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Abstract: Various aspects of the detection of events in wireless powered communication networks
(WPCN) are studied and analyzed under the assumption of highly noisy sensor measurements. In
WPCN, networks sensor nodes’ stored energy is a scarce resource and must be treated sparingly.
Frequent false alarm detections force superfluous transmissions, thus depleting nodes’ energy storage.
This has an adverse effect on the probability of successful transmission of the information message
and its delay in case of a true positive detection. In this work, the detection problem is approached
using an optimal stopping framework, where the involved likelihoods are highly unstable due to the
noisy measurements. A classical AR filter is adopted in order to smooth the posterior likelihoods
prior to their usage in the detection phase and its performance is contrasted to that of a novel Beta
Particle Filter smoother. The effects of the smoothing filters on the achieved false alarm rate and
detection delay are examined using numerical and simulation results. Moreover, the assessment of
the detection process takes into account critical WPCN parameters, such as the charging efficiency
and the location of the sensors, thus aiding the system design.

Keywords: WPCN; optimal stopping; mmWave sensor network

1. Introduction

In recent years, technological advancements have paved the way for applications of
wireless sensor networks in many aspects of daily life, such as environmental monitoring,
agricultural monitoring, weather forecasting, and fire detection [1,2]. A wireless sensor
network consists of battery-powered sensor devices dedicated to collecting information
by continuously monitoring the physical environment and detecting critical events of
interest. In case of a critical event, the sensor must be capable of immediately detecting and
informing the network of the current situation.

A known problem for sensor nodes powered by batteries is that once the battery of a
sensor is low charged or exhausted, the device becomes unavailable. Consequently, parts
of the monitored area, with time, become unsupervised, affecting the performance of the
entire network. It is conceivable that a network of battery-powered sensors is likely to
degrade with time and special provisions should be made for its uninterrupted operation.
Using wireless power transfer (WPT) technologies in such networks offers an important
additional tool for extending the network lifetime by periodically charging the sensor
batteries. Millimeter-wave radiofrequency technology supports high gains and is well
fitted to dense access networks. As a result, using a millimeter-band antenna that conveys
energy and information via the downlink is an excellent choice for maintaining the sensor
network’s performance.

We focus on an event detection application using a wireless powered communication
network (WPCN) under the assumption of extremely noisy measurements. To this end, we
consider multiple sensor nodes scattered randomly in the monitored area that are capable
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of harvesting energy wirelessly. An access point (AP), equipped with a mmWave antenna,
orchestrates the information exchange with the nodes and the charging process. Each
sensor takes measurements from the environment and tries to detect a possible change in
the distribution of the monitored parameter. In case of an event, the sensor transmits the
available information at the time to the AP with as much energy as possible. As sensor
measurements may be noisy due to the nature of the monitored phenomenon or the quality
of the sensors themselves, the detection process may result in an extremely large number
of false alarms. The sensor nodes treat each alarm as a true event and try to pass relative
information to the AP. This in turn exhausts frequently the node’s stored energy since
increasing the probability of successful message reception demands transmissions using
all the available power. Harvesting energy from scratch regularly (especially with a small
charging efficiency index) leads to partially charged nodes at any time, thus jeopardizing
the functionality of the system. The aim of this work is to reduce the number of false alarms,
which deplete the node energy (because of multiple unnecessary transmissions), and at
the same time reduce the delay of detecting the critical event. We base the solution under
investigation on Shiryayev’s theory of optimal stopping and specifically on the theory of
the optimization problem of disruption [3,4].

Showing that the measurements of the posterior probability of the event occurring
before the event may be quite unstable, we propose a solution to remedy the problem. A
novel smoothing technique based on particle filtering principles is proposed and compared
with the classic AR filtering technique.

Specifically, the main contributions of this paper are the following:

• We derive analytical expressions for the average harvested energy per slot and the
probability of successful information reception for a node.

• We define the optimal stopping problem and show that the node has to postpone its
transmission, at least until the accumulated energy satisfies a specific criterion.

• We propose two solutions to overcome the posterior probability measurement vari-
ability problem. The first relies on the use of an AR filter, whereas the second uses a
novel technique based on the particle filter theory.

• We assess the performance of the proposed solutions through simulations.

We organize the rest of this paper as follows. Section 2 summarizes the existing
related research work. In Section 3, we present the system model and provide analytical
expressions of the average harvesting energy per time slot and the probability of successful
information reception. In Section 4, we define and solve the optimization problem and
introduce two posterior smoothing techniques, a classical AR filter and a second that relies
on particle filter principles. Simulation results are presented in Section 5. Finally, Section 6
contains our conclusions.

2. Related Work

The feasibility of a wireless power sensor network powered by a mmWave MIMO
antenna is present in [5,6]. The authors present the benefits in terms of energy harvesting
efficiency. Optimal section selection algorithms are introduced and analyzed to maximize
the power coverage of the network. The work in [7] considers the performance of the
network in terms of energy harvest efficiency and the ability of the sensor network to
successfully detect environmental changes. The authors propose a solution that balances
the two criteria. The authors in [8] introduce a reporting scheme that allows sensor nodes
to inform the AP about their energy levels. Based on these reports, efficient energy-
beamforming strategies are devised so that, acting proactively, all sensors are sufficiently
charged most of the time and are capable of successfully transmitting their information
upon detection of an event.

Event detection is one of the most important tasks of sensor networks, with a wide
range of applications like intrusion detection, environmental monitoring, fire detection,
and outlier detection in sensor networks [9–11]. Event detection most of the time is
expressed as a change in the distribution of a monitored parameter from the sensor network.
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Observations are assumed to be taken sequentially in time, and the objective is to detect the
change as quickly as possible subject to the probability of false alarm. The problem of event
detection in a multiple sensors network has been studied in various contexts. One area of
interest is how the event is perceived from the sensor network. Works in [12,13] assume
that only one sensor senses the change in the environment and its identity is unknown. An
extension in [14] assumes that an unknown subset of affected sensors detects the event at
the same time. The case where the sensors perceive the change at different times is studied
in [15,16].

Another aspect of multiple sensor detection focuses on where the event information
from the sensors is located for decision making. For the decentralized version, each sensor
based on his measurements decides if a change in the monitored environment consists
of an alarm [4,17]. On the contrary, for the centralized scenario [18], event information is
available at several wireless sensors in the network, which transmit their information to a
fusion center. The fusion center is responsible to raise an alarm as soon as possible subject
to a false alarm rate constraint. The work in [19] considers the scenario where all sensors
communicate their information to a fusion center. The fusion center is responsible for the
decision process by monitoring the posterior probability of the received measurements.
Additionally, the fusion center, in order to minimize the energy consumption of the sensors,
chooses each time which sensors to keep enabled. Sensors are collocated and events happen
at a random time following a geometric distribution. The proposed algorithm accomplishes
to detect the intrusion (event) as early as possible using a minimal number of observations
subject to a false alarm probability. One disadvantage of the method, as is concluded from
the simulation results, is the computational complexity of the algorithm that depends on
the number of active sensors. The authors in [20] propose a two-stage detection process in
a sensor network used for fire detection. At first, each sensor based on its measurements
monitors for any differences in parameter distribution. By defining a soft threshold and
using a modified CUMSUM algorithm to sequentially detect the change, the sensor upon
detection sends all the available information to a fusion center. At the second step, the
fusion center, based on the measurements received by detecting nodes, applies a hard
threshold to raise a fire alarm.

There are two common approaches to solve a change detection problem. Firstly, the
minimax method [21], where the objective is to minimize the worst-case delay subject to a
lower bound in the meantime between false alarms. Secondly, the Bayesian approach [3],
where the time of the change (event) is assumed to be a random variable with known dis-
tribution and the goal is to minimize the detection delay subject to the probability of false
alarm. Minimax optimal solution minimizes the cost under the worst-case change-time
distribution, which is generally unknown. Therefore, we follow the Bayesian approach
which uses prior information about the distribution of the change time. This prior distribu-
tion can be estimated using historic data. An additional constraint has been incorporated
in the optimization process to accommodate the probability of successful information
transmission.

3. System Model and Analysis

We consider a mmWave WPCN with sensor nodes scattered randomly in a circular
area of radius ρ. The sensor nodes monitor the area for possible events, and upon detection
of an event, they report it to the AP.

3.1. Network Topology

Sensor nodes are wirelessly charged by an Access Point (AP) centered at the origin of
the monitored area. A uniform linear array of M antennas at the AP is used to switch the
radiation beam along S sectors. Switching among sectors can be performed in a circular
fashion or randomly. Figure 1 depicts the topology of the system. For this work, no
blockage effect is considered but the channel between the AP and a sensor node is modeled
as a fast-fading Rayleigh channel, independent for each sensor node.
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Figure 1. Network topology with sensor nodes depicted with boxes.

Time is slotted and the duration of each slot, TS, is taken equal to the residence time of
the AP beam to each sector. For the time slot per se we consider two formats. In the simplest
one, each slot is comprised of two fields: the harvesting period TH and the information
period TI , as it is shown in Figure 2a.

Figure 2. System time is slotted with slot duration Ts equal to the residence time of the charging
beam to each sector. (a) During each slot nodes in the served sector charge for a period TH and
transmit (if necessary) for a period TI . (b) An alternative slot format allows sensor nodes to exchange
information for fusion or message relaying using period TF.

During the energy harvesting period (TH), sensors located in the served sector harvest
energy and charge their battery. This process is discussed in the next subsection. Upon detection
of an event, the node will transmit its identity (ID) and proper information (measurements)
regarding the event during the information period (TI). To maximize the probability of successful
reception of the information message by the AP, the sensor nodes use all their stored energy for
transmission. Since, neighboring nodes can simultaneously detect the event, to avoid collisions
of multiple transmissions at the AP, an orthogonal multiple access scheme, like FDMA, is
adopted. The justification for such a choice is the abundance of bandwidth in the mmWave
band and the low rate of information transmission.

The second time slot format was proposed in [8] to facilitate sensors’ feedback to
the AP. This was achieved by introducing an additional field, called the reporting period,
during which the sensors report their energy levels to the AP. The same time slot format,
which is depicted in Figure 2b, can be used to accommodate sensor fusion. In this case,
each slot is divided into three periods: the energy harvesting period (TH), the fusion period
(TF), and the information period (TI). TF is introduced to allow neighboring sensor nodes
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to exchange information such as their measurements, for fusion purposes, or their energy
levels if more sophisticated energy-conserving schemes are desirable. Although several
comments in this work refer to the second time slot format, an in-depth exploitation of its
advantages is left for future work.

3.2. Energy Harvesting Phase

The amount of harvested energy by a node depends on the received RF power, denoted
by PRF, and the exposure time to radiation. For this work, we adopt the nonlinear model
presented in [22], according to which

E =
tγEb(1− exp(−ζ1PRF))

1 + exp(−ζ1(PRF − ζ2)
(1)

The constants ζ1, ζ2 are circuit implementation dependent, Eb denotes the batteries’
maximum energy storage, and the critical parameter γ ∈ [0, 1] models the efficiency of the
charging process. The harvested energy is an increasing function of the received power,
E = h(PRF), and therefore:

P{E ≤ ε} = P{PRF ≤ h−1(ε)} (2)

Solving Equation (1) for PRF, we obtain

PRF = − 1
ζ1

ln
(

tγEb − ε

tγEb + ε exp(ζ1ζ2)

)
= η(t, ε) (3)

Thus,
E ≤ ε ⇐⇒ PRF ≤ η(t, ε) (4)

For the received power PRF, we use the model in [23]. For a node located at distance r
from the AP and at a normalized angle φ from the direction of the serving beam, the received
power is

PRF =
P0|g|2FM(φ)

1 + ra (5)

where P0 is the BS transmit power, α is the path loss exponent, and g is the complex channel
gain between the sensor node and the AP, modeled as complex Gaussian with zero mean
and unit variance, i.e., g ∼ CN(0, 1). The function FM(φ) represents the Fejér kernel of
order M, that is

FM(φ) =
1
M

sin2
(

πMφ
2

)
sin2

(
πφ
2

) (6)

Therefore, for a harvesting period TH , we obtain

FE (ε) = P{E ≤ ε} = P{PRF ≤ η(TH , ε)} = P
{
|g|2 ≤ η(TH , ε)(1 + ra)

P0FM(φ)

}
= 1− exp

(
−η(TH , ε)

1 + ra

P0FM(φ)

)
(7)

where the equality in the second line of equations is due to the fact that |g|2 is exponentially
distributed. For a given r and φ the average harvested energy per time slot can be found by

Eav,s(r, φ) =
∫ ∞

0
(1− FE (ε))dε =

∫ γTHEb

0
(1− FE (ε))dε (8)

Figure 3 shows the average harvested energy per slot for the parameter set used in
the simulation section (see Table 1) and for three different values of the parameter γ. Note
that for large distances from the AP, the harvested energy for nodes located at the edge of
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the beam (dotted lines, φ = 12◦) is considerably lower than the energy harvested by nodes
located at the axial direction of the beam (solid lines, φ = 0◦). If a sensor node is aware of
its location, i.e., explicit deployment of nodes, it can anticipate the number of time slots
needed to reach a specific energy level and thus act appropriately in a case of an event. For
example, for γ = 0.03 and a node located at the axial direction of the beam, 50 time slots
are required at most for the node to become fully charged.

Figure 3. Average harvested energy Eav,s(r, φ) per time slot. Solid lines: φ = 0◦, dotted lines: φ = 12◦.
Blue color corresponds to γ = 0.05, green color to γ = 0.03, and red color to γ = 0.01.

Table 1. Parameters used in simulations.

Parameter Value

ζ1, ζ2, Eb 1500, 0.0022, 100
ρ, θ, α, M 10 m, π/15, 2, 8
P0, σ2, λ −10 db, −30 db, 1
DI , W ′ 1024 bits, 1 KHz

If the location (r, φ) of the sensor node is unknown, we have to average over the
spatial distribution of distances and angles in the serving sector to estimate the average
harvested energy per time slot. In this case

Eav,s =
1

θρ2

∫ θ

−θ

∫ ρ

0

∫ γTHEb

0
exp

(
−η(TH , ε)

(1 + ra)

P0FM(φ)

)
rdrdφdε (9)

The average harvested energy per slot, Eav,s, is plotted vs. γ in Figure 4 for three
values of the path loss exponent α. As it is expected, as α increases the amount of energy
harvested by a sensor node at each time slot is reduced. The differences are magnified for
larger values of the parameter γ.
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Figure 4. Average harvested energy Eav,s vs. γ for various values of the path loss exponent α. Blue
color corresponds to α = 2, green color to α = 2.5, and red color to α = 3.

3.3. Information Transmission Phase

Upon detection of an event, the sensing node awaits until the AP switches the beam
towards its direction, charges for a period TH and then transmits during the period TI .

If after charging the node’s battery is at energy level E , the transmission power is

P =
E
TI

(10)

The signal-to-noise ratio (SNR) at the AP from the transmitted node located at (r, φ) is

SNR(r, φ) =
P|g|2FM(φ)

(1 + ra)σ2 (11)

where σ2 is the noise power. Therefore,

P{SNR(r, φ) ≤ x | P} = P
{

P|g|2FM(φ)

(1 + ra)σ2 ≤ x | P
}

= P
{
|g|2 ≤ x(1 + ra)σ2

PFM(φ)
| P
}

= 1− exp
(
−x

(1 + ra)σ2

PFM(φ)

)
(12)

Successful reception of the information message is possible if

RI < W ′ log2(1 + SNR(r, φ)) (13)

where RI is the information rate and W ′ the bandwidth allocated to a node. The information
rate RI equals DI/TI , where DI is the amount of data (bits) that the node sends to the AP
and TI is the transmission time interval (TI = TS − TH). Using orthogonal signaling we
assume that the available bandwidth W is equally divided to all nodes, and therefore

W ′ =
W
Su

(14)
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with Su an upper bound on the total number of nodes. Solving Equation (13) for SNR(r, φ)
and using Equation (12), we obtain

ps(r, φ) = P{successful information reception for a node located at (r, φ)}

= exp
(
−(2RI Su/W − 1)

(1 + ra)σ2

PFM(φ)

)
(15)

Again, if the location of the sensor node is unknown we integrate over the spatial
distribution of the nodes to find the average probability of successful information reception.

ps = EΦ[ps(r, φ)] =
1

θρ2

∫ θ

−θ

∫ ρ

0
exp

(
−(2RI Su/W − 1)

(1 + ra)σ2

PFM(φ)

)
rdrdφ (16)

Figure 5 depicts the probability of successful reception of messages vs. the available
energy level for two nodes located at the edge of the network (r = 10). The first node is
located at the axial direction of the beam (blue color) whereas the second node is located at
the boundary of the sector (red color). The values of the parameters used are given in Table 1.
Moreover, in Figure 5 the average probability of successful reception ps (Equation (16)) is
plotted with green solid line.

Figure 5. Probability of successful information reception. Green color: the average ps, blue color:
node located at (10, 0◦), red color: node located at (10, 12◦).

3.4. Sensing Model

A very simple sensing model is adopted for this work. A sensor node senses all events
within a distance rs from its location. The situation is shown schematically in Figure 6 where
nodes #1 and #2 detect the event while nodes #3 and #4 fail to do so. More sophisticated
models, like the one in [24], can be used but their added value for this work is limited.

A distribution f0(·) is used to model sensor measurements prior to the event. The
same distribution, but with different parameters, say f1(·), is used to model measurements
after the event. For the rest of this paper, f0(·) and f1(·) are assumed to be Gaussian with
means 0 and 1 respectively and standard deviation equal to 0.4. The large value of the
standard deviation, compared to the difference of the means, indicates extremely noisy
measurements.
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Figure 6. Nodes within a distance rs from the event (like nodes #1 and #2) can sense it.

4. Detection of Events and Data Fusion

A well-known optimal stopping technique due to Shiryayev [4] is used for event
detection and described in Section 4.1. As the involved posterior probabilities are highly
noisy, a Beta Particle Filter is introduced in Section 4.2 to smooth them. Finally, data fusion
principles that could improve the system’s performance are presented in Section 4.3.

4.1. Event Detection

In the problem considered we assume for simplicity that the time at which an event
occurs, T , follows the geometric distribution with probability of success $. The parameter
$ is assumed known, for example from historical data. We furthermore denote the prior
probability that an event happened before starting time by π. That is

P{T = 0} = π (17)

P{T = n} = (1− π)(1− $)n−1$ (18)

The time instant n represents the nth period of beamforming the tagged sensor node.
Let τ be the time at which the sensor node decides to transmit its information (measure-
ments) to the BS. There are three risk functions associated with τ. First is the risk function
J1(τ) = P{τ < T } which is interpreted as the probability of false alarm. Second is the risk
function J2(τ) = E[max(τ − T , 0)] which is the average delay of transmission after occur-
rence of the event. Third is the risk function J3(τ) = P{unsuccessful transmission at τ}.
Minimizing the aforementioned risks has adversary effects on the selection of τ. For exam-
ple, to maximize the probability of a successful transmission we have to postpone it until
the sensor node is sufficiently charged to overcome bad channel conditions or even bad
location conditions (distant node or edge beamforming node). This postponement imposes
in turn a large delay on information reporting to the BS. If the nodes act alone, that is they
do not relay information by other nodes, then it is crucial to transmit with as much power
as possible in order to increase the probability the successful information reception by the
BS. Thus, we formulate the problem as

min P{τ < T }+ λdE[max(τ − T , 0)]

s.t.c. Pui < ψ (19)

where Pui denotes the probability of unsuccessful information reception and λd is a weight
factor balancing the importance between false alarm rate and detection delay. Let us first
focus on the constraint and reveal the role of τ in it. Successful reception of the information
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message is possible if Equation (13) is satisfied. Using Equation (15) and defining for
notation simplicity

Q(r, φ) =
(2RI /W ′ − 1)(1 + ra)σ2

FM(φ)
(20)

we obtain

Pui < ψ⇔ 1− exp
{
−Q(r, φ)

Pτ

}
< ψ⇔ Pτ > − Q(r, φ)

ln(1− ψ)
(21)

where Pτ is the transmission power at time instant τ. Moreover, Pτ is equal to Eτ/TI ,
where Eτ is the total energy harvested by the node up to time τ and TI is the signaling
period. Thus, the constraint of the optimization problem (19) imposes a lower bound on
the selected time τ′ to transmit. The node has to postpone its transmission at least until the
accumulated stored energy satisfies

Eτ′ > −TI Q(r, φ)

ln(1− ψ)
(22)

Inequality (22) presupposes knowledge of the location of the node. If this is not
possible, the threshold on the right side of (22) may be replaced by an average over the
possible locations of the sensor nodes, that is

Eτ′ >
1

θρ2

∫ θ

−θ

∫ ρ

0
−TI Q(r, φ)

ln(1− ψ)
rdrdθ (23)

We turn now to the minimization of the objective function in (19). To this end we
define the posteriori probability of the event occurring before time n

πn = P{T ≤ n|Fn}, π0 = π (24)

where Fn = σ{X1, X2, . . . , Xn} is the σ-algebra characterizing the information before time
n. Sensor measurements X1, X2, . . . are assumed independent having pdf f0(·) prior to the
event and pdf f1(·) after occurrence of the event. Using Bayes’ formula

πn+1 =
(πn + (1− πn)$) f1(Xn+1)

(πn + (1− πn)$) f1(Xn+1) + (1− πn)(1− $) f0(Xn+1)
(25)

Noting that
P{τ < T } = E[1− πτ ] (26)

and following Shiryayev, the objective function in the optimization problem (19) can be
transformed into the more convenient form

J(τ) = P{τ < T }+ λdE[max(τ − T , 0)]

= E

[
1− πτ + λd

τ−1

∑
k=0

πk

]
(27)

For a given prior π, we seek an optimal stopping time τ? that satisfies J?(τ?) =
min J(τ). It turns out that the optimal stopping time is independent of π and can be found
by a simple thresholding rule

τ? = min{n ≥ 0 : πn ≥ Γ} (28)

Indeed, according to the results of Shiryayev (Theorem 2.23) the minimum risk func-
tion satisfies the equations

J?(π) = min{1− π, λdπ + E[J?(π1)] (29)

= lim
n

Qn(1− π) (30)
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where π1 is the posterior probability given by (25) (one step forward after the current prior
π) and the expectation is over the pdf

f (x) = (πn + (1− πn)$) f1(x) + (1− πn)(1− $) f0(x) (31)

The operator Q(·) is defined as

Q(h(π)) = min{h(π), λdπ + E[h(π1)]} (32)

The Q(·) function is concave as the pointwise minimum of concave functions. Re-
peating this argument, Qn(1− π) is concave and therefore J?(π) is concave. The optimal
stopping time τ? is given by

τ? = min{n ≥ 0 : J?(πn) = 1− πn} (33)

and due to the concavity of the risk function it assumes the form given by (19). The
threshold Γ can be found using the equation

1− Γ = λdΓ + J?(Γ) (34)

Figure 7 depicts J?(π) for three values of λd. As λd decreases more emphasis is given
in minimizing the false alarm rate and therefore the threshold Γ drifts to larger values.

Figure 7. J?(π) and related thresholds.

It is clear at this point that the choice of τ (the time at which the sensor node decides
to transmit its information) is affected by two independent criteria. The first one is the
energy criterion (22) which depends on the location of the sensor node, the probability of
successful transmission 1− ψ, and the charging parameter γ. The second criterion, say
false-alarm/delay criterion, is described by (28) and it depends, among other things, on
λd and the “frequency” parameter $. Combining these two criteria into one is a matter of
the nature of the events and the system’s parameters. For example, for false-alarm and
successful reporting critical events, both criteria should be satisfied, so we can combine
them as

τo = max{τ′, τ?} (35)

whereas for delay critical events we can simply set

τo = τ? (36)
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which means that the sensor-node transmits as soon as possible regardless of its accumu-
lated energy. Moreover, the values of the parameters of the system play a major role in
the decision process, as it is demonstrated next. Consider the aforementioned network
topology with ρ = 10 m, S = 15, sensing area of radius rs = 1 m, and the parameter $
set to 0.01. This means that events happen every 100 system time slots on average, which
is quite high for rare events. If the events are uniformly distributed in the network area,
then a specific sensor node will be “hit” with probability $r2

s /ρ2 = 0.0001, that is every
10,000 time slot on average. Setting the successful transmission constraint to 1− ψ = 0.9,
then approximately Eav,s = 30 (eyeball Figure 5). Using the curve of the smallest γ (=0.01) in
Figure 3 and for the worst case of r = 10, φ = 12◦, we find that 30/0.1 = 300 time slots are
needed for the node to charge at the value of 30 energy units starting from zero conditions.
Since the tagged sensor is charged every S = 15 time slot (round-robin beamforming), the
number of system time slots that are needed for the sensor to reach its target energy level
is 300× 15 = 3500. Thus the event, with high probability, will find the node sufficiently
charged for transmission. In cases like this, the constraint of the optimization problem (15)
can be neglected.

4.2. Smoothing the Posterior Probability

Measurements of the posterior probability of the event occurring before time n, as they
are described by Equation (25) may be highly unstable. Thus, for example, a low valued
threshold as Γ10 or Γ1.0 in Figure 7 may be crossed several times before the occurrence of an
event. This in turn will impose unnecessary sensor node transmissions which will deplete
its energy reserve. Therefore, if the energy harvesting process has a low rate compared to $
(the events’ occurrence rate), it is highly probable that at the time of an event the sensor
node will be uncharged. This implies a large delay in information reporting. To remedy
this problem we resort to posterior probability smoothing and we test two techniques. The
first technique is straightforward and relies on the use of an AR filter whereas the second
technique is a novel one and relies on particle filter principles.

4.2.1. AR Smoothing

For simplicity we consider an AR filter of order one to smooth the posterior probability
πn. Thus,

π̃n = απ̃n−1 + (1− α)πn (37)

where α ∈ (0, 1) determines the degree of smoothing. Using a value α, we have essentially
an average over the last 1/(1− α) values of the posterior probability.

Figure 8 shows a trace of the posterior probability πn (Equation (25), dotted black line)
generated using $ = 0.01, f0 ∼ N (0, 0.42) and f1 ∼ N (1, 0.42). The time of the event was
taken at T = 100. As it is observed there are large false spikes both prior to the event and
after. The red solid line depicts π̃n for α = 0.9. Although there is some sort of smoothing
there are substantial high values of the posterior probability prior to the event which may
lead to several false detections. Decreasing α improves smoothing but the slope of the
curve after the event decreases. This means that an extra delay may be introduced before
detecting the event.
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Figure 8. Smoothed posterior probabilities: Original πn (dotted-black), AR filter π̃n for α = 0.9
(solid-red), and Beta Particle Filter π̂n (solid-blue).

4.2.2. Beta Particle Filter Smoothing

The second technique relies on the use of particle filtering and specifically the sampling-
importance-resampling (SIR) method. In Bayesian filtering, such as Kalman or particle
filtering, estimating the system state xn based on observations up to the time n, y1:n,
involves two steps. A prediction step to compute the prior p(xn|y1:n−1), followed by a
filtering step to compute the posterior p(xn|y1:n). Thus

Prediction: p(xn|y1:n−1) =
∫

p(xn|xn−1)p(xn−1|y1:n−1)dxn−1 (38)

Filtering: p(xn|y1:n) ∝
∫

p(yn|xn)p(xn|y1:n−1) (39)

In the proposed smoothing technique, the posterior probabilities πn, given by
Equation (25), play the role of the observations yn while the smoothed values π̂n will
represent the unknown internal system state xn. In both the prediction step and filtering
step we use the Beta distribution to model the state transition probability distribution
p(xn|xn−1) = p(π̂n|π̂n−1) and the likelihood p(yn|xn) = p(πn|π̂n). The Beta distribution
is given by

Betax(a, b) =
Γ(a + b)
Γ(a)Γ(b)

xa−1(1− x)b−1 (40)

with the shape parameters a and b controlling the peak and the sharpness of the peak and
Γ(·) is the Gamma function. Since the filtered value π̂n has to be close to π̂n−1 we model
the state transition probability as

p(π̂n|π̂n−1) ∼ Betaπ̂n(ν1π̂n−1, ν1(1− π̂n−1)) (41)

with the parameter ν1 taking a large value, to guarantee a > 1 and b > 1. Similarly, we
model the likelihood as

p(πn|π̂n) ∼ Betaπn(ν2π̂n + 1, ν2(1− π̂n) + 1) (42)

with the parameter ν2 having a relatively small value. The bias term (+1) was introduced
to avoid numerical problems when πn assumes small values. The Beta Particle Filtering
algorithm is presented in Algorithm 1.
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Algorithm 1 The Beta Particle Filter smoothing algorithm.

Initialization
• Select the number of particle streams K
• Generate K samples for the initial state π̂0 = π

For k = 1, . . . , K
- draw π̂k

0 ∼ Betaπ̂0(ν1π, ν1(1− π))
- set wk

0 = 1/K % set initial weights
end for

Main Loop
For n = 1, 2, . . .

For k = 1, 2, . . . , K
- draw π̂k

n ∼ Betaπ̂n(ν1π̂k
n−1, ν1(1− π̂k

n−1))

- wk
n = wk

n−1Betaπn(ν2π̂k
n + 1, ν2(1− π̂k

n) + 1)
end for
Wk

n = wk
n/ ∑k wk

n % normalize weights
Keff = 1/ ∑k(Wk

n)
2

If Keff < KT % KT was taken equal to 0.85K
- Resample {π̂k

n, Wk
n}K

k=1 to obtain {π̄k
n, 1/K}K

k=1
- Set π̂k

n = π̄k
n, Wk

n = 1/K
end if
• Estimate π̂n = ∑k π̂k

nWk
n

end for

The solid-blue line in Figure 8 depicts the smoothed value π̂n using the Beta Particle
Filter method. The plot was obtained using K = 200 particle streams and the parameters
(ν1, ν2) = (500, 1). As it is observed, prior to the event the smoothed posterior probability
stays close to zero but there is a substantial delay after the event to reach the true value one.

4.3. Fusion of the Sensor Measurements

From the discussion in the previous subsection, it becomes clear that more reliable
estimates of the posterior probability are needed before the sensor nodes decide to transmit
their information. This may be achieved by fusing the measurements of the sensors that
cover the same area. To this end, sensor nodes utilize the second time-slot format and
exchange measurement information during TF prior to any transmission.

Figure 9 shows the smoothed posterior probabilities of three sensors and as it is
observed false alarm probabilities (prior to the event and for the AR filtering technique),
have been reduced by a factor 2 to 3 compared to that of Figure 8. Note that if m sensors
are involved in the fusion process, the posterior probabilities (Equation (25)) are given by

πn+1 =
(πn + (1− πn)ρ)∏m

i=1 f (i)1 (X(i)
n+1)

(πn + (1− πn)ρ)∏m
i=1 f (i)1 (X(i)

n+1) + (1− πn)(1− ρ)∏m
i=1 f (i)0 (X(i)

n+1)
(43)

However, there is a price to pay for the advantages of fusion. Covering an area
of interest by more than one sensor node is not always feasible and it depends mainly
on the type of sensors used. For example, an optical sensor has a much larger sensing
radius compared to a temperature sensor but nevertheless, line-of-sight blocking limits
the size of the monitored area. Let us assume that the distribution of the sensor nodes is a
homogeneous Poisson Point Process (PPP) with intensity λ. If it is desirable for the event
to be detected by at least two sensors with a probability higher than αc, then

P{#sensors ≥ 2} ≥ αc ⇒ 1−
(

e−λAs + e−λAs λAs

)
≥ αc (44)
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with As = πr2
s . Setting rs = 1 m and αs = 0.5 results in 168 nodes on average that have to

be deployed over an area of radius 10 m. If the sensing radius is reduced to 0.5 m then the
number of nodes has to be quadrupled. Moreover, using an extra time period TF in the
time slot format in order for the sensors to exchange their measurements, reduces either the
harvesting period TH , or the transmission period TI , or both. One may neglect TF and resort
to centralized information fusion by letting all the sensors sensing an event independently
transmit their measurements to the AP.

Figure 9. Data fusion of three sensors for smoothing the posterior probabilities: Original πn (dotted-
black), AR filter π̃n for α = 0.9 (solid-red) and Beta Particle Filter π̂n (solid-blue).

There are also certain advantages to introducing the time period TF. During this
period sensor nodes may exchange information, beyond measurements for data fusion,
such as their energy reserves. In this case, more sophisticated transmission strategies may
be explored. For example, among two or more sensor nodes that detect an event, only
the node with the higher energy level transmits the information to the AP. The rest of
the nodes delay their transmission either for extra charging purposes or to increase time
diversity. Since for neighboring nodes the channel gains are highly correlated, postponing
the transmission for a period greater than the time coherence of the channel may prevent
nodes transmitting under the same (possibly bad) channel conditions.

5. Simulation Results

In this section, some simulation results are presented that corroborate the analysis
of the previous section. The values of the system parameters are given in Table 1 taken
from [6] and the simulation platform was MATLAB.

In our simulation model, a base station lies at the center of a cell of radius 10 m and a
linear antenna array of M = 8 elements is used to energy beamform 15 sectors in a round-
robin fashion. The location of the event is selected randomly in the monitored area and
the event interarrival time follows the geometric distribution. Channel gains are modeled
as independent random variables following an exponential distribution. We assume fast
varying channels in the sense that the gains change at every time slot.

We focus on the behavior of two sensor nodes located at the edge of the network, that
is at a distance r = 10 m from the AP. The first node lies along the direction of the beam
pattern (φ = 0◦), whereas the second sensor node lies at φ = 12◦, which is at the edge of
the beam pattern. Sensor information transmission and charging are possible only when
the AP beamforms towards the tagged sector. However, the nodes continuously sense the
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environment for possible events and run the detection algorithm. The simulation horizon
is large enough to ensure the creation of several events in the neighborhood of the sensors.

We present two sets of simulations. In the first set we illustrate the effects of smoothing,
charging efficiency γ, and event probability $ on the false alarm rate and the accumulated
node energy prior to information transmission. In the second set, we deal with the effects
of the aforementioned parameters on the information reporting delay.

5.1. Charging and False Alarm Rate

Figure 10 shows the average accumulated energy for various values of the threshold
parameter Γ (Criterion 36). The averages were obtained using 200 runs, the charging
efficiency was set to γ = 0.01 and AR smoothing of the posterior probabilities was used.
A few observations are immediate. First of all, the node at the edge of the beam pattern
fails to reach high energy levels as it is with the node along the main direction of the
beam. A remedy to this problem is to offset the direction of the beam (by half of the beam
width) before starting a new charging cycle. Secondly, the energy storage from one value
onwards remains constant. Values of the threshold Γ greater than 0.3 do not affect the
charge percentage of the sensors. For small values of Γ, the threshold is exceeded several
times forcing the sensor to transmit and therefore to deplete regularly its energy storage.
Figure 11 repeats the experiment with a larger value of the charging efficiency parameter γ.
In this case, sensors charge at a tenfold rate and manage to recover from false transmissions.

The effect of smoothing the posterior probabilities is more obvious for small values
of the threshold Γ. As it is observed from Figures 10 and 11, high smoothing (α = 0.9)
prevents, to some extent, false alarms and moderates unnecessary threshold crossings.

Figure 12 compares the performance of the Beta Particle Filter smoother with that of
the AR filter using α = 0.9. The threshold Γ was set equal to 0.15 and the accumulated
energy prior to information transmission is plotted vs. the charging efficiency γ. Note
that for this experiment $ = 1, which means a high rate of events. One event occurs in the
monitored network area every one time slot on average. It is conceivable from the figure
that BPF outperforms AR smoothing by almost 10%.

Figure 10. AR filter—average stored energy for γ = 0.01, $ = 0.1.
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Figure 11. AR filter—average stored energy for γ = 0.1, $ = 0.1.

Figure 12. Average stored energy for Γ = 0.15, $ = 1 , α = 0.9, and r = 10 m. Solid line: Particle filter
method, dashed line: AR filtering.

Figure 13 compares the performance of the smoothing filters under detection criteria
35 and 36. Black lines correspond to the case of a sensor that lies on the main direction
of the beam pattern φ = 0◦. The target probability of unsuccessful transmission was set
equal to ψ = 0.05. There are two observations that reveal the superiority of the BPF against
AR smoothing regarding the treatment of false alarms. Firstly, using BPF the sensor node
reaches higher values of accumulated energy that are almost independent on the threshold
parameter Γ. Secondly, Criterion 35, that is postponement of information transmission
until both energy and detection threshold constraints are satisfied, does not have a major
impact on the accumulated energy. This is justified by the fact that the BPF smoother is not
“fooled” by temporary ripples of the posterior probabilities and therefore the sensor node
does not discharge for unnecessary transmissions. Red lines correspond to the case of a
sensor that lies at the edge of the beam pattern φ = 12◦. Although the BPF smoother has
steadily better performance than the AR filter, the differences are not that large. An edge
sensor is hard to charge and therefore it is difficult to recover after false alarms. In cases
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like this, it is preferable to postpone transmissions until the sensor is sufficiently charged in
order to guarantee the successful transmission of the information message.

Figure 13. Average stored energy for particle filter (solid line) and AR filter (dotted line), with
parameters γ = 0.5, $ = 1 , r = 10 m , ψ = 0.05 , φ = 0◦ (black lines), and ψ = 0.3 , φ = 12◦ (red
lines). Filled squares mark both threshold and energy criteria (Cr. 35), squares mark only threshold
criteria (Cr. 36).

5.2. Charging and Detection Delay

Figure 14 plots the detection delay, measured in time slots, for a sensor that charges
well (φ = 0◦ and high values of the charging efficiency parameter γ. An immediate
observation is that the use of BPF results in larger delays compared to that of AR filter by
almost 25–30 time slots. This is in agreement with the results of Figures 8 and 9, where it
is demonstrated that the response of the BPF to the changes of the posterior likelihood is
delayed. Another, rather obvious, observation is that smaller values of threshold parameter
Γ produces smaller delays. Indeed, comparing the circle marked curves, which correspond
to Γ = 0.3, to the square marked curves, which correspond to Γ = 0.15, we note a difference
in the detection delay of 10 time slots for the BPF and 4 time slots for the AR filter. The
criterion selection, i.e., criterion 35 or 36, does not have a major impact on the detection
delay for nodes that charge easily. As it is observed from Figure 14 criterion 35 (filled square
and circle markers) provides the same performance with criterion 36 (empty markers).
However, this is not the case for sensor nodes that are difficult to charge, as is shown
next. Figure 15, depicts the detection delay performance for a node that lies at the edge
(φ = 12◦) of the charging beam. Unless the charging efficiency γ is high enough, detection
delays reach large values if the node has to postpone its transmission (criterion 35, filled
markers). Thus, in such cases alternative solutions must be sought. For example, one may
take off edge sensors from their unfavorable position by beamforming using an angle offset
or by letting sensor nodes relay the information of their neighbors. In the latter scheme,
nodes transmit using less power since the objective is to reach a neighbor node that is well
charged and capable to relay the information to the AP.
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Figure 14. Detection delay for particle filter (solid line) and AR filter (dotted line), with parameters
φ = 0◦, $ = 1 , ψ = 0.05 , r = 10 m, Γ = 0.15 (square), and Γ = 0.3 (circle). Filled squares mark both
threshold and energy criteria (Cr. 35), squares mark only threshold criteria (Cr. 36).

Figure 15. Detection delay for particle filter (solid line) and AR filter (dotted line), with parameters
φ = 12◦, $ = 1 , ψ = 0.3 , r = 10 m, Γ = 0.15 (square), and Γ = 0.3 (circle). Filled squares mark both
threshold and energy criteria (Cr. 35), squares mark only threshold criteria (Cr. 36).

Figure 16 summarizes some comparative results for the case of a sensor that charges
well (φ = 0◦). The left column of figures corresponds to criterion 36 whereas the right
column corresponds to criterion 35. The first row of figures is for AR filtering (α = 0.9) and
the second row is for Beta Particle Filter smoothing. The average number of false alarms
is depicted with bars, whereas the detection delay is depicted with filled diamond marks.
As it is observed, for very small values of the threshold parameter Γ, the Beta Particle
Filter smoothing results in considerably smaller values (tenfold reduction) of false alarms
compared to AR filtering. However, the situation is reversed regarding the detection delay.
Using criterion 35, although the detection delay is not affected, the false alarm rates are
reduced by a factor of three (or more) for small values of the parameter Γ.
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Figure 16. Detection delay—average number of false alarms before the event, with parameters φ = 0◦,
$ = 1 , ψ = 0.05 , r = 10 m, γ = 0.5, and α = 0.9.

6. Discussion

A thorough study was conducted on the performance aspects of a WPCN network used
to detect events under the assumption of noisy sensor measurements. Detecting changes in
the distribution of environmental parameters was based on the Optimal Stopping Theory
by Shiryaev. The unstable nature of the involved likelihoods imposes smoothing on the
posterior estimates and to this end, a Beta Particle Filter was proposed and tested against a
classical AR filter. Analytical and simulation results show that performance indices, such
as false alarm rate, detection delay, and probability of successful transmission, rely heavily
on the charging efficiency and the location of the sensor nodes. Future work is oriented to
incorporating mechanisms, such as data/information fusion and relaying of information,
that alleviates the problem of partly charged sensor nodes, in an effort to increase the
reliability of the system.
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