[
0
v

]
+ vc − B

U R(ψ)
∂pd(γ)

∂γ
γ̇. (18)

Consider that each ASV is equipped with a Doppler Velocity Logger (DVL) capable
of providing the vehicle’s relative velocity with respect to the water v, expressed in {B},
and a Global Positioning System (GPS) unit which provides measurements of the position
of the vehicle p, expressed in {U}. To estimate the ocean current, Pascoal et al. [18] and
Sanches et al. [19] propose the use of a complementary filter. Consider the process model
given by (8) and the candidate complementary filter model described by:

F :=

{
˙̂p = k1(p− p̂) + U

B R(ψ)v + v̂c
˙̂vc = k2(p− p̂),

(19)

with k1 and k2 positive constants. The proposed complementary filter is asymptotically
stable. For a formal stability analysis of this complementary filter, refer to Pascoal et al. [18].

At this point, it is important to notice that the current velocity vc and the requested in-
put ud that are to be applied to a vehicle’s kinematic model cannot be estimated and tracked,
respectively, with infinite precision. For this reason, we define the current estimation error
and the inner-loop tracking error given by:

ṽc := vc − v̂c,

ũ := u− ud.
(20)

Consider the Proposition 1 introduced below, in which a solution to Problem 1, applied
to an ASV, is provided along with convergence guarantees in the presence of bounded
estimation and tracking errors.

Proposition 1. Consider the system described by the kinematics in (8), with the outer-loop control
laws given by:

ud := ∆−1
(
− Kpσ(ep − δ)−

[
0
v

]
− v̂c +

B
U R(ψ)

∂pd(γ)

∂γ
vd(γ, t)

)
, (21)

γ̈ := −kγeγ + v̇d(γ, t) + (ep − δ)T B
U R(ψ)

∂pd(γ)

∂γ
, (22)

where Kp � 0, kγ > 0, and σ(ep) = tanh(
∥∥ep

∥∥) ep

‖ep‖ is a saturation function. The closed-loop

system is input-to-state stable (ISS) with respect to ∆ũ + ṽc, and the proposed control law solves
Problem 1 for the ASV vehicle.

Proof. Appendix A.

4.2. Quadrotor Path Following

Given that the quadrotor system is modelled by a double integrator in the inertial
frame {U}, as stated in (10), consider the position and velocity errors defined in {U} as:

ep := p(t)− pd(γ), (23)

ev := ṗ− ∂pd
∂γ

vd(γ, t), (24)
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and a virtual target speed tracking error defined by (14). Consider also a new auxiliary
error z, defined as:

z := ev + K1ep, (25)

where K1 � 0 is a gain matrix. The position and velocity error dynamics can be written as:

ėp = ṗ− ∂pd
∂γ

γ̇, (26)

ėv = p̈− d
dt

(
∂pd
∂γ

vd(γ, t)
)

. (27)

Furthermore, consider the time derivative introduced in (27), the desired virtual target
speed function (12), and the virtual target speed tracking error function (14). Then, the time
derivative term introduced in (27) can be expanded as:

d
dt

(
∂pd
∂γ

vd(γ, t)
)
=

[
∂2pd
∂γ2 vd(γ, t) +

∂pd
∂γ

∂vL(γ)

∂γ︸ ︷︷ ︸
h(γ)

]
(eγ + vd(γ, t)) +

∂pd
∂γ

v̇coord(t).
(28)

Replacing (10) and (28) in (27) yields:

ėv = u + d− h(γ)(eγ + vd(γ, t))− ∂pd
∂γ

v̇coord(t). (29)

Unlike the case of the ASVs where current estimates are given by a complementary
filter, in the case of a quadrotor, a different direction is taken towards estimating distur-
bances such as wind. According to Xie and Cabecinhas et al. [20,21], straightforward
implementations of estimators can lead to windup and result in unbounded growth of
an external disturbance estimate. To avoid such problems, Xie and Cabecinhas propose
the use of a sufficiently smooth projection operator in the estimator design. Consider the
disturbance observer given by:

˙̂d := KdProj(z, d̂) = z− η1η2

2(β2 + 2βdmax)n+1d2
max

d̂, (30)

where Kd denotes a diagonal gain matrix and:

η1 =

{
(d̂

T
d̂− d2

max)
n+1, if (d̂

T
d̂− d2

max) > 0
0, otherwise,

(31)

and:

η2 = d̂
T

z +

√
(d̂

T
z)2 + ς2, (32)

where ς, β > 0 are arbitrary constants. This projection operator, first proposed in Cai
et al. [22], enjoys the useful properties:

d̃T Proj(z, d̂) ≥ d̃Tz, (33)

and: ∥∥∥d̂
∥∥∥ ≤ dmax + β, ∀t ≥ 0. (34)

Once again, consider the inner-loop tracking error and disturbance estimation error
given by:

ũ := u− ud, (35)

d̃ := d− d̂. (36)
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Proposition 2. Consider the system described by (10), the disturbance estimator dynamics given
by (30), and the inner-loop tracking error given by (35). Furthermore, consider the control law
given by:

ud := −d̂ + h(γ)vd(γ, t) +
∂pd
∂γ

v̇coord(t)− evKv − epKp, (37)

γ̈ := −kγeγ + v̇d(γ, t) + eT
p

∂pd
∂γ

+ zT
(

h(γ) + K1
∂pd
∂γ

)
, (38)

where Kp, Kv � 0, and kγ is a positive gain. For sufficiently small initial position and velocity
errors (ep, ev), and a sufficiently large separation between the time-scales of the inner and outer
loop systems, it can be guaranteed that the system error converges to a neighbourhood of zero. The
proposed control law solves Problem 1 for the quadrotor vehicle.

Remark 2. In-depth and quantitative overall stability analysis can be conducted for the inner–outer
loop control system, but this will be dependent directly on the type of inner loop adopted. This
results from the fact that the desired accelerations ud must be decoupled in a set of desired thrust
and attitude for the quadrotor to track. Given that this analysis is out of the scope of this work,
we assume that the quadrotor is equipped with a generic inner loop that is capable of keeping the
tracking error ũ small and bounded.

Proof. Appendix B.

5. Cooperative Path Following

In this section, the problem of CPF is addressed. The end goal is to have an algo-
rithm that allows one quadrotor and multiple ASVs to perform a path following mission
cooperatively, using a distributed architecture. The vehicles are required to execute their
mission according to a fixed geometric configuration. To cope with limitations imposed by
real environments where inter-vehicle communications are discrete, an Event-Triggered
Communications (ETC) mechanism is adopted, based on previous work developed by A.
Aguiar and A. Pascoal [23] and N. Hung and F. Rego [13].

Synchronisation Problem with Event-Triggered Communications

Consider a group of N ∈ R+ \ {1} autonomous vehicles/agents in a network that
can be described mathematically by a digraph G(V , E ,A), consisting of N vertices, a set
of directed edges E ⊆ V × V , where the edge εij represents the flow of information from
agent i to agent j, and a weighted adjacency matrix A = [aij] ∈ RN×N . Furthermore, each
vehicle i is able to receive information from its neighbours in N in

i and send information to
its neighbours in N out

i , i.e., G is undirected. Moreover, consider that the communication
topology of the vehicles is fixed; hence, the Laplacian L associated to G is constant. Let the
state vector of the system be composed by the path parameter of each individual vehicle
γ = [γ1, ..., γN ]

T . In addition, each vehicle is equipped with the PF controllers proposed
in Section 4, and has an assigned path to follow, appropriately parameterised in order
to ensure that a given desired formation between the vehicles is met. The CPF problem
consists in designing a distributed control scheme that adjusts the speed of the vehicles such
that all path parameters γ reach a consensus. Consider the problem formulation below.

Problem 2. For each agent i, with i = 1, ..., N, derive a consensus protocol for the speed correction
term vcoord = [vcoord

1 , ..., vcoord
N ]T , such that limt→∞ |γi − γj| = 0, ∀j ∈ Nin

i , and the formation
of vehicles achieves the desired speed assignment vL(γ) = [vL1, ..., vLN ]

T as t→ ∞.

Note that, according to the previously developed (PF) controllers, for each vehicle i,
|γ̇i − vd(γ, t)| = 0 is only guaranteed as t → ∞, as the controlled variable is γ̈i and not
γ̇i. Having this fact in mind, and assuming that the vehicles have already converged to
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their desired paths, i.e., ep ≈ 0 (and ev ≈ 0 in the case of the quadrotor), then the following
simplifying assumption can be made:

Assumption 1. The speed progression of all the virtual targets along the desired path is always
assumed to be modelled by a single integrator system, which can be expressed in vectorial form as:

γ̇ = vd(γ, t) = vL(γ) + vcoord. (39)

Let the synchronisation error vector be defined as ε = [ε1, ..., εN ]
T where, for each i:

εi := ∑
j∈N in

i

aij(γi − γj), (40)

with aij elements of the weighted adjacency matrix that describes the vehicle network. This
error can also be expressed in vectorial form as:

ε := Lγ, (41)

where εi denotes the coordination error between vehicle i and its neighbours. With the
above notation, the coordination error dynamics of the multi-vehicle system are given by:

ε̇ := Lγ̇. (42)

In the work of N. Hung and F. Rego [13], the authors propose a scheme where each
agent i has a set of estimators γ̂j, j ∈ N in

i for the true state of each in-neighbour virtual
target γj. In addition, each agent i has an estimator for its own state γ̂i, which is reset
whenever vehicle i broadcasts its true state γi. The other estimators are reset whenever
agent i receives the true state from its in-neighbours j ∈ N in

i . In this work, a time-dependent
broadcast condition is adopted.

Proposition 3. Consider the distributed control law given by:

vcoord
i := −kε ∑

j∈N in
i

aij(γi − γ̂j), (43)

where kε > 0 and γ̂j is vehicle i’s estimate of vehicle j’s real virtual target value. Consider also that
the bank of estimators that each vehicle i is running is described by the dynamics equation:

˙̂γi := vL(γ̂i). (44)

At any time instant t, under negligible transmission delays, the vehicle j’s self-state estimate
γ̂j is equal to vehicle i’s estimate of γ̂j, which allows us to express the estimator dynamics using
vectorial notation as:

˙̂γ := vL(γ̂), (45)

where γ̂ = [γ̂1, ..., γ̂N ]
T is the self-estimate of the virtual target of each vehicle. Let γ̃ = [γ̃1, ..., γ̃N ]

T

denote the local estimation errors of each vehicle, such that γ̃ = γ− γ̂. Then, vcoord can also be
given in vectorial notation, according to:

vcoord := −kε[Dγ−Aγ̂] = −kε(ε +Aγ̃), (46)

where D is a diagonal matrix and A the graph adjacency matrix. Consider also a triggering
function used to define when to broadcast the along-path position of the virtual target of each vehicle,
defined as: {

δi(t) := |γ̃i(t)| − gi(t)
γ̃i(t) = γ̂i(t)− γi(t),

(47)
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where γ̃i(t) is the local estimation error of agent i and gi(t) is a time-dependent threshold function,
such that if the estimation error exceeds this threshold, i.e., δi(t) ≥ 0, vehicle i broadcasts its state
to the out-neighbours N out

i and resets its local estimator. Furthermore, consider gi(t) to belong to a
class of non-negative functions, given by:

gi(t) = ci + bie−αit, (48)

with ci, bi and αi being positive constants and g(t) = [g1, ..., gN ]
T being the collection of functions

gi for each individual vehicle i. Consider also that vL(γ) = vL1 + ṽL, where ṽL is a bounded and
arbitrarily small term that accounts for a transient period in which the vehicles are on different
sections of the path, with slightly different desired speed profiles. Then, under Assumption 1, the
system is ISS with respect to the error vector ε and the inputs γ̃ and ṽL.

Proof. Appendix C.

The proposed control scheme used for achieving CPF using ETC is summarised in
Algorithm 1.

Algorithm 1 Event-Triggered Communication for vehicle i (adapted from [24]).

1: At every time instant t, each vehicle i follows the procedure:
2: procedure COORDINATION AND COMMUNICATION
3: if δi(t) ≥ 0 where δi is computed using (47) and (48) then
4: Broadcast γi(t);
5: Reset the estimator γ̂i;
6: if Receive a new message from agent j ∈ N in

i then
7: Reset γ̂j(t);

8: Run the estimators according to (44);
9: Update the first order control protocol ui using (43).

Given the general distributed control scheme, we now elaborate and address a specific
formation, in the context of this work, in the sections that follow.

6. Path Planning

This section addresses the problem of generating a set of smooth and planar reference
paths for each individual vehicle to follow, with the end goal of encircling the boundary of
a chemical spill. In order to make the vehicles follow the dynamic boundary according to a
pre-defined formation (such as a triangle) multiple paths should be generated from one
reference path that encodes the boundary. Borrowing from the work of Saldaña et al. [7],
we start by presenting a rigorous mathematical definition of a dynamic boundary below.

Definition 1. A dynamic boundary is a set of planar points Ωt, such that ∀z ∈ Ωt, and for any
ξ > 0, the open disk centered at point z with radius ξ contains points of Ωt and its complement set
ΩC

t . Moreover, the dynamic boundary can be approximated by a parametric closed curve (Jordan
curve) C(γ, t) : [0, ∞]× [0, ∞] → R2, mapped by a parameter γ ∈ R+

0 and time t ∈ R+
0 . The

curve is continuous with no self-intersecting points, and changes smoothly with respect to both time
t and parameter γ, as depicted in Figure 4a.

Since the chemical spill boundary is assumed to be dynamic, a path planning problem
can be formulated in which a quadrotor is actively re-planning the path that the ASVs
should follow at the water surface, as the group of vehicles moves along it and more up-to-
date data is acquired by the quadrotor’s vision system. Consider, therefore, Problem 3.

Problem 3. Consider a quadrotor flying over a body of water at a pre-defined fixed altitude, equipped
with a camera sensor pointing downwards with a fixed pitch angle relative to the vehicle’s body
reference frame {B}. Consider also that the vehicle is capable of detecting the boundary of a chemical
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spill in the 2-D image provided by the camera sensor. Furthermore, one or more ASVs at the surface
of the water are required to follow a path dictated by the quadrotor, according to a pre-defined vehicle
formation. As the quadrotor detects the dynamic boundary in the image:

1. use the data provided by its navigation system to convert the pixels to a 2-D point cloud
expressed in the inertial frame {U};

2. remove outliers and perform pre-processing on the 2-D point cloud;
3. generate a smooth and planar reference path by formulating an online optimisation problem

that fits the data with open uniform B-splines;
4. send the updated path to the vehicle network;
5. make each vehicle generate an unique path for itself, capturing the pre-defined vehicle formation;
6. repeat the process.

In order to solve Problem 3, a few simplifying assumptions are made:

Assumption 2. The dynamic boundary is located at the ocean’s surface, assumed to be a 2-D plane
at ZU = 0 in the inertial frame of reference {U}.

Assumption 3. The quadrotor has a navigation system that can track the vehicle’s pose with
good accuracy.

Assumption 4. The quadrotor has a limited field of view of the environment, i.e, the camera sensor
might not be able to capture the entire chemical spill boundary, but rather sections of it, according to
Figure 4b.

Assumption 5. The detection of the pixels that encode the boundary in the image frame is a
sub-system that is assumed to be already available, such as the one proposed in [25].

𝜉
𝑧

Chemical 
Spill Ω!

Chemical 
Spill

Water Surface

UAV (quadrotor)

(a) (b)

Figure 4. Dynamic Boundary schematic: (a) Boundary formal definition. (b) Drone’s field of view.

6.1. Planar Point Cloud Generation

The camera model adopted is characterised by: (i) a set of extrinsic parameters, which
model the conversion between coordinates expressed in the world/inertial reference frame
{U} and the camera reference frame {C}; (ii) intrinsic parameters which describe how a
set of points in {C} are represented in the image frame, according to Figure 5.

Figure 5. Camera model and reference frames.

The intrinsic parameters consist of the focal distance fd, the scale factors (sx, sy)
in the X- and Y-axis, respectively, and (cx, cy), which corresponds to the offset of the
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focal point in the image plane. These parameters can be obtained a priori by resorting
to a camera calibration process, described in detail in [26]. Combining the matrices of
intrinsic parameters K, also known as the full-rank calibration matrix, and the matrix of
external parameters C

U [R|T], and expressing the inertial frame coordinates as homogeneous
coordinates, the transformation between inertial frame and camera plane is described by:

λ

x
y
1

 =

 fdsx 0 cx
0 fdsy cy
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

K

[ C
U R C

UT
01×3 1

]
︸ ︷︷ ︸

C
U [R|T]


XU
YU
ZU
1

, (49)

where x and y denote the coordinates in the image frame and λ is a scale factor. It is impor-
tant to mention that C

U [R|T] results from a series of successive rigid-body transformations
(rotations and translations) given by:

C
U [R|T] = C

B [R|T]BU [R|T], (50)

where B
U [R|T] denotes the conversion of coordinates expressed in the inertial frame {U} to

the quadrotor’s body frame {B}, provided by its navigation system, and C
B [R|T] is a matrix

known a priori, as the camera attached to the vehicle is assumed to be fixed. The intrinsic
and extrinsic parameters can be aggregated in a matrix Ω according to:

Ω = K · C
U [R|T]. (51)

In order to convert a given set of pixels (x, y) that encode the chemical spill boundary
in the image frame to a point cloud expressed in the inertial frame, depth information about
the scene is required. Taking into consideration Assumption 2, all the points in the inertial
frame will lie on the plane described by ZU = 0, which solves the depth requirement.
Moreover, from Assumption 3, it can be concluded that the linear system of Equation (49)
is well defined and can be inverted such that for each pixel representing the boundary of
the chemical spill, XU and YU are extracted from:

1
λ

XU
YU
1

 =

Ω1 Ω2 Ω4
Ω5 Ω6 Ω8
Ω9 Ω10 Ω12

−1x
y
1

. (52)

Remark 3. This methodology relies heavily on the assumption that the quadrotor has a good
navigation system, since small estimation errors in the altitude of the vehicle can lead to errors of
several meters in the generated point cloud.

6.2. Pre-Processing the Planar Point Cloud

Before using the 2-D point cloud to generate a path, it is important to pre-process
the information provided in it. Consider, for instance, the example in Figure 6, where the
quadrotor produces a 2-D point cloud, representing the boundary, at an arbitrary time-
step tk. In the point cloud, some points represent the chemical spill boundary in a region
that is close to the vehicle—the region of interest, i.e., where the main cluster of points is
expected to be located (in region B). The separation between regions A and B is defined by
drawing a normal to the path at the point where the re-planning starts (defined formally in
Section 6.3.1). Some points are outliers as a result of either noisy measurements or regions
of the boundary that are not entirely captured by the field of view of the camera. The latter
can be seen as disconnected from the main cluster and should be disregarded in the path
planning process. According to Figure 6, the original path (in purple) obtained at time tk−1
should be re-planned in order to obtain a new one (in red) that better fits the main cluster
of points.
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XU

YU{U}

Region B
Region A

ps

Original path at tk-1
Re-planned path at tk
Main cluster of points
Outliers
Points in region A
Re-planning point ps

Re-planned path at tk

Outliers
Chemical Spill

Outliers

Original path at tk-1

Figure 6. Pre-processing the point cloud and re-planning schematic.

Unlike conventional motion planning problems, the main cluster of points does not
have an explicit ordering, yielding a sequence of waypoints that the vehicle should visit
sequentially in time—this information must be inferred. On the other hand, it is possible
to define explicitly where the path re-planning process starts—at a point ps := C(γs)
arbitrarily further ahead of the drone’s position on the current curve C(γ), such that
γdrone ≤ γs. Motivated by this example, and inspired by the work of Liu Y. et al. [27], the
following pre-processing steps are introduced:

• Remove unused points that are behind the point ps, i.e., points in region A;
• Order the remaining set of points and remove outliers in region B.

6.2.1. Removing Unused Points

Consider ps ∈ R2 to be the point at which the path re-planning starts. In order
to remove the points that are in region A, consider that ψs is the tangent angle to the
current path at ps. A coordinate transformation can be applied to the 2-D point cloud
X := {X l}L

l=1 ∈ R2, such that in a new reference frame, points that are behind ps (in region
A) have a negative X-coordinate. This coordinate transformation is given by:

X◦l = R(ψs) · (X l − ps), ∀l = 1, ..., L, (53)

where X◦l = [X◦xl , X◦yl ]T . Each point X l is discarded if X◦xl < 0. The points that belong to
set X and are not discarded, and should be saved in a new set X? := {X j}J

j=1 ∈ R2 with
J ≤ L. The pseudo-code is shown in Algorithm 2.

Algorithm 2 Remove points “behind” the re-planning point.

1: Obtain a new 2-D point cloud X := {X l}L
l=1 ∈ R2;

2: Define ps as the desired initial point for the re-planning to start;
3: Define ψs as the tangent angle to the current path at tk at ps;
4: Follow the procedure:
5: procedure REMOVE UNUSED POINTS(X, ps, ψs)
6: for l = 1, ..., L do
7: Compute X◦l according to (53);
8: if X◦xl < 0 then
9: Discard X l ;

10: return the new set X? := {X j}J
j=1 ∈ R2 with J ≤ L.

6.2.2. Ordering a Set of Points and Removing Outliers

In order to avoid clustering outliers, reduce the point cloud to a curve-like shape,
and extract some implicit ordering from the data, Lee I. [28] proposes an algorithm that
seeks to extract a structure “as simple as possible” from the data, by resorting to an
Euclidean Minimum Spanning Tree (EMST). Consider the unordered set of points X?

obtained previously and a graph G = (V , E), such that V = {X j = (xj, yj)|j = 1, ..., J} and
E = {(X i, X j)|i, j = 1, ..., J, i 6= j}. The EMST is a tree that connects all points in G with the
weight of its edges corresponding to the Euclidean distance between each pair of points,
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that can be computed according to the very popular Kruskal’s algorithm. In order to reduce
the time complexity of this process, a threshold distance NJ can be used to define whether
each pair of points is connected and a KDTree [29] can be used to compute a sparse graph
G where each point has a limited set of neighbours, as shown in Figure 7.

EMST
Ordered set of points
Main cluster of points
Outliers
Re-planning point ps

Graph

ps ps ps=X1

Outliers Outliers Outliers

X2
X3

X4
X5 X6

X7

X8
X9

X10

X11

Sparse Graph EMST Ordered Set of Points

Kruskal BFS

Figure 7. From sparse graph to an ordered list of points (example).

To remove outliers and define a coarse path to follow, Breadth First Search (BFS) can
be applied to the EMST, starting from ps. This removal of outliers from the point cloud
is crucial to avoid smaller clusters of points being considered later in the curve fitting
problem. The resulting ordered list of points that forms the path with the highest number
of points should be saved in a new ordered set X† := {Xk}K

k=1 ∈ R2. The proposed steps
are summarised in Algorithm 3.

Algorithm 3 Order a set of 2-D points.

1: Add the desired initial point for the path ps to X?;
2: Define a threshold distance for the neighbours NJ ;
3: Follow the procedure:
4: procedure ORDER POINTS(X?, NJ)
5: Construct a KDTree from X? and use NJ as a distance threshold;
6: Create a graph G with J vertices and no edges;
7: for X j, j = 1, ..., J do
8: Query the KDTree for the neighbours of X j and their euclidean distances;
9: Add the corresponding edges to the graph G;

10: Compute the MST of the graph G starting from vertex corresponding to ps;
11: Compute the path with the highest number of points, starting at ps using BFS;
12: return the new ordered set of points X† := {Xk}K

k=1 ∈ R2.

6.3. Path Generation—Approximating the Point Cloud with a Parametric Curve

In order to have a suitable representation of a path that the proposed controllers can
follow, it is a requirement to generate a curve that is smooth and at least C2. In order to
fulfil this requirement, the ordered set of points produced previously can be approximated
by non-clamped uniform cubic B-splines, composed of multiple spline segments, where
each segment is paramaterised by γ ∈ [0, 1).

6.3.1. Define the Number of Segments to Use

Consider now the ordered sequence of K points obtained via the application of Algo-
rithms 2 and 3 to the original 2-D point cloud. In order to fit the points with a parametric
curve, we are required to attribute to each point Xk ∈ R2 a corresponding γk in the target
parametric curve. This problem could be formulated as a nonlinear optimisation problem—
which is computationally demanding to solve for real-time applications. A non-optimal,
but more efficient solution, proposed by Liu M. et al. [30] for Simultaneous Localisation
and Mapping (SLAM) applications, is to consider DX to be the total distance between the
points, given by:

DX :=
K

∑
k=2
‖Xk − Xk−1‖, (54)
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and the corresponding vector of parametric values γ = [γ1, ..., γk]
T to be given by:{

γ1 = 0,

γk = γk−1 +
‖Xk−Xk−1‖

DX
γmax, k = 2, ..., K,

(55)

where γmax is the maximum parameter value of the parametric curve. For cubic B-splines,
this number depends directly on the number of control points NC that the target curve
will have, such that γmax = NC − 3. The number of control points also dictates how many
spline segments are used for the fitting problem. The optimal number of control points can
be obtained by solving yet another nonlinear optimisation problem, but due to the real-time
nature of the problem, this option is disregarded. Given that a uniform cubic B-spline must
have at least four control points to define one segment, and that a low number of sections
can under-fit a long set of points whilst a high number leads to over-fitting issues, this
number should not be a static constant either. A non-optimal yet dynamic way of defining
the number of control points NC is by taking:

NC := max

{⌊
DX
ρ

⌉
, 4

}
, (56)

with (1/ρ) > 0 being a control point’s density (tunning parameter defined a priori). A
smaller ρ leads to a higher NC. Applying this method to the previous example, and
considering NC = 7, γmax = γ11 = 4, the result in Figure 8 is obtained.

Ordered set of points
Main cluster of points
Re-planning point ps

X2
X3

X4
X5 X6

X7

X8
X9

X10

X11

Ordered Set of Points with Paremtric Values Associated

ps=X1

!1=0 !11=4NC=7

Figure 8. Ordered set of points with parametric values associated to them (example).

6.3.2. Fitting the Points with a Uniform Cubic B-Spline

For fitting the ordered set of points X† with a non-clamped uniform cubic B-spline
C(γ, P), an optimisation problem is formulated. Consider the objective function given by:

f (P) :=
K

∑
k=1
‖C(γk, P)− Xk‖2

︸ ︷︷ ︸
goal

+Fr, (57)

with:

Fr = λ
∫ γmax

0

∥∥∥∥∂C(γ, P)
∂γ

∥∥∥∥2

dγ + β
∫ γmax

0

∥∥∥∥∂2C(γ, P)
∂γ2

∥∥∥∥2

dγ︸ ︷︷ ︸
regularisation term

, (58)

where P = [Px
0 , ..., Px

Nc−1, Py
0 , ..., Py

Nc−1]
T ∈ R2Nc is the vector of control points that defines

the target curve. The first term minimises the distance between the target B-spline curve
and the set of points, whilst Fr is a regularisation term and α, γ ≥ 0 are the regularisation
variables. The integral of the L2

2 norm of the first derivative penalises the total length of
the curve, while the integral of the L2

2 norm of the second derivative penalises bends in the
path. This objective function can also be expressed using vector notation, according to:

f (P) = ‖B(γ)P− X‖2︸ ︷︷ ︸
goal

+ λPT R1P + βPT R2P︸ ︷︷ ︸
regularisation term

, (59)
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where X = [Xx
1 , ..., Xx

K, Xy
1 , ..., Xy

K] denotes the points to fit, and R1, R2 are constant matrices
that can be computed numerically (see Appendix D).

In order to define the new path, it would not suffice to discard the previously planned
curve defined after γs and minimise the objective function with respect to the control points.
To guarantee C2 continuity between the previous path and the newly planned one, linear
equality constraints should be imposed on the values of Cnew(0), Cnew′(0), and Cnew′′(0) of
the new curve. Moreover, it is a requirement to save the old curve up to γs, as it may still
be in use by other vehicles in the network.

Consider the re-planning point ps introduced previously, chosen such that it corre-
sponds to the transition between the spline segment that the virtual target of the drone is
“sitting on”, and the next segment, according to:

ps = Cold(γs) with γs = dγdronee, (60)

where γdrone corresponds to the quadrotor’s virtual target at time instant tk. With this
choice of γs, it is possible to take advantage of the local support property of B-splines and
simplify the equality constraints of the problem, while at the same time simplifying the
storage of the curves in memory.

Considering that ps is dictated by (60), the old curve segments that are described by
parametric values such as γ ≥ γs should be discarded and replaced by a newer curve.
Since each curve segment is defined by only four control points, discarding those segments
is equivalent to removing control points with indexes i ≥ γs + 3 from the old control points
vector. This operation results in a vector given by:

Pold = [Px
0 , Px

1 , ..., Px
γs , Px

γs+1, Px
γs+2, Py

0 , Py
1 , ..., Py

γs , Py
γs+1, Py

γs+2]
T . (61)

For the particular example in Figure 9, spline 1 (in green) should be discarded given
that γdrone ∈ [0, 1); hence, γs = 1 and spline 0 are kept. To achieve this, all the control
points with indexes i ≥ 1 + 3 should be removed from the control points vector Pold, i.e.,
P4 = (Px

4 , Py
4 ).

Making use of the local support property once more, it is known that C2 continuity
between two consecutive cubic spline segments is guaranteed, as long as the last three
control points of the first segment coincide with the first three control points of the second
segment. A trivial way of generating a new B-spline with guarantees of C2 continuity in
the transition with the old curve, without explicitly defining equality constraints on the
derivatives of the function, is to solve the following optimisation problem:

Pnew = argmin
Pnew

f (Pnew)

subject to

Px new
0

Px new
1

Px new
2

Py new
0

Py new
1

Py new
2

 =



Px
γs

Px
γs+1

Px
γs+2
Py

γs

Py
γs+1

Py
γs+2


,

(62)

where Pnew = [Px new
0 , ..., Px new

NC−1, Py new
0 , ..., Py new

NC−1]
T is a new control points vector.
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ps=Cold(𝛄s)=X1
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P3old
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X5 X6
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X9
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X11

𝛄=0

𝛄=2
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P2new =P3old

P3new

P4new P5new
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Newly Optimized Curve

Newly optimized curve

Control points

𝛄s=1

Figure 9. Solving the optimisation problem (example).

To keep track of old and new curves, it is possible to concatenate only the new control
points vector Pnew with the old control points vector Pold, ignoring the first three control
points, i.e., Pnew

0 , Pnew
1 , and Pnew

2 , which are repeated as a result of the equality constraints
imposed by (62). Applying this methodology to the previous example, the final control
points vector is given according to Figure 10.

Orignal curve to keep

Main cluster of points
Re-planning point ps

ps

P0old
P1old

P2old

P3old

P3new

P4new P5new

P6new

Final Curve with Control Points Concatenated

Final curve

Control points

Figure 10. Final curve with control points concatenated (example).

These series of procedures are summarised in Algorithm 4. For the sake of simplicity,
the separation between the X- and Y-coordinates of the control points was omitted.

Algorithm 4 Fitting the points—growing a uniform cubic B-spline

1: Compute DX , γ and NC according to Equations (54), (55), and (56), respectively;
2: Consider γs = dγtke and the original control points vector:

P =
[
P0, P1, ..., Pγs , Pγs+1, Pγs+2, Pγs+3, Pγs+4..., Pn

]T ; (63)

3: Remove control points (corresponding to splines to be re-planned) from the original
control points vector, such that:

Pold =
[
P0, P1, ..., Pγs , Pγs+1, Pγs+2

]T ; (64)

4: Solve the optimisation problem in (62) and obtain a new vector with NC control points:

Pnew =
[

Pnew
0 , Pnew

1 , Pnew
2 , ..., Pnew

NC−1

]T
,

with Pnew
0 = Pγs , Pnew

1 = Pγs+1, Pnew
2 = Pγs+2;

(65)

5: Concatenate the new vector with the old vector (ignoring the first three control points,
which are repeated):

P f inal =
[

P0, P1, ..., Pγs , Pγs+1, Pγs+2, Pnew
3 , ..., Pnew

NC−1

]T
. (66)

6.4. From 2-D Path to Vehicle Formation

To generate individual paths for each vehicle to follow, we can consider a reference
path (obtained via the application of the previous algorithms) and offset each point ac-
cording to an expression that captures a desired vehicle formation. Start by considering
a formation vector denominated µi ∈ R3 for each vehicle i, with each distance defined
in the tangential reference frame {T} to the virtual target’s position in the original curve,
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according to Figure 11. According to Xie et al. [31], it is possible to define a desired path for
each vehicle given by:

pdi(γi) = C(γi) +
U
T R(γi)µi, (67)

where pdi is the desired path for the vehicle i, C(γi) is the planned curve, and U
T R(γi) is a

rotation matrix computed according to:

U
T R(γi) = [r1(γi), r3(γi)× r1(γi), r3(γi)], (68)

with:

r1(γi) =
∂pd/∂γ

‖∂pd/∂γ‖ , with ‖∂pd/∂γ‖ 6= 0 r3(γi) =
rd − (rd · r1(γi))r1(γi)

‖rd − (rd · r1(γi))r1(γi)‖
, (69)

such that r1 is the tangent to the curve. Moreover, since all vehicles will only be required to
operate in a 2-D plane, a trivial definition for one of the axis of the tangential frame {T} is
rd = [0, 0, 1]T .

xT

yT

{T}

μ

C(𝛾)

pdi(𝛾)

Figure 11. Formation vector.

A path might not be not parameterised according to the arc length and, for B-splines
in particular, each spline segment is such that γ ∈ [0, 1]. Therefore, it is commonplace to
define a constant required speed V ≤ Vmax for the vehicle and let the desired speed profile
for the virtual targets be given by:

vL(γ) =
V∥∥p′d(γ)

∥∥ . (70)

7. Implementation Details

To evaluate the performance of the proposed PF and CPF algorithms applied to marine
ASVs, real water trials were conducted at Doca dos Olivais (Lisbon, Portugal) using the
Medusa class of underactuated marine vehicles [14], shown in Figure 12. The vehicles used
in the real trials were equipped with a GPS Astech MB100, a NavQuest600 Micro DVL,
and a Vectornav VN-100T Attitude and Heading Reference System (AHRS). The operating
system used during development was Ubuntu 18.04LTS along with ROS Melodic.

Figure 12. Real Medusa vehicles at Doca dos Olivais, Lisbon (Portugal).

To analyse the performance of the proposed online path planning algorithm, a realistic
simulation environment that closely resembles the Doca dos Olivais site was developed
and incorporated into the Gazebo simulator. Given the main goal of having a fleet of
vehicles encircling a chemical spill, is was necessary to overlay a red stain mesh on top of
the ocean’s surface (Figure 13).
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Figure 13. Simulated world of Doca dos Olivais with red chemical spill in Gazebo.

For simulating the Medusa ASVs, a CAD model of the vehicles was incorporated into
the simulator (Figure 14a). The virtual vehicle was also equipped with DVL, AHRS, and
GPS sensors provided by the UUVSimulator plugin [16]. To simulate the quadrotor, the Iris
vehicle provided by the PX4 SITL Gazebo plugin [15] was used; see Figure 14b.

(a) (b)

Figure 14. Simulated vehicles in gazebo: (a) Medusa ASV. (b) Iris quadrotor with a fixed camera.

The simulated quadrotor was equipped with a virtual camera mounted 21 mm below
the vehicle’s center of mass and with a pitch angle of −45◦, pointing downwards, and
produced an image with a resolution of 640× 480 px, according to Figure 15a. Its intrinsic
parameters are given by: {

(cx, cy) = (320.5, 240.5)
( fdsx, fdsy) = (381.4, 381.4).

(71)

Given assumption 5, the detection of the boundary region between the spill and
the ocean surface was out of the scope of this work. Therefore, we resorted to OpenCV
library [32] to mask and threshold the red colours in the image feed. After this step, the
Canny edge detection algorithm was applied to the binary image to retrieve the pixels
corresponding to the boundary, according to Figure 15b. To solve the optimisation problem
proposed in Section 6.3.2, we resorted to Scipy’s SQP solver [33].

(a) (b)

Figure 15. Simulated camera feed: (a) Quadrotor’s camera output. (b) Binary image.
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The entire system architecture is shown in Figure 16. The inner-loop controls adopted
for the quadrotor were the ones already provided by PX4, while for the ASV, we resorted
to PID inner-loop controllers to steer the vehicles.

Vehicle
Network

. . .

ASV n

Quadrotor Attitude  
Inner-loops

Desired Path Path
Following

Virtual Target

CPF
Controller

Quadrotor

Vehicle State

Virtual  
Target

Thrust

Desired 
Attitude

Coordination
Speed

ASVInner-loopsDesired Path Path
Following

CPF
Controller

ASV 1

Vehicle
StateVirtual Target

Virtual  
Target

Force
and

Torque

Coordination
Speed

Camera to 2-D Point Cloud RGB image feedOnline Path Planner

Figure 16. Planning and control architecture.

8. Experimental and Simulation Results

In this section, we present some real experimental results regarding the PF and CPF
controllers applied to two Medusa ASV vehicles. In addition, realistic 3-D simulation results
are also presented for the case study where two Medusa vehicles were required to perform
a CPF mission on a pre-defined path with a quadrotor, in a leader–follower formation.
Finally, a third case study is presented, where a simulated quadrotor had to detect the
boundary of a chemical spill, and plan, in real-time, a path for both itself and a Medusa
ASV to follow cooperatively. The control gains adopted are available in Appendix E.

8.1. Cpf with ETC between 2 Medusa Vehicles (Real)

For the real trial, performed at Doca dos Olivais (Lisbon, Portugal), two Medusa
vehicles were required to perform a lawn-mowing mission cooperatively at the surface of
the water, according to Figure 17. The black vehicle (Medusa 1) was required to follow the
leader (Medusa 2) according to the formation vector µ = [−5,−5, 0]T . Both vehicles were
required to follow the path at V = 0.5m/s and communications were bi-directional.

Figure 17. Real CPF mission with 2 Medusa vehicles.
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According to the results in Figure 18a, the along-track error of Medusa 1 increases
quickly as the virtual target tries not only to minimise the distance to the vehicle but also
its distance to its neighbour’s (Medusa 2) virtual target. As the vehicles start to move, this
error starts to decrease, and according to Figure 18b, after approximately 50 s, the vehicles
align themselves according to the desired formation, approach the desired speed profile
and, as a consequence, the rate of information exchange decreases. This decrease in the
rate of communication is due to the bank of estimators for the virtual targets running in
each vehicle being able to better predict the evolution of the virtual targets.
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Figure 18. CPF with 2 real Medusa vehicles: (a) X–Y view. (b) Communication metrics.

8.2. Cpf with ETC between a Quadrotor and Medusa Vehicles (Simulation)

For this case study, a CPF mission was performed such that a simulated quadrotor
and two Medusa vehicles were required to perform a lawn-mowing mission, according to
Figure 19a. In this experiment, the aircraft was required to fly at a fixed altitude of 30 m;
the formation vector for Medusa 1 was given by µ1 = [−5, 5, 0]Tm, and for Medusa 2, by
µ2 = [−5,−5, 0]Tm, leading to a triangular formation with 2 ASVs side by side, behind
the quadrotor. In this experiment, there was bi-directional communication between the
pairs of vehicles: (quadrotor, Medusa 1) and (quadrotor, Medusa 2). From the results in
Figure 19b, it is observable that the vehicles converge to their desired formation at around
25 s. After this period of time, the position error converges to a neighbourhood of zero and
the virtual target speeds converge to their desired value. As a consequence, the number of
communication events between the vehicles drops as the bank of observers in each vehicle
can more accurately track the state of the virtual target of their peers.
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Figure 19. CPF with simulated Iris and Medusa vehicles: (a) X–Y view. (b). Performance metrics.
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8.3. Boundary Encircling with a Quadrotor and a Medusa Vehicle (Simulation)

For the last simulated experiment, the quadrotor was required to start the same lawn-
mowing that was adopted for the mission with one Medusa ASV. As soon as a chemical
spill boundary was detected in the drone’s image stream, the quadrotor was required to
start the path planning algorithm at a rate of 1 Hz and send the most up-to-date path to
the ASV, according to Figure 20. The drone was required to follow the path at 30 m of
altitude with a desired constant speed of 0.5 m/s. Since the quadrotor was equipped with
a fixed-mounted camera, it was also required to align its yaw angle with the tangent to the
path in order not to lose sight of the boundary being followed.

Figure 20. 3-D view of simulated boundary encircling mission with Iris and Medusa vehicles.

In order to guarantee that the path further ahead could be generated for the ASV to
follow, it was desirable for the marine vehicle to follow the the quadrotor from behind, i.e.,
with a formation vector µ = [−5, 5, 0]Tm. In Figure 21a, a top-down view of the executed
mission is shown. In Figure 21b, plots of the PF errors are provided along with the norm of
the horizontal distance of each vehicle to the real boundary being followed. It is observable
that the tracking error only increased in zones where the chemical spill had a crease. This is
justified by the fact that the Medusa vehicle, when performing tight turns, was not able
to cope with its virtual target speed and slowed down, leading to sudden spikes in the
along-track error. These tracking errors were instantly compensated by the adaptive virtual
target dynamics, which attempted to minimise the distance between itself and the vehicle.
It is also observable that the norm of the distance between the marine vehicle and the
chemical spill is much lower than its aerial counterpart, with the Medusa always following
the boundary from its outskirts, due to the formation vector adopted.

(a) (b)

Figure 21. Boundary encircling with simulated Iris and Medusa vehicles: (a) X–Y view. (b) Perfor-
mance metrics.

From Figure 21b, it is also evident that the horizontal distance between the real
drone’s position and the boundary is bounded by 6m. This result is to be expected, as the
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altitude estimates are mainly provided by the simulated GPS system and small errors in
the estimated attitude, especially yaw angle, will lead to errors of several meters in the
generated 2-D point cloud. Due to the type of application at hand, and given that it is
typical to have errors of several meters in underwater scenarios, these errors are considered
within an acceptable range. In addition, the small oscillations in the boundary distance plot
result from the simulated chemical spill boundary mesh being a composition of discrete
lines which are picked up by the drone’s camera.

In Figure 22, a plot of the point cloud generated by the algorithm is shown at two
different time instants (in green), as well as the corresponding planned B-spline paths (in
blue). Note that in Figure 22a, some of the green dots further away from the vehicle were
discarded by the planning algorithm, as they were too far away from the main cluster
of points.

(a) (b)

Figure 22. Path generation (a) Time = 235 s. (b) Time = 558 s.

9. Conclusions and Future Work

This paper addressed the problem of encircling an environmental boundary caused by
a chemical spill using a team of robots composed of an aerial quadrotor and Medusa marine
vehicles. The path following problem was introduced, and a non-linear control law derived
for the ASV, exploiting the technique described in P. Aguiar and F. Vanni [10–12]. Inspired
by this control law, a new one was derived for a quadrotor following the same methodology,
with some key differences due to the nature of the aircraft. For the section that followed,
the CPF problem was formulated and a proposal to solve the problem was presented, such
that the synchronisation controller was distributed and the same for all vehicles (aerial and
marine) using event-triggered communications based on previous work by N. Hung and F.
Rego [13]. In addition, a new real-time path planning algorithm was developed that made
use of the camera sensor onboard of the quadrotor to have a local view of the boundary and
generate a point cloud expressed in the inertial frame. This data was then used to solve an
optimisation problem which generates a B-spline-based path that grows dynamically as the
drone moves along the boundary and acquires more data. The path is then shared with all
ASV vehicles in the network in real time. The proposed algorithms were implemented in
ROS, and a 3-D virtual scenario was generated, allowing for a mixture of real and simulated
results. Future work includes making the height at which the quadrotor operates dynamic
and introducing curvature limits as inequality constraints to the path planning problem, as
well as obstacle avoidance before carrying out integrated experiments with real vehicles.
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Appendix A. Proof of Preposition 1

Proof. Consider the candidate Lyapunov Function given by:

V1(ep) =
1
2
(ep − δ)T(ep − δ). (A1)

Taking the first time derivative of (A1) and replacing in (17) and (14) leads to:

V̇1(ep) = (ep − δ)T
(
−S(r)(ep − δ) + ∆u +

[
0
v

]
+vc − B

U R(ψ)
∂pd(γ)

∂γ

(
eγ + vd(γ, t)

))
.

(A2)

Taking into account the properties of the skew-symmetric matrix S:

(ep − δ)TS(r)(ep − δ) = 0. (A3)

Replacing (20) and (21) in V̇1 yields:

V̇1(ep) = (ep − δ)T
(

∆(ũ + ud) +

[
0
v

]
+ ṽc + v̂c − B

U R(ψ)
∂pd(γ)

∂γ

(
eγ + vd(γ, t)

))
= −(ep − δ)TKpσ(ep − δ)− (ep − δ)T B

U R(ψ)
∂pd(γ)

∂γ
eγ + ∆ũ + ṽc.

(A4)

By taking a backstepping approach, consider a second candidate Lyapunov function:

V2(ep, eγ) = V1(ep) +
1
2

e2
γ. (A5)

https://github.com/MarceloJacinto/BSplineFit
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Taking the first derivative and replacing in the control law (22) for the virtual target,
we obtain:

V̇2(ep, eγ) =V̇1(ep) + eγ(γ̈− v̇d(γ, t))

=− (ep − δ)TKpσ(ep − δ)− kγe2
γ + ∆ũ + ṽc

≤− (1− θ)(ep − δ)TKpσ(ep − δ)− θ(ep − δ)TKpσ(ep − δ)

− kγ|eγ|2 +
∥∥ep − δ

∥∥‖∆ũ + ṽc‖,

(A6)

where 0 < θ < 1. The term:

− θ(ep − δ)TKpσ(ep − δ) +
∥∥ep − δ

∥∥‖∆ũ + ṽc‖

= −θ(ep − δ)TKp
ep − δ∥∥ep − δ

∥∥σ(
∥∥ep − δ

∥∥) + ∥∥ep − δ
∥∥‖∆ũ + ṽc‖,

(A7)

will be ≤ 0 if:
θλmin(Kp)σ(

∥∥ep − δ
∥∥) ≥ ‖∆ũ + ṽc‖, (A8)

which, in turn, implies that:

∥∥ep − δ
∥∥ ≥ σ−1

(
1

θλmin(Kp)
‖∆ũ + ṽc‖

)
, (A9)

and:
V̇2 ≤ −(1− θ)(ep − δ)TKpσ(ep − δ)− kγ|eγ|2, (A10)

as the right side of inequality (A9) can be made arbitrarily small through the choice of the
gain matrix Kp. It follows directly from H. Khalil ([34], Theorem 4.19) that the controlled
system is ISS.

Appendix B. Proof of Preposition 2

Proof. Consider the candidate Lyapunov function given by:

V1(ep) :=
1
2

eT
p ep. (A11)

Taking the first derivative of (A11) and replacing in (24)–(26), yields:

V̇1(ep) = −eT
p K1ep + eT

p

(
z− ∂pd

∂γ
eγ

)
. (A12)

With a view to applying backstepping techniques, consider:

V2(ep, ev) := V1(ep) +
1
2

zTz. (A13)

Replacing (26), (27), and (29) in V̇2 yields:

V̇2 =− eT
p K1ep + eT

p z− eT
p

∂pd
∂γ

eγ

+ zT
(

u + d− h(γ)(eγ + vd(γ, t))− ∂pd
∂γ

v̇coord(t) + K1ev − K1
∂pd
∂γ

eγ

)
.

(A14)

By replacing (35)–(37) in the Lyapunov time derivative, it follows that:

V̇2 = −eT
p K1ep − zTK2z− eT

p
∂pd
∂γ

eγ − zT
(

h(γ) + K1
∂pd
∂γ

)
eγ + zT(ũ + d̃). (A15)
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Consider a third candidate Lyapunov, obtained by backstepping, defined as:

V3 := V2 +
1
2

e2
γ. (A16)

Taking its derivative, with respect to time, and replacing in (38), we obtain:

V̇3 = −eT
p K1ep − zTK2z− kγe2

γ + zT(ũ + d̃). (A17)

Consider one last backstepping that involves the construction of:

V4 = V3 +
1
2

d̃TK−1
d d̃. (A18)

Taking its time derivative, and taking into consideration (33):

V̇4 = −eT
p K1ep − zTK2z− kγe2

γ + d̃T(z− Proj(z, d̂))︸ ︷︷ ︸
≤0

+zTũ

≤ −W(ep, ev, eγ) + zTũ.

(A19)

Assuming that the quadrotor is equipped with a generic inner loop that is capable
of keeping the tracking error ũ small and bounded, the right side of inequality (A19)
can be made small enough such that the controlled system is stable. A more in-depth
stability analysis can be conducted for the inner–outer loop control system, but this will be
dependent directly on the type of inner loop adopted. This results from the fact that the
desired accelerations ud must be decoupled in a set of desired thrusts and attitudes for the
quadrotor to track.

In order to simplify the designed control law ud, consider the final algebraic manipulation:

u�d = −d̂ + h(γ)vd(γ, t) +
∂pd
∂γ

v̇coord(t)− K1ev − ep − K2z

= −d̂ + h(γ)vd(γ, t) +
∂pd
∂γ

v̇coord(t)− ev (K1 + K2)︸ ︷︷ ︸
Kv

−ep (I + K1K2)︸ ︷︷ ︸
Kp

.
(A20)

Appendix C. Proof of Preposition 3

Proof. Consider that:
vL(γ) = vL1 + ṽL, (A21)

where ṽL is a bounded and arbitrarily small term that accounts for a transient period in
which the vehicles are on different sections of the path, with slightly different desired
speed profiles. Replacing (39), the speed correction term proposed in (46), and (A21) in
(42) yields:

ε̇ = L(vL(γ)− kε(ε +Aγ̃))

= vL��>
0

L1 + LṽL − kεL(ε +Aγ̃)

= −kεL(ε + d) with d =
ṽL

kε
+Aγ̃,

(A22)

where d is a disturbance that results from combining the terms dependent on ṽL and γ̃.
Consider the Laplacian matrix L, expressed in canonical Jordan form as:

L = VΛV−1, (A23)
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and the change of variables:
ε̄ = V−1ε. (A24)

Applying (A24) to (A22) yields:

˙̄ε = −kεΛ(ε̄ + d̄), with d̄ = V−1d. (A25)

It is possible to decompose the above equality according to the notation:[
˙̄ε1

˙̄ε2

]
=

[
0

−kεΛ2(ε̄2 + d̄2)

]
, (A26)

where the first half of the vector denotes the term that depends on the null eigenvalue of the
Laplacian, while the second term is a vector that depends only on the positive eigenvalues
of the Laplacian. Consider now the candidate Lyapunov function:

Vε̄2 =
1
2

ε̄T
2 ε̄2, (A27)

and its time derivative, given by:

V̇ε̄2 = −kε ε̄
T
2 Λ2(ε̄2 + d̄2)

= −(1− θ)kε ε̄
T
2 Λ2ε̄2 − θkε ε̄

T
2 Λ2ε̄2 − kε ε̄

T
2 Λ2d̄2,

(A28)

where 0 < θ < 1. The term:

− θkε ε̄
T
2 Λ2ε̄2 − kε ε̄

T
2 Λ2d̄2, (A29)

will be ≤ 0 if:

‖ε̄2‖ ≥
1
θ

∥∥d̄2
∥∥, (A30)

and, therefore:
V̇ε̄2 ≤ −(1− θ)kε ε̄

T
2 Λ2ε̄2. (A31)

The term ‖γ̃‖ can be made arbitrarily small by controlling the gains that dictate the
broadcasting scheme. Moreover, the term ṽL can be dominated by a proper choice kε.
Hence, ‖d‖ can be made arbitrarily small and, thus,

∥∥d̄2
∥∥ can be as well. It follows directly

from H. Khalil ([34], Theorem 4.19) that the controlled system is ISS with respect to the
error vector ε and the inputs γ̃ and ṽL.

Appendix D. Computing the Regularisation Term Using Vectorial Notation

Consider the simplest unclamped uniform cubic B-spline with only one segment, such
that γ ∈ [0, 1] and is described by (6). Then, its first derivative C′(γ) is given by:

∂Cx/y

∂γ
(γ) =

[
γ2 γ 1 0

]︸ ︷︷ ︸
T(γ)

1
6


3 0 0 0
0 2 0 0
0 0 1 0
0 0 0 0



−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0


︸ ︷︷ ︸

M︸ ︷︷ ︸
B′(γ)


Px/y

0
Px/y

1
Px/y

2
Px/y

3


︸ ︷︷ ︸

P

. (A32)
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Therefore, the term
∫

γ ‖C
′(γ)‖2dγ is computed according to:

∫
γ

∥∥C′(γ)
∥∥2dγ =

∫
γ
(B′(γ)P)T(B′(γ)P)dγ

=
∫ 1

0
PT B′(γ)T B′(γ)Pdγ

= PT MT

[ ∫ 1

0
T(γ)TT(γ)dγ

]
MP.

(A33)

Further, note that:

T(γ)TT(γ) =


γ4 γ3 γ2 0
γ3 γ2 γ 0
γ2 γ 1 0
0 0 0 0

 (A34)

and, as a consequence:

∫ 1

0
T(γ)TT(γ)dγ = Q =


1/5 1/4 1/3 0
1/4 1/3 1/2 0
1/3 1/2 1 0

0 0 0 0.

 (A35)

Hence, for the simplest case of a single B-spline segment, it is known that:∫
γ

∥∥C′(γ)
∥∥2dγ = PT MTQM︸ ︷︷ ︸

R1

P. (A36)

The easiest way to extend this technique to a B-spline with n segments is to consider the
modified vector T(γ) = [(γ− i)2, (γ− i), 1, 0]T , where i = bγc, according to the notation
introduced in Section 2.3. Then, since (γ− i) ∈ [0, 1], one can compute individually, for
each segment, intermediate matrices Ri

1, according to (A36). Due to the locality property of
B-splines, it is possible to “stack” these intermediate matrices to form the final matrix R1.
An analogous rationale can be applied to compute R2.

Appendix E. Controller Gains Adopted

The controller gains used to obtain the results in Section 8 are presented in Table A1.

Table A1. Controller and path planning gains.

Currents Observer (ASV) Projection Operator (Quadrotor)

k1 2.0 Kd diag(0.5, 0.5, 0.2)

k2 0.2 ς and β 10.0

Path Following (ASV) Path Following (Quadrotor)

Kp diag(0.5, 0.5) Kp diag(5.5, 5.5, 5.5)

δ −1.0 Kd diag(4.5, 4.5, 4.0)

kγ 0.5 kγ 0.5

Cooperative Path Following Path Planning

kε 1.0 NJ 0.6m

c 0.001 1/ρ 4.0

b 5.0 λ 0.05

α 1.0 β 0.01
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