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Abstract: Nowadays, manufacturers are shifting from a traditional product-centric business paradigm
to a service-centric one by offering products that are accompanied by services, which is known as
Product-Service Systems (PSSs). PSS customization entails configuring products with varying degrees
of differentiation to meet the needs of various customers. This is combined with service customization,
in which configured products are expanded by customers to include smart IoT devices (e.g., sensors)
to improve product usage and facilitate the transition to smart connected products. The concept of
PSS customization is gaining significant interest; however, there are still numerous challenges that
must be addressed when designing and offering customized PSSs, such as choosing the optimum
types of sensors to install on products and their adequate locations during the service customization
process. In this paper, we propose a data warehouse-based recommender system that collects and
analyzes large volumes of product usage data from similar products to the product that the customer
needs to customize by adding IoT smart devices. The analysis of these data helps in identifying
the most critical parts with the highest number of incidents and the causes of those incidents. As
a result, sensor types are determined and recommended to the customer based on the causes of
these incidents. The utility and applicability of the proposed RS have been demonstrated through its
application in a case study that considers the rotary spindle units of a CNC milling machine.

Keywords: data analytics; data warehousing; decision support systems; product-service systems
(PSSs); product-service systems customization; product usage data; recommender systems (RSs);
sensors

1. Introduction

Manufacturers are attempting to fulfill orders on-demand by conducting business
processes over short-term networks while considering customer requirements (e.g., functional,
structural, environmental, and performance aspects of product design offerings), quality
of manufactured products, sustainability (e.g., producing manufactured products by using
economically sound processes that minimize wastes and reduce negative environmental
impacts while saving energy and natural resources, designing products to achieve targeted
objectives (e.g., cost, quality, reliability, etc.) using systematic approaches such as the Design
for Excellence approach (aka Design for X) [1]), time (e.g., reducing lead times), price, and
other dimensions [2]. Furthermore, manufacturers are competing to offer not only products
but also products accompanied with services, which are referred to as “Product-Service
Systems” (PSSs) [3]. PSSs provide a combined product and service offering that adds
value while the product is in use. Moreover, they make certain that the customer’s usage
experience does not only end with the purchase but extends much further [4].

PSS mass customization is defined as the production of products and services with
near mass production efficiency to meet the needs of individual customers. PSS customiza-
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tion entails configuring products with varying degrees of differentiation to meet the needs
of various customers. This is combined with service customization, in which customers
expand configured products to include smart sensors or IoT communication devices in
general to improve product usage and facilitate the transition to smart connected prod-
ucts. These sensors (e.g., temperature sensor, humidity sensor, vibration sensor, etc.) are
embedded in products to regularly monitor physical parameters in machinery such as
vibration, temperature, pressure, etc., to detect changes that may indicate a developing fault.
Despite the significant gained value from adding sensors to products, the selection of the
appropriate types of sensors and their adequate locations is a challenge that customers are
unable to manage easily and effectively [5]. Moreover, placing sensors randomly may result
in cost increases, minimizing energy savings (e.g., high power consumption), minimizing
the Return on Assets (RoA) (i.e., the profit returned for each dollar held on assets) because
of the selection of inefficient sensors, and less satisfied customers.

During the use phase of PSSs, a massive amount of Product Usage Information (PUI)
is collected, such as product usage incidents (e.g., cracks, leaks, etc.), product service data,
product operational environment, product user information, etc. [6–8]. We envision that
PUI, particularly product usage incidents, could play a pivotal role in assisting customers
(e.g., aerospace engine manufacturers) in selecting the appropriate types of sensors to
install on their machines (e.g., milling machine) during the service customization process
to regularly monitor machine functions and physical operating parameters. Product
usage incidents data are useless and invaluable unless useful information and insights are
generated from it. Analyzing product usage incidents data from similar products to the
product that the customer needs to expand by adding smart sensors helps in identifying the
most critical parts with the highest number of incidents and the causes of those incidents.
Based on this analysis and the failure modes at hand, sensor types for monitoring these
critical parts can be determined and recommended to the customer.

However, the analysis of these data is not supported by PSSs to improve data-driven
decision making. Consequently, this creates a demand for the adoption of novel tech-
niques/approaches for analyzing such data to assist customers in making informed deci-
sions. Accordingly, this article addresses the following research questions:

• Q1: How can data analytics techniques be used to assist customers in making informed
decisions during the customization of services process?

• Q2: How can PUI, particularly product usage incidents, be exploited to assist cus-
tomers in making informed decisions during the customization of services process?

To answer these research questions, data analytics techniques can be employed to
analyze these massive amounts of product usage incidents data collected during the
PSSs’ usage phase. Data-driven decision making can be improved by analyzing these
data, leading to the identification of new opportunities, more satisfied customers, and
more efficient operations. Data analytics techniques are classified into three categories:
descriptive, predictive, and prescriptive [9]. Prescriptive analytics is the most sophisticated
type of data analytics, and it employs statistics and data mining techniques to recommend
the best course of action for a given situation.

Recommender Systems (RSs), which fall under the category of prescriptive analytics,
are defined as software tools that provide useful suggestions to customers while taking their
requirements/preferences into account [10]. Recommender systems have gained popularity
due to their applicability in several domains (e.g., e-commerce, tourism, health, e-learning,
etc.) and in applications that provide personalized services [10]. There are various types of
recommender systems. These types include collaborative filtering RSs [10], content-based
RSs [11], knowledge-based RSs [12], hybrid RSs [11], knowledge graph-based RSs [13], and
cognitive-based RSs [14].

Data warehousing (DW) is capable of providing extreme performance in managing
and analyzing big data by extracting useful insights from massive amounts of data [15].
DW is defined as a repository that integrates heterogeneous data from multiple data
sources into a single multi-dimensional source for the purpose of analyzing and extracting
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new knowledge from these data. Besides the previously mentioned RS techniques, DW
techniques have been used for generating recommendations and creating RSs in many
applications, such as movies, books, and tourism [15].

We anticipate that data warehousing concepts and capabilities could play an important
role in assisting customers in making informed decisions during the customization of
services process. Accordingly, in this paper, we propose a data warehouse-based RS that
assists customers (e.g., aerospace engine manufacturer, electronic appliances manufacturer,
etc.) in determining the appropriate types of sensors (e.g., temperature sensor) to install
on their machines (e.g., milling machines, laser cutting machines, etc.). The proposed RS
utilizes data warehousing concepts to collect and analyze large volumes of product usage
information (PUI), particularly product usage incidents (e.g., cracks, leaks, etc.) from similar
products to the product that the customer wishes to expand by adding smart sensors. By
analyzing these data, the most critical parts with the highest number of incidents, as well
as the causes of those incidents, are identified. Accordingly, based on the causes of these
incidents, appropriate sensor types are determined and recommended to the customer. A
case study that considers the rotary spindle units of a CNC milling machine is used to
demonstrate the applicability and utility of the proposed recommendation approach and
its implemented solutions.

The main contributions of this paper are:

• A snowflake schema-based dimensional model for capturing products’ usage incidents
is proposed.

• The design of a data warehouse-based recommender for service customization recom-
mendations in PSSs is proposed.

• To support the service customization recommendation process, an extension of the
manufacturing blueprints models presented in [16,17] is provided.

• To ensure the applicability of the proposed approach, a web-based prototype system
implementing all of the proposed RS modules has been developed.

• The performance of the proposed system is evaluated experimentally in terms of
response time.

The remainder of this paper is organized as follows: Related work efforts are presented
in Section 2. This is followed by presenting the case study in Section 3. Section 4 presents
the architecture of the proposed data warehouse-based recommender system and its data
warehouse schema components. Manufacturing blueprints are discussed in Section 5, with
extensions to support the service customization recommendation process. The implemen-
tation and evaluation details are included in Section 6. Finally, Section 7 highlights the
conclusion and future work.

2. Related Work

Related works are categorized into three directions: (i) recommendation approaches
in manufacturing, (ii) domains of exploiting product usage data, and (iii) the role of data
warehousing in generating recommendations.

2.1. Manufacturing Recommendation Approaches

Recommendation technology is a rapidly expanding research domain and is consid-
ered a hot topic in the information technology industry. Recommender Systems (RSs) are
software tools that use information about the items, the users, and the interactions between
users and items to suggest the most appropriate items to the users [10]. RSs have been
applied in a variety of domains such as e-commerce [18–20], telecommunications [21],
tourism [22,23], and financial services [24,25]. There are various types of recommendation
techniques; the commonly used techniques are:

• Content-Based (CB) technique: Recommendations are generated based on the prod-
uct’s features and user preferences. It suggests products that have similar features to
the ones enjoyed by the customer in the past [11]. In content-based recommender sys-
tems, two basic techniques are used for generating and calculating recommendations.
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The first one uses traditional information retrieval techniques such as cosine similarity
for generating recommendations. The other technique utilizes machine learning and
statistical learning techniques for predicting the users’ interests from training data.

• Collaborative Filtering (CF) technique: Predicts the users’ interests based on the
taste of other users [10]. This technique is divided into item-based and user-based
CF approaches. However, content-based and collaborative filtering techniques have
some limitations, such as the data sparsity problem, the cold start problem, the grey
sheep problem, overspecialization, and limited content analysis [12]. Therefore, the
knowledge-based technique emerged to address the limitations of the content-based
and collaborative filtering approaches.

• Knowledge-based technique: Generates recommendations based on the domain
knowledge and explicit customer requirements. It does not take into account the
behavior of other users [12]. Knowledge-based techniques are classified into two
techniques: the Case-Based Reasoning (CBR) technique [26] and the constraint-based
technique [27]. The CBR technique uses similarity metrics for generating recommenda-
tions. The constraint-based technique, on the other hand, makes use of a recommender
knowledge base that includes explicit constraints on how to relate customer require-
ments to product attributes. Knowledge-based techniques aid in the resolution of
problems associated with CB and CF techniques, such as cold start, data sparsity, and
the grey sheep problem.

• Hybrid technique: combines two or more recommendation techniques into one hybrid
technique to enhance the performance of traditional techniques [10].

In the manufacturing domain, recommender systems have been utilized successfully.
In [28], the authors proposed a hybrid machine learning approach for generating additive
manufacturing design feature recommendations for target components during the design
phase in the Additive Manufacturing (AM) domain. The proposed method integrates two
algorithms: clustering and Support Vector Machine (SVM) for generating recommendations.
The proposed approach was validated by applying it to a case study of designing R/C
racing car components.

Influential related work efforts have utilized RSs to assist customers in identifying the
manufacturing services (e.g., resources, capabilities) needed to accomplish the required
manufacturing task [29–34].

Some authors have used a hybrid recommendation method that integrates social net-
work and collaborative filtering techniques to recommend manufacturing services [29,30].
By adopting collaborative filtering and social network techniques, the authors in [29] pre-
dicted the missing Quality of Services (QoS) values of manufacturing services. Finally, the
top-k manufacturing services with the highest QoS values are recommended to service
consumers. While in [30], the authors utilized a Stochastic Approach for Link Structure
Analysis (SALSA) to base their hybrid approach for recommending manufacturing services.
SALSA was employed to select the top trustworthy enterprises. The selected top trustwor-
thy enterprises and three similar enterprises are regarded as the influential components for
calculating predicted ratings of candidate services. Eventually, personalized manufacturing
services are recommended by adopting an extended user-based CF method.

In [31], the authors proposed a novel approach for predicting personalized QoS and
reliable cloud manufacturing service recommendations by combining a clustering-based
algorithm and a trust-aware CF approach.

The authors of [32] proposed a recommendation approach that employs a Time-aware
Targeted Reconstructing Service Descriptions (T-TRSD) model for manufacturing service
recommendations. The T-TRSD model is used to reconstruct descriptions of a single
manufacturing service for specific requirements while taking the changing characteristics
and descriptions of service composition of cloud manufacturing services into account.
Eventually, manufacturing service recommendations are generated by extracting useful
information from the reconstructed manufacturing service descriptions.
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A deep neural network model was proposed in [33] for cloud manufacturing ser-
vice recommendations. The optimal manufacturing services are recommended based on
automatic learning from the customers’ previous history and their new choices.

In [34], a machine learning-based regression approach was proposed for recommend-
ing manufacturing services in the cloud manufacturing domain. The proposed approach
employs a three-layer feed-forward neural network to segment customers based on histori-
cal data from previous manufacturing solution selections. The system then generates a list
of ranked manufacturing solutions that meet the requirements of each customer profile.

Another stream of research work efforts has adopted advanced data analytics tech-
niques (e.g., Deep Neural Networks (DNN)) for production quality prediction [35–37].
In [35], the authors proposed a prediction model that integrates a Deep Belief Neural
Network with a regression model to predict product quality. A deep learning-based ap-
proach was proposed in [36] for predicting the future values of machines’ key performance
indicators (e.g., Machine Mechanical Efficiency (MME)). In [37], the authors proposed a
deep learning-based approach that integrates a minimal-Redundancy-Maximal-Relevance
(mRMR) algorithm with a Convolutional Neural Network (CNN) to predict the quality of
batch processes.

Some authors have combined data analytics techniques with Cyber-Physical Sys-
tems (CPS) technology and IoT technology to enable production visibility and traceabil-
ity in Cyber-Physical Production Systems (CPPS) [38–41]. In [38], the authors utilized
data analytics techniques (e.g., Complex Event Processing (CEP)) to realize production
progress visibility. A methodological approach was proposed in [39] for the development
of sustainability-oriented CPPS through the identification of parameters, measures, and
data that have pivotal influences on sustainability. As a result, CPPS can be configured in
such a way that the environmental impacts are minimized. The authors of [40] proposed a
framework architecture that implements a Cyber-Physical Production System for quality
prediction and operation control in the metal casting industry. In [41], the authors proposed
a Digital Twin (DT)-based decision-making framework for re-scheduling Cyber-Physical
Production Systems’ processes.

Other research work efforts have utilized RS for generating personalized PSS recom-
mendations [42–45]. In [42,43], the authors proposed a multi-criteria recommendation
method based on a rough Collaborative Filtering (CF) approach for recommending cus-
tomized PSS solutions to customers. However, the authors considered only product-service
features such as service response time, service cost, service reliability, etc., for providing
these PSS customized solutions. They do not consider the structural and quality charac-
teristics of the product itself as a PSS component. In [44], a recommendation framework
was proposed to support the various processes of the PSS customization lifecycle described
in [4]. A set of recommendation capabilities are identified for each process while con-
sidering the various stakeholders’ perspectives. In [45], the authors proposed a hybrid
knowledge-based recommender for recommending previously customized PSS variants
from a wide range of available ones. The proposed approach integrates two techniques:
(i) constraint modeling, where the problem of selecting previously customized PSS variants
is modeled as a Constraint Satisfaction Problem (CSP) to filter out PSS variants that do
not satisfy constraints (i.e., customer requirements), and (ii) a weighted utility function
is adopted to rank the remaining PSS variants based on their utility to the customer. The
proposed approach considers customers’ requirements (e.g., functional, structural, qual-
ity, environmental, and cost) for the product and its related services when generating
PSS recommendations.

Table 1 summarizes the related work on manufacturing recommendation approaches.
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Table 1. Related work recommendation approaches in manufacturing.

Paper Used Techniques Application
Domain

Recommendation
Capabilities/

System Capabilities

Evaluation
Mechanism

[28]
Clustering algorithm,

Support vector machine
classification algorithm

Additive
Manufacturing

Additive
manufacturing
design features

R/C car racing
components case study

[29] Social network,
Collaborative filtering Manufacturing Manufacturing

services
Experimental

evaluation

[30] Link structure analysis,
User-based CF Manufacturing Manufacturing

services
Experimental

evaluation

[31] Clustering algorithm,
CF approach

Cloud
manufacturing

Manufacturing
services

Experimental
evaluation

[32]
Time-aware targeted

reconstructing service
descriptions

Cloud
manufacturing

Manufacturing
services

Experimental
evaluation on

real-world data set

[33] Deep neural network
approach

Cloud
manufacturing

Manufacturing
services Simulated case study

[34] Three-layer feed-forward
neural network

Cloud
manufacturing

Manufacturing
services Simulated case study

[35] Deep Belief Neural Network,
regression model Manufacturing Suitable design parameters for

manufacturing
Experimental

evaluation

[36] Temporal Convolutional
Network Manufacturing

Predictive services (e.g.,
predictive maintenance

strategies)

Packaging machine
case study

[37]

Minimal-Redundancy-
Maximal-Relevance

algorithm, Convolutional
Neural Network

Manufacturing
Adapting materials

concentration (e.g., penicillin
concentration)

Penicillin
Fermentation

process

[38] Event stream processing,
complex event processing

Cyber-Physical
Production Systems

(CPPS)

Production monitoring
services (e.g., production
progress visualization)

Traditional factory case
study

[39] Causal chain analysis CPPS Developing sustainable CPPS 3D-printing case study

[40] Decision tree, random forest,
support vector machine CPPS Quality prediction and

operation control

Metal casting
process of an actual

piston factory

[41] Fuzzy inference systems CPPS CPPS re-scheduling and
optimization Pilot assembly line

[42,43]
Decision making and trial

evaluation laboratory,
CF approach

PSS
customization Customized PSS solutions Elevator case study

[44] Knowledge-based techniques PSS
customization

Customized PSS solutions,
suppliers, production plans

Laser
machines case study

[45] Constraint modeling,
weighted utility function

PSS
customization Customized PSS solutions Laser

machines case study

According to this summary, most of the previous research has focused on recommend-
ing manufacturing services (e.g., capabilities, resources, etc.) required to complete a specific
manufacturing task in the cloud manufacturing domain. Many research efforts have used
advanced data analytics techniques to predict product quality or to visualize production
progress. Furthermore, there have been few research efforts devoted to recommending
customized PSS solutions; however, they do not consider assisting customers in selecting
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the appropriate types of sensors and their adequate locations in service customization as a
sub-process of the PSS customization process.

2.2. Product Usage Information Exploitation Domains

Product Usage Information (PUI) has been utilized for a variety of purposes in a variety
of domains. Influential related work efforts have utilized product usage information as
enablers of PSS design improvements [7,46–49].

In [7], the authors proposed a process and a framework for integrating PUI for PSS
development. The applicability of the proposed framework is demonstrated by its appli-
cation to a car-sharing case study. Similarly, in [46], the authors proposed an approach
for using PUI collected from sensors and customer feedback to improve the design of
future product generations. The linkage between product structure and PUI is achieved by
mapping design parameters to parameters and values provided by sensors.

In [47], the authors proposed a method for connecting product usage information with
future product and service development. The proposed method extends the quality table
in the Quality Function Deployment (QFD) methodology by incorporating “usage’s quality
required by manufacturer” and “quality element of user” as usage information.

The authors in [48] have presented an analysis of the impact of IoT technologies on the
PSS provision. By using multiple use cases, the authors discovered that IoT technologies
have a significant impact on the various phases of the PSS lifecycle. In [49], a procedure for
product-service systems called “Informatization” was proposed. This procedure allows for
the analysis of customer data generated during the product usage phase to identify new
customer needs and offer new services.

Some related work efforts have utilized collected data along the product’s life cycle,
to design and produce products with minimal environmental impact, a method known
as Life Cycle Engineering (LCE) [50]. In [51], the authors utilized the LCE approach
for lightweight component development in the automotive domain. The authors of [52]
proposed an LCE approach for material selection to improve material performance in a
specific application while ensuring that it had a minimal environmental impact. In [53], the
authors proposed a reference architecture that introduces the Life Cycle Technology (LCT)
concept for maximizing the functionality and lifetime of traction batteries.

Other research efforts have utilized product usage information to improve product
performance and evaluate customer requirements’ fulfillment [54–56]. In [54], the au-
thors utilized product usage from a secure health communication services provider called
“Brightsquid” to gain a better understanding of customers’ needs and determine how well
the existing product meets their needs.

In [55], the authors proposed an approach that analyzes operating product data col-
lected by embedded sensors to evaluate customer requirements’ fulfillment. The proposed
approach is divided into two phases: (i) product operating data are collected, and cus-
tomers are classified into segments based on their usage patterns, and (ii) the operating
data are analyzed to evaluate the performance of product modules.

In [56], the authors proposed an approach to improve product performance and
customer value through utilizing product usage data. In this approach, the customer value
is identified and then mapped to the physical structure and the function of the product.
Relevant parameters influencing the performance of the product’s function are identified
and measured to infer optimization measures. These measures are then realized in the form
of changes to the product’s parts.

Table 2 summarizes the purposes of exploiting product usage information in a variety
of domains. Based on this summary, it was found that product usage information has
been exploited extensively for improving the design of PSSs. Moreover, PUI has been
exploited to increase customer value by increasing product performance and evaluating
the fulfillment of customer requirements.
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Table 2. Related work efforts for exploiting product usage information (PUI).

Paper Application Domain Considered PUI Purpose PUI Analysis
Technique

Evaluation
Mechanism

[7] PSS
Sensor

data (e.g., the temperature of
brake hoses data)

Improving PSS
design Not provided Car-sharing case study

[46] PSS

Sensor data (e.g., temperature
data),

Customer
feedback

Improving PSS
design

Statistical measures
(e.g., median,

mean, etc.)

Washing machine case
study

[47] PSS Sensor
data (e.g., noise, temperature)

Improving PSS
design

Quality function
deployment (QFD)

methodology
Hairdryer case study

[48] PSS Data generated from IoT
technologies

Improving PSS
provision Not provided Home delivery

solutions case studies

[49] PSS Customer data (e.g., customer
habits)

Deducing new
customer needs,

offering new services
Not provided Not provided

[53] Manufacturing Sensor data (e.g., operating
temperature)

Improve product life
cycle performance

Data mining
techniques

All-solid-state traction
batteries

[54] Software requirements
engineering

Brightsquid’s various
repositories (e.g., JIRA)

Evaluating customer
requirements

fulfillment

Spearman’s
rank-order

correlation analysis

Case study on health
communication

services provider
(Brightsquid company)

[55] Software requirement
engineering

Sensor
data (e.g., CPU utilization data,

battery remaining data)

Evaluating product
performance Statistical measures Case study on

smartphones

[56] Machining and plant
engineering sector

Sensor
data (e.g., air volume flow rate,

rotation speed)

Improving product
performance Not provided Compressed air plant

case study

To the best of our knowledge, no previous work has considered utilizing DW-based
approaches to analyze PUI (e.g., product usage incidents). Moreover, the analysis of PUI
has not been utilized to determine the optimum types of sensors and their adequate lo-
cations during the service customization process. Our proposed approach, in this paper,
utilizes data warehousing concepts for analyzing PUI from similar products to the cus-
tomer’s product to assist customers in determining appropriate types of sensors and their
adequate locations.

2.3. Utilizing Data Warehousing for Generating Recommendations

Data warehousing (DW) is a repository that collects data from multiple heterogeneous
data sources into a single multi-dimensional source for analysis purposes [57]. The main
objective of the DW is to improve decision making by providing greater insights into the
organization’s performance. The key features of a data warehouse are subject-oriented,
integrated, time-variant, and non-volatile. There are three different types of DW architec-
tures that have to be considered when designing a corporate DW which are: single-tier,
two-tier, and three-tier. The most common architecture is the three-tier architecture, which
is adopted in this paper to design our DW. The following are the main processes carried
out for designing the DW using this architecture. First, the data are extracted from multiple
external data sources, cleansed, transformed, and loaded in the DW structure using the
Extract-Transform-Load (ETL) process. The data are loaded in the DW using a unified
multidimensional data model (e.g., star schema, snowflake schema, or fact constellation
schema). In this paper, a snowflake schema model is used for structuring the DW due
to the nature of the available data. Following that, data analytics and Online Analytical
Processing (OLAP) are used to analyze the data in the DW. OLAP is a process that utilizes
the DW for multidimensional analysis through the use of data cube operations, such as
rollup, drill-down, slicing, and dicing on fact tables and dimensions [58].
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In addition to the aforementioned recommendation techniques (cf. Section 2.1), data
warehousing concepts have been utilized for generating recommendations and creating
RSs in many applications such as movies [15,59], websites [60], books [61], tourism [62],
and Geographical Information Systems (GIS) [63].

In [15], the authors utilized data warehousing concepts for creating a movie recom-
mendation system. To recommend a movie to the user, a multi-criteria candidate selection
is used, in which movies with genres matching the user’s preferences are recommended.
Similarly, in [59], the authors extended traditional approaches to recommender systems
by making recommender systems work in multidimensional settings. They extended the
traditional two-dimensional user-item environments with other dimensions, such as time
and place dimensions.

In [60], the authors presented a data warehouse-based recommender for website
recommendations called AWESOME (Adaptive Website Recommendations). The system
utilizes a large number of recommenders for generating website recommendations. The
authors utilized data warehousing technology and precomputation of recommendations
to support scalability and quick web access times. While in [61], the authors proposed a
multidimensional recommendation model that integrates contextual information and uses
OLAP and data warehousing capabilities for solving book recommendation problems, such
as contradicting tribulations hierarchy ratings.

In [62], the authors proposed a DW-based recommendation system to help tourism
managers and pilots in the soaring community make soaring decisions by providing ac-
curate and timely information. Moreover, in [63], the authors proposed a Spatial OLAP
(SOLAP) recommendation approach that assists users in exploiting spatial data warehouses
and retrieving relevant information by recommending spatial MultiDimensional eXpres-
sions (MDX) queries. The proposed approach detects the user’s preferences by comparing
the current user’s preferences to the preferences of previous data warehouse users. Queries
launched by the user over the SOLAP system are used for analyzing user’s preferences. A
similarity measure is then used to measure the similarity between SOLAP users based on
their launched MDX queries. Finally, MDX queries are recommended to the current user
based on the similarity results.

Table 3 summarizes the related work efforts of using data warehousing for generating
recommendations. Based on this summary, it was discovered that data warehousing
capabilities have not been utilized effectively for generating recommendations in the
manufacturing domain.

Table 3. Related work efforts of using data warehousing for generating recommendations.

Paper Application Domain Recommendation Capabilities Evaluation Mechanism

[15] E-commerce Movies Not provided

[59] E-commerce Movies Not provided

[60] E-commerce Websites Experimental evaluation

[61] E-commerce Books Not provided

[62] Tourism Appropriate Soaring sites Not provided

[63] Geographicalinformation systems Spatial MDX queries Experimental evaluation

3. Case Study

According to the latest trend in PSS, customers are increasingly looking for personal-
ized and customized products and services to meet their specific needs. PSS customization
entails configuring products with varying degrees of differentiation to meet the needs of
various customers. This is combined with service customization, in which customers, with
the assistance of product designers or product engineers, expand configured products in
the spirit of adaptive customization to include smart IoT devices (e.g., sensors) to improve
product usage and facilitate the transition to smart connected products.
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The concept of PSS customization is gaining significant interest. However, there are
still numerous challenges that must be addressed when designing and offering customized
PSSs, such as choosing the optimum types of sensors to install on products and their
adequate locations during the service customization process. Accordingly, this necessitates
the use of novel techniques to assist customers, with the help of stakeholders from an
Original Equipment Manufacturer (OEM), such as product designers, in selecting the
appropriate types of sensors to install on their machines and their adequate locations
during the service customization process.

Large volumes of usage incident data (e.g., cracks, leaks, breakdowns, etc.) from
products (e.g., milling machines, laser cutting machines, etc.) that have been used by
various customers, and similar to the one that the customer wishes to expand by adding
smart sensors, can be collected during the use phase of these products, while taking
into account that these products have been used by customers with the same business
environment and business profile as the target customer. In this paper, we focus on
incidents whose causes fall under the category of “abnormal machine operating conditions”.
Examples of incident causes that fall under the category of “abnormal machine operating
conditions” are “extreme temperature”, “excessive rotation speed”, etc.

By analyzing these data, the critical parts with the highest number of incidents, the
causes of their incidents, and the influential parts responsible for the occurrence of these
incidents can be identified. Sensor types are then suggested to the target customer based
on the causes of incidents that occurred on these critical parts.

In the context of PSS customization, OEM receives multiple orders from various
customers who are interested in configurable products (e.g., laser cutting machines, milling
machines, etc.) based on their specifications and preferences. Customers may then request
that these configured products be expanded by adding smart sensors, which is the scope of
our paper. In this section, we present an illustrative case study that considers a Computer
Numerical Control (CNC) belt-driven metal milling machine as one of several products
that need to be expanded by customers to include smart sensors with the help of product
designers. We concentrated our efforts on the rotary spindle unit, which is one of the
components of this machine. The considered rotary spindle unit is made up of a motor, a
spindle, and a drive belt [64,65] (cf. Figure 1). The motor is positioned next to the spindle.
This motor provides rotation and power to the spindle, and the drive belt is used to transmit
torque to the spindle shaft. The rotary spindle unit has been built into thousands of similar
milling machines.
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Assume that the customer (e.g., aerospace engine manufacturer) is interested in ex-
panding this milling machine, in the spirit of adaptive customization, by adding smart
sensors (e.g., temperature sensor, pressure sensor, etc.). The customer uses a web appli-
cation to specify some information about the product that she needs to customize (e.g.,
product code). She may also specify some information about the nature of her business
environment (e.g., business environment temperature, business environment humidity,

https://www.dec-motor.com/
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etc.), and her business profile (e.g., business size, business type). For example, the customer
may determine that the temperature nature of her business environment is high, and her
business type is metal milling.

By utilizing our proposed recommendation approach, usage incident data generated
during the use phase of similar milling machines to the one that the customer wishes
to customize by adding smart sensors are collected and analyzed using data warehouse
capabilities to identify the most critical parts with the highest number of incidents, the
causes of these incidents, and the influential parts responsible for the occurrence of these
incidents that occurred on those critical parts. Accordingly, these critical parts are suggested
to the target customer as the most important parts to where sensors should be installed
in her current milling machine. Sensor types (e.g., temperature sensor, pressure sensor,
rotation speed sensor, etc.) are then suggested to the target customer based on the causes
of incidents that occurred on these critical parts. Due to the fact that each sensor type
suggested to the customer may have several instances, instances of each suggested sensor
type are then ranked based on their utility dimensions (e.g., reliability, performance, etc.)
and recommended to the customer using a weighted utility function, while taking into
account the customer’s interest in each utility dimension in terms of importance weight.
The values of these importance weights are directly acquired from the customer during
the recommendation session. The customer may indicate that she is interested in reliability
with a weight of 0.5.

For example, assume that the “drive belt” is identified as the top-critical part with
the highest number of incidents (e.g., cracks), the cause of this incident is “excessive
rotation speed”, and the neighboring influential part responsible for the occurrence of these
incidents on the “drive belt” is the “spindle”, then the suggested sensor type is “rotation
speed sensor” and it is suggested to be placed on the “spindle” as it is the part responsible for
the occurrence of these incidents on the drive belt. After that, instances of the suggested
rotation speed sensor type are sorted in descending order based on their utility dimensions
(e.g., reliability, accuracy, etc.) and the customer’s interest in each utility dimension. Finally,
a list of top-k instances is recommended to the customer, implying that the instance with
the highest utility value is the best and should be chosen by the customer.

By incorporating our proposed recommendation approach, the customers, with the
help of product designers, can decide effectively and accurately which types of sensors
to install on their machines and where to place them. This, in turn, lowers the cost of
randomly placing sensors on the desired machine.

4. Proposed Data Warehousing-Based Recommender Architecture

Service customization in PSSs entails expanding existing customized products by
adding smart sensors or IoT communication devices in general to regularly monitor prod-
ucts’ functions. However, selecting the appropriate types of sensors and their adequate
locations is a challenge that customers are unable to manage effectively [5]. Consequently,
in this section, we propose a DW-based recommender that assists customers in determining
the appropriate sensor types to install on their machines and their adequate locations. The
proposed RS utilizes large amounts of product usage information, specifically product
usage incidents, from similar products to the one the customer wishes to expand by adding
smart sensors. By leveraging DW capabilities to analyze these large volumes of product
usage incidents (e.g., cracks, leaks, faults, and breakdowns), the parts with the highest
number of incidents (critical parts), the causes of their incidents, and the neighboring
influential parts responsible for the incidents that occurred on the critical parts can be
identified. This provides an answer to (Q1) how can data analytics techniques be used to support
customers in making informed decisions during the customization of services process? Based on
this analysis and the failure modes at hand, sensor types for monitoring these critical parts
can be determined and recommended to the customer, providing an answer to (Q2) how
can PUI, particularly product usage incidents, be exploited to assist customers in making informed
decisions during the customization of services process?
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The architecture of the proposed DW-based recommender is depicted in Figure 2.
The proposed RS architecture consists of five layers: the operational layer, the Extract-
Transform-Load (ETL) layer, the storage layer, the business intelligence layer, and the
presentation layer. These layers are discussed in detail in the following sub-sections.
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4.1. Operational Layer

This layer is regarded as the source layer, it considers the heterogeneous operative
usage information source databases, more specifically usage incidents’ source databases.

4.2. ETL Layer

This layer extracts data from the operational layer’s operative usage incidents’ source
databases. These data are then filtered, cleaned, and finally loaded into the data warehouse.
The data are extracted from the operational layer’s source databases regularly, triggered by
incidents (e.g., cracks, breakdowns).

4.3. Storage Layer

The purpose of this layer is to load data extracted from the source databases into the
data warehouse using a unified multidimensional data model (e.g., star schema, snowflake
schema, or fact constellation schema). In this paper, a snowflake schema model is used for
structuring the DW due to the normalized nature of its dimensions.

As shown in Figure 3, the proposed DW snowflake schema consists of eight di-
mensions which are: Incidents, Parts, Products, UseIncidentsCauses, UseIncidentsCausesCat-
egory, BusinessEnvironment, Customer, and Time. It also contains one fact table named
Use_Incidents_Facttable. We briefly describe the components of the DW schema as follows:

• Incidents_Dimension: contains all basic data about product usage incidents. Members
of this dimension are IncidentID, and IncidentType (e.g., crack, leak, breakdown, etc.).
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• Parts_Dimension: contains all basic data about products’ parts. Members of this
dimension are PartID, PartName, and ProductID. According to the context of the case
study (cf. Section 3), some examples of part names are drive belt, motor, spindle, etc.

• Products_Dimension: contains all basic data about products. Members of this dimen-
sion are ProductID, ProductName, Manufacturer, and MadeTime. Some examples of
these products are CNC milling machines, laser cutting machines, etc.

• UseIncidentsCauses_Dimension: contains all basic data about causes of incidents.
Members of this dimension are IncidentCauseID, IncidentCauseName (e.g., exces-
sive spindle rotation speed, the extreme temperature of the motor, human mistakes,
materials do not meet standards, etc.), and IncidentCauseCateogryID.

• UseIncidentsCausesCateogry_Dimension: stores information about the categories of
usage incidents causes. Members of this dimension are UseIncidentCauseCateogryID,
and UseIncidentCauseCateogryName (e.g., abnormal machine operating conditions,
human behavior, material defect, etc.). In this paper, we focus on incidents whose
causes fall under the category of “abnormal machine operating conditions”. Some exam-
ples of incidents’ causes that fall under the category of “abnormal machine operating
conditions” and within the context of our case study provided in Section 3 are excessive
spindle rotation speed, extreme motor temperature, etc.

• BusinessEnvironment_Dimension: contains information about the customer’s business
environment nature in which she uses the product. Members of this dimension
are LocationID, Country, State, City, BusinessEnvironmentTemperature (e.g., high
temperature), and BusinessEnvironmentHumidity (e.g., high humidity).

• Customer_Dimension: contains information about the customers who use the products
and their business profiles. Members of this dimension are CustomerID, Customer-
Name (e.g., aerospace engine manufacturer X), BusinessType (e.g., milling steel), and
BusinessSize (e.g., large).

• Time_Dimension: stores a time hierarchy with levels of Day, Month, and Year.
• Use_Incidents_FactTable: stores information about the products’ parts usage inci-

dents. The “Use_Incidents” fact table includes the following measures: Count, and
Average_Failure_Duration. For a certain product that is used by a specific customer
in a specific business environment, the “count” measure computes the number of
incidents that occurred on each product part due to a specific incident cause during a
given time interval. The “Average_Failure_Duration” measure computes the average
failure duration of a specific incident type that occurred on a specific product part due
to a specific incident cause.

4.4. Business Intelligence Layer

In this layer, the usage incident data loaded in the DW is utilized to analyze usage
incidents that occurred on products similar to the target customer’s product. Based on
this analysis, we identify the parts with the highest number of incidents (critical parts),
the causes of their incidents, and the neighboring influential parts that are responsible for
the occurrence of these incidents on those critical parts. As a result, these critical parts are
suggested to the target customer as the most important parts to where sensors should be
placed in her current product. Following that, appropriate sensor types are recommended
to the target customer based on the causes of incidents that occurred on these critical parts.
This layer contains two modules: (i) the querying module, and (ii) the recommendation
module. We explain these modules in detail in the rest of this sub-section.

4.4.1. Querying Module

The querying module’s primary function is to retrieve data from the data warehouse
based on the query that is submitted to it. The main purpose of our proposed RS is to assist
customers in determining the appropriate sensor types to install on their products (e.g.,
milling machine) and their adequate locations by utilizing usage incidents data (e.g., cracks,
leaks, etc.) from similar products to their products.
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Therefore, the usage incidents DW is queried to obtain the number of incidents that
occurred in each part of products that are similar to the target customer’s product while
taking into account that these products were used by customers with the same business
environment and business profile as the target customer. The SQL query in Figure 4 is used
to retrieve the required data, taking into consideration that @ V1, @V2, @Val1, and @Val2
are variables that can be changed based on customer requirements.
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Based on the query result, the top-k parts with the highest number of incidents, their
influential parts, and the causes behind these incidents are then passed to the recommenda-
tion module to generate recommendations.

In the context of the case study provided in Section 3, assume that the customer (e.g.,
aerospace engine manufacturer) indicates that the milling machine that she needs to expand
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has the code “P111”. She also specifies that her business environment temperature nature
is “high” and her business size is “large”. Based on these specifications, usage incidents
data from similar milling machines to the target customer’s milling machine and have
been used by customers with the same business environment and business profile as the
target customer are aggregated and analyzed. After that, these data are queried to identify
the number of incidents that occurred on each part, the causes of these incidents, and the
neighboring influential parts that are responsible for the occurrence of these incidents using
the SQL query mentioned earlier (c.f. Figure 4). Assume that the results of this query are as
shown in Table 4.

Table 4. Examples of the SQL query results.

Part ID Incident ID Incident Cause ID
Neighbor

Influencing
Part ID

Total
Number of
Incidents

1 1 1 3 36

2 4 3 Null 24

1 1 2 Null 12

Based on the query results depicted in Table 4, the IDs of the top two parts with the
highest number of incidents, the IDs of incidents that occurred on them, the IDs of the
causes of incidents that occurred on them, and the IDs of their neighbor influential parts
are then passed to the recommendation module to generate recommendations.

4.4.2. Recommendation Module

The recommendation module is used to suggest appropriate sensor types to the
customer based on the results retrieved from the querying module. This module integrates
two techniques for generating recommendations: (i) A set of business rules (i.e., if–then
rules) is applied to the results retrieved from the querying module, to suggest appropriate
sensor types to the customer. (ii) A weighted utility function is applied to rank available
instances of each suggested sensor type to the customer based on their utility to the
customer. These two techniques are discussed in detail as follows.

1. Rule-Based Sensor Type Recommendation

Using this technique, a set of business rules (e.g., if–then rules) is applied to the query
results retrieved from the querying module (cf. Section 4.4.1) to determine the appropriate
types of sensors to be suggested to the customer.

According to the context of our case study and the query results depicted in Table 4,
the IDs of the top critical parts with the highest number of incidents are selected, which in
our case, are 1 and 2. Following that, we use SQL queries to get the name of each critical
part’s ID, the incident cause name of its associated incident cause ID, and the neighbor
influential name of its associated neighbor influential part ID (cf. Table 5).

Table 5. The critical parts’ names, the types of incidents that occurred on them, and the names of
their neighbor influential parts.

Part ID Part Name Incident Type Incident Cause Name
Neighbor

Influencing
Part Name

1 Drive belt Crack Excessive rotation speed Spindle

2 Motor Breakdown Extreme
Temperature Null

To determine the appropriate types of sensors (e.g., rotation speed sensor, temperature
sensor, etc.) to be recommended to the customer (e.g., aerospace engine manufacturer), a
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set of if–then rules is then applied to the causes of those incidents that occurred on critical
parts. These rules are written in the (IF condition Then action) format. The condition clause
serves as a constraint, whereas the action clause serves as a decision or advice.

Based on the results shown in Table 5, the “drive belt” is the top critical part with
the most incidents of the type “crack”, and the cause behind these cracks is the “excessive
rotation speed” of the “spindle” part, therefore, a “rotation speed sensor” is then suggested to
the customer using these rules (i.e., if–then rules). The location of the suggested sensor type
is finally determined based on whether or not these incidents were caused by a neighboring
influential part. Accordingly, the customer is advised to install the suggested rotation speed
sensor on the spindle part as it is the part responsible for the occurrence of these incidents
on the drive belt.

In addition, the “motor” has been identified as the second top critical part with the
highest number of incidents of the type “breakdown”, and the cause of these incidents is
“extreme temperature”. Therefore, a “temperature sensor” is then suggested to the customer
(via if–then rules), and the customer is advised to place it on the motor itself, as there is no
influential neighbor part responsible for the occurrence of these incidents.

Examples of such rules are shown in Figure 5. For example, “Rule 2” means that when
the cause of a certain incident (e.g., crack, leak, etc.) is “Extreme Temperature”, then the
suggested sensor type to the customer is “Temperature Sensor”.
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Algorithm 1 illustrates the steps of recommending appropriate sensor types to the
customer, as well as their suggested locations. The input to this algorithm is the usage infor-
mation (i.e., usage incidents) from similar products to the target customer’s product while
taking into account that these products were used by customers having the same business
profile and business environment as the target customer, some information about the target
customer product (e.g., product code), the target customer profile, and her business environment.

First, for products similar to the target customer’s product, the algorithm retrieves the
number of incidents that occurred on each part, the IDs of incidents that occurred on them,
the IDs of the causes of incidents that occurred on them, and the IDs of their neighboring
influential parts that are responsible for the occurrence of these incidents on each part (Step
2). Based on the results obtained in step 2, the IDs of the top-k critical parts with the highest
number of incidents are chosen (Step 3).

After that, the algorithm retrieves the name of each critical part’s ID, the incident cause
name of its associated incident cause ID retrieved in step 2, and the neighbor influential
part name of its associated influential part ID retrieved in step 2 (Step 5 to Step 9). Then, a
set of rules (if–then rules) is applied to the incident cause name to determine the suggested
sensor type (Step 10). The suggested sensor type location is finally determined based on
whether or not these incidents were caused by a neighboring influential part (Step 11 to
Step 15).
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Algorithm 1 Appropriate Sensor Type and Location Recommendations

Input: Usage information (i.e., Usage Incidents) of similar products to target customer’s product,
Target customer’s product information, Target customer’s business profile, Target Customer’s
business environment.
Output: Sensor type and location recommendations
1: Begin:
2: Get the Part ID, Incident ID, IncidentCauseID, Neighbor_Influencing_PartID, number of
incidents on each part of products similar to the target customer’s product /* using SQL query in
Figure 4 */
3: /* using SQL query results at step 2*/
4: Critical Parts IDs List (CPL) = Get top-k parts w.r.t number of incidents
5: for each Part ID (PID) in (CPL) do:
6: Incident Cause ID (IC_ID) = Get PID’s associated IncidentCauseID /*retrieved at Step2*/
7: Influential PartID (IP_ID) = Get PID’s associated Neighbor _Influencing _Part ID /*retrieved
at step2*/
8: Part Name = get the part name from Parts_ Dimension where PartID = PID /*using simple
SQL query*/
9: Incident Cause Name = Get the incident cause name from
UseIncidentsCauses_Dimension where the IncidentCauseID = IC_ID /*using simple SQL
query*/
10: Use sensor type determination rules to suggest the sensor type based on the incident cause
name /*rules in Figure 5*/
11: If (IP_ID is not equal Null) then
12: Neighbor_Influential_Part Name = Get the neighbor influencing part name from
Parts_Dimension where PartID = IP_ID /*using simple SQL query*/
13: Suggested sensor location = Neighbor_Influential_Part Name /*sensor is suggested to be
placed on the neighbor influential part*/
14: else
15: Suggested sensor location = Part Name /* sensor is suggested to be placed on the critical part
itself*/
16: end for
17: return recommended sensor type and its suggested location
18: End

2. Utility-Based Sensor Type Instances Ranking

Based on the fact that each sensor type suggested to the customer may have several
instances, thus we utilize a weighted utility function to rank these available instances
based on their utility to the customer. This function is based on the Multi-Attribute
Utility Theory (MAUT) approach [66]. To calculate the utility of available sensor type
instances, it is important to have prior knowledge about: (i) Contributions of sensor
instances in a set of utility dimensions/attributes. Sensor quality attributes (e.g., reliability,
accuracy, performance, etc.) that are captured using the product-service blueprint as part
of the manufacturing blueprints, which is discussed in detail in Section 5, are utilized
for this purpose, and (ii) the weight/importance of each utility dimension based on the
customer’s interest.

Based on this information, we applied the following weighted utility function [66] (cf.
Equation (1)) to rank available sensor type instances.

utility(S) =
n

∑
i=1

wisi(S) (1)

where n is the number of utility dimensions, utility(S) represents the utility of a sensor type
instance, wi represents the customer’s interest in terms of weight in a utility dimension i,
and si(S) is the contribution of sensor type instance (S) to a utility dimension i. The values
of wi are acquired from customers directly during the recommendation session.

Algorithm 2 shows the steps of ranking available instances of each suggested sensor
type based on their utility to the customer. The input to this algorithm is a list of sensor
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types that was suggested to the customer, and the customer’s interest in the sensor’s utility
dimensions. First, we obtain all available instances of each sensor type recommended to
the customer (Step 3). The utility of each sensor type instance is then calculated using
Equation (1) (Step 5). Eventually, instances of each suggested sensor type are sorted in
descending order based on the utility, and a list of top-k instances is recommended to the
customer to choose from.

Algorithm 2 Utility-Based Sensor Type Instances Ranking

Input: Suggested sensor types list STL = {ST1, ST2, ST3, . . . . . . STn}, Customer interest in each
utility dimension (Weights)
Output: Top-K sensor type instances
1: Begin:
2: for each suggested sensor type (ST) in STL do:
3: Sensor Type Instances (STI) = Get sensor type instances
4: for each instance (I) in STI do:
5: UtilityList (UL) = Calculate utility of (I) using Equation (1)
6: end for
7: Sort instances in (UL) w.r.t. utility descendingly
8: return Top-K sensor type instances
9: end for
10: End

4.5. Presentation Layer

This layer is considered as the gateway through which the customer interacts with the
recommender system to specify her requirements/preferences and receive recommendations.

5. Manufacturing Blueprints in Support of Service Customization Recommendations

In Section 4, we provided a DW-based recommendation approach that utilizes large
volumes of product usage incidents (e.g., cracks, leaks, etc.) from similar products to the
one the customer wishes to expand by adding smart sensors. By utilizing DW capabilities to
analyze these large volumes of data, the critical parts with the highest number of incidents,
the causes of those incidents, and the neighboring influential parts that are responsible
for the occurrence of those incidents on the critical parts are identified. As a result, these
critical parts are suggested to the target customer as the most important parts to where
sensors should be installed. Following that, appropriate sensor types are determined based
on the causes of incidents that occurred on those critical parts. Finally, instances of the
suggested sensor types are ranked based on their quality attributes and then recommended
to the customer.

However, it is crucial to have knowledge about all available sensor types to be sug-
gested to the customer as well as their quality attributes (e.g., reliability, accuracy, etc.)
before generating recommendations. Manufacturing blueprints proposed in [16,17] play
a significant role in providing such knowledge and serve as an important component of
our recommender system knowledge base. These manufacturing blueprints act as knowl-
edge structures that store extensive product-service and production-related knowledge.
Manufacturing blueprints rely on model-based design techniques to manage and inter-
connect product data, information (both contextual and content), product portfolios and
product families, manufacturing assets (personnel, plant machinery, and production line
equipment), production processing requirements, and workflows.

Manufacturing blueprints help meet various requirements (e.g., functional, structural,
performance, quality, cost, interoperability, time, etc.) of an entire manufacturing network.
This information can be collected and placed within a broader operational context, pro-
viding the foundation for production actionable “intelligence” and a shift toward more
fact-based manufacturing decisions.
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Manufacturing knowledge is captured in the following five interconnected knowledge-
based structures:

1. Supplier blueprint contains knowledge about the capabilities of the supplier’s firm.
2. Product blueprint includes detailed information about the product, product parts, and

product families. It also includes information about the quality attributes of products
and their parts.

3. Product-service blueprint provides details about the characteristics of all services that
are combined with the physical product. Service types, service-related sensors, and
service quality attributes are examples of such characteristics.

4. Production process blueprint defines the production processes, the involved activities,
and the resources required to accomplish these processes.

5. Quality assurance blueprint describes the Key Performance Indicators (KPIs) needed to
monitor production processes and troubleshoot production issues.

To provide the customer with a ranked list of the top-k instances of each suggested
sensor type based on their utility to the customer, the product-service blueprint proposed
in [17] is extended to incorporate appropriate classes that are required to meet customers’
requirements and ease the recommendation process. Some examples of the classes involved
in this blueprint are (i) service; which describes the service accompanied with the physical
product (e.g., maintenance, monitoring); (ii) service provider; which refers to the person or
company who provides the service; (iii) sensor; is a new class added to the product-service
blueprint which describes the sensors that can be installed on the physical product; and
(iv) sensor quality attributes; represents a new other class added to the product-service
blueprint that describes the sensor’s quality attributes (e.g., reliability, accuracy, perfor-
mance, etc.). With the addition of these classes (i.e., sensor, and sensor quality attributes),
we are now able to rank available instances of each suggested sensor type based on their
utility dimensions and eventually provide them to the customer.

6. Implementation and Evaluation
6.1. Implementation

To ensure the applicability of the proposed DW-based recommender system, a web-
based prototype system has been developed as a proof-of-concept based on the proposed
system architecture proposed in Section 4. Figure 6 presents a high-level overview of the
main components of the proposed RS and the relationships between them. All modules
have been developed using open-source tools. The main components of the proposed RS are
a set of integrated manufacturing blueprints, usage incidents DW, querying module, and
recommendation engine. The proposed DW model for products’ usage incidents was built
using SQL Server Management Studio (SSMS) version 2012. We reused implementations of
the manufacturing blueprints knowledge base from our previous work [4] and extended
them with the manufacturing blueprints extensions provided in Section 5.



Sensors 2022, 22, 2118 20 of 27

Sensors 2022, 22, x FOR PEER REVIEW 21 of 29 
 

 

6. Implementation and Evaluation 
6.1. Implementation 

To ensure the applicability of the proposed DW-based recommender system, a web-
based prototype system has been developed as a proof-of-concept based on the proposed 
system architecture proposed in Section 4. Figure 6 presents a high-level overview of the 
main components of the proposed RS and the relationships between them. All modules 
have been developed using open-source tools. The main components of the proposed RS 
are a set of integrated manufacturing blueprints, usage incidents DW, querying module, 
and recommendation engine. The proposed DW model for products’ usage incidents was 
built using SQL Server Management Studio (SSMS) version 2012. We reused implemen-
tations of the manufacturing blueprints knowledge base from our previous work [4] and 
extended them with the manufacturing blueprints extensions provided in Section 5. 

 
Figure 6. A high-level overview of the RS interacting components. 

The Ontology Web Language (OWL) standard and Protégé tool-suite [67] were used 
to implement the extended manufacturing blueprints. The guidelines and steps of how to 
create ontologies stated by [68] were followed to create the extended blueprints/ontologies 
discussed in Section 5, which are as follows: 
• Creating classes and sub-classes: The implementation of any ontology begins with 

the creation of classes, which act as the ontology’s main building blocks. To create 
the product-service blueprint/ontology and its extensions discussed in Section 5, the 
main classes identified in the top-level ontology such as Service class, Sensor class, 
Service provider class, service function, etc. are first implemented. After that, the sub-
classes related to the domain-level ontology are created. In the context of the case 
study presented in Section 3, customers are interested in sensors for monitoring their 
machine’s parts, therefore, the sub-classes of the ‘Sensor’ class are ‘Temperature Sen-
sor’, ‘Vibration Sensor’, ‘Rotation Sensor’. Examples of the classes and sub-classes in-
cluded in the product-service ontology are shown in Figure 7. 

• Creating object properties: after creating classes, the relationships among them are 
defined using object properties. For example, to define that the product service has a 

Figure 6. A high-level overview of the RS interacting components.

The Ontology Web Language (OWL) standard and Protégé tool-suite [67] were used
to implement the extended manufacturing blueprints. The guidelines and steps of how to
create ontologies stated by [68] were followed to create the extended blueprints/ontologies
discussed in Section 5, which are as follows:

• Creating classes and sub-classes: The implementation of any ontology begins with
the creation of classes, which act as the ontology’s main building blocks. To create
the product-service blueprint/ontology and its extensions discussed in Section 5, the
main classes identified in the top-level ontology such as Service class, Sensor class,
Service provider class, service function, etc. are first implemented. After that, the
sub-classes related to the domain-level ontology are created. In the context of the case
study presented in Section 3, customers are interested in sensors for monitoring their
machine’s parts, therefore, the sub-classes of the ‘Sensor’ class are ‘Temperature Sensor’,
‘Vibration Sensor’, ‘Rotation Sensor’. Examples of the classes and sub-classes included in
the product-service ontology are shown in Figure 7.

• Creating object properties: after creating classes, the relationships among them are
defined using object properties. For example, to define that the product service has a
sensor, the object property ‘hasSensor’ is used to define the relationship between the
‘ProductService’ class and the ‘Sensor’ class.

• Creating data properties: Data properties are used to create the relationships between
an individual and data values. They are used to define the properties of the classes
and their data types such as string, int, double, etc. For example, the ‘SensorID’ is
defined as one of the data properties of the ‘Sensor’ class and its type is ‘int’.

• Creating instances: The last step for creating ontologies is to create instances of classes
included in the hierarchy. The creation of an instance of a class requires: (i) selecting a
class, (ii) creating an instance of this class, and (iii) filling the values of the instance
slots. For example, an individual instance ‘TemperatureSensor1′ is created to represent a
specific type of the ‘Temperature sensor’ class. After that, its object and data properties
are filled.
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In order to generate recommendations (e.g., sensors) for the customer (e.g., aerospace
engine manufacturer), the following steps are taken during the recommendation process:
first, the customer interacts with the RS via a web application to specify some information
about the product she needs to customize by adding smart sensors. A screenshot of our
recommender system knowledge acquisition user interface is provided in Figure 8. By
using this knowledge acquisition interface, the customer can specify some information
about the product she wishes to customize such as the product code. The customer may
also specify her business type and the temperature nature of her environment. In the
context of our case study, the customer indicates that the code of the milling machine she
wishes to expand by adding smart sensors is “P111”, her business type is “milling steel”,
the temperature nature of her business environment is “high”, and the size of her business
is large (cf. Figure 8).

Based on the specifications of the target customer, the DW is then queried to retrieve
the critical parts with the greatest number of incidents, the causes of those incidents, and
their neighbor influential parts in products similar to the customer’s product. The query
results are then passed to the rule-based sensor type recommendation module, a sub-
component of the recommendation engine, which employs a set of (if–then) rules to suggest
appropriate types of sensors based on the causes of the incidents that occurred on these
critical parts. For each suggested sensor type, a modular utility calculator component is
used to rank available instances of each suggested sensor type based on their utility to
the customer. The inputs to this modular utility calculator component are (i) the customer
interest in a set of sensor utility dimensions (e.g., reliability, accuracy, etc.) in terms of
weights, which are acquired from the customer during the recommendation session (cf.
lower side of Figure 8), and (ii) contributions of the suggested sensor type instances in a set
of utility dimensions/attributes.

Finally, the customer is presented with a list of sensor type instances ranked in de-
scending order based on their utility to the customer, implying that the sensor type instance
with the highest utility value is the best and should be chosen by the customer.

The output of this recommendation process is provided to the customer in a tabular
form as shown in Figure 9. According to the query results presented in Table 5 (cf. Rule-
Based Sensor Type Recommendation), the identified top critical parts, which are the ‘drive
belt’ and the ‘motor’, the suggested sensor types based on the cause of incidents that
occurred on each critical part, which are the ‘rotation speed sensor’ and the ‘temperature
sensor’, and the suggested location of each sensor, are presented to the customer based on
the customer specifications/preferences that are captured using Figure 8 and the data that
exists in the DW (cf. upper side of Figure 9). For each suggested sensor type, the customer
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is then presented with a ranked list of top-3 ranked sensor type instances (cf. center and
lower side of Figure 9).
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The prototype of the recommender system is implemented as a maven web application
using the Eclipse version (4.10.0). Version 8.0 of the Tomcat server was used. Both the
front-end and back-end synchronization are handled using Java, JSP, and HTML.
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6.2. Evaluation

In this sub-section, the performance of the proposed recommender system is evaluated
in terms of response time.

6.2.1. Experimental Setting

We set up an experiment with three knowledge bases. These knowledge bases are
deployed with different complexity in terms of the size of the DW (i.e., number of rows
in dimensions and fact table), and the number of available instances of each sensor type
as shown in Table 6. The data used in our DW multidimensional model is synthetically
generated using the Datanamic data generator [69]. The knowledge bases are classified
into small, medium, and large based on the previously mentioned attributes (i.e., DW size,
number of available instances of each sensor type), with the assumption that two critical
parts are identified and two sensor types are accordingly suggested to the customer. Our
experiment is conducted on Intel ® core ™ i7, with a CPU of 2.7 GHz and 8.0 GB of main
memory, under windows 10 pro.

Table 6. Description of the three knowledge bases used for performance evaluation.

Knowledge
Base DW Size

# of Available
Instances of Each Sensor

Type

Fact
Table Size
(# of Rows

Products
Dimension

Size

Time
Dimension

Size

Parts
Dimension

Size

Incidents
Dimension

Size

Incidents
Causes

Dimension
Size

Customer
Dimension

Size

Business
Environment
Dimension

Size

Rotation
Speed
Sensor

Temperature
Sensor

Small 500 200 250 100 100 100 100 100 5 5

Medium 750 500 500 200 200 200 200 200 20 20

Large 1000 1000 1000 300 300 300 300 300 40 40

6.2.2. Performance Evaluation Results

The goal of the performance evaluation is to determine how much time the RS takes to
calculate and provide recommendations to the customer based on her specifications. Table 7
shows how much time it takes to generate recommendations based on each knowledge
base. Based on the performance evaluation results depicted in Table 7, we show that our
recommender can provide recommendations even for the large knowledge base within the
recommended system response time boundaries presented in [70], which are as follows:

• 100 ms, is the upper limit for keeping users feel that the system reacts instantaneously.
• 1000 ms, is the upper limit for keeping users’ thoughts uninterrupted.
• 10,000 ms, is the upper limit for keeping the focus of the users on the dialogue.

Table 7. Performance evaluation results.

Knowledge Base Response Time

Small 3008 ms

Medium 5020 ms

Large 5061 ms

6.3. Discussion

In this paper, we proposed a DW-based recommender that assists customers in se-
lecting the appropriate types of sensors to install on their machines and their adequate
locations to regularly monitor machines’ functions. The proposed recommendation ap-
proach utilized DW capabilities to analyze large volumes of product usage incidents (e.g.,
cracks, leaks, faults, and breakdowns) from similar products to the one that the customer
wishes to expand by adding smart sensors. The analysis of these data helps in identifying
the parts with the highest number of incidents (critical parts), the causes of their incidents,
and the neighboring influential parts responsible for the occurrence of these incidents on
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those critical parts. As a result, these critical parts are suggested to the target customer
as the most important parts to where sensors should be installed in her current product.
Sensor types are then suggested to the target customer based on the causes of incidents
that occurred on those critical parts.

A case study that considers the rotary spindle units of a CNC milling machine is used
to demonstrate the applicability and utility of the proposed recommendation approach and
its implemented solutions.

The main difficulty in validating the proposed approach is the scarcity of large amounts
of real-world product usage data sets (e.g., product usage incidents); however, a sample
data set is generated synthetically using the Datanamic data generator [69] and used for
evaluating the performance of the proposed recommender system in terms of response
time. As future work, we plan to test the performance of the proposed system using a
large-scale data set, either generated or real.

7. Conclusions

Manufacturers are shifting from a traditional product-centric model to a service-centric
one by offering not only products, but products accompanied by services. This paradigm
is known as Product-Service Systems (PSSs). PSSs’ customization entails two intertwined
processes: product customization and service customization. Product customization is
the process of configuring products with varying degrees of differentiation to meet the
needs of different customers. Service customization, on the other hand, refers to the
expansion of customized products via the addition of smart sensors or Internet-of-Things
(IoT) communication devices in general.

Condition monitoring sensors are embedded in products or near production systems
to monitor physical parameters in machinery such as vibration, temperature, pressure,
etc., to detect changes that may indicate a developing fault. However, selecting the ap-
propriate types of sensors and their adequate locations is a challenge that the customers
are unable to manage effectively. Moreover, placing sensors randomly by customers may
result in cost increases. Accordingly, this creates a demand for the adoption of novel
techniques/approaches to assist customers in choosing the optimum types of sensors and
their adequate locations.

Therefore, this study aims to address two research questions: (Q1) how can data
analytics techniques be used to support customers in making informed decisions during
the customization of services process? Followed by (Q2) how can PUI, particularly product
usage incidents, be exploited to assist customers in making informed decisions during the
customization of services process?

We proposed a data warehouse-based recommender system that helps customers in
determining the appropriate types of sensors to install on their machines and their adequate
places. The proposed RS utilizes large amounts of product usage information, specifically
product usage incidents, from similar products to the one the customer wishes to expand
by adding smart sensors. By leveraging DW capabilities to analyze these large volumes
of product usage incidents (e.g., cracks, leaks, faults, and breakdowns), the parts with the
highest number of incidents (critical parts), the causes of their incidents, and the neighbor-
ing influential parts responsible for the incidents that occurred on those critical parts can
be identified, providing an answer to the first research question (Q1). Consequently, sensor
types for monitoring these critical parts are determined and recommended to the customer
based on this analysis and the failure modes at hand, and this provides an answer to the
second research question (Q2).

A case study that considers the rotary spindle units of a CNC milling machine is used to
demonstrate the applicability and utility of the proposed recommendation approach and its
implemented solutions. Moreover, the performance of the proposed recommender system is
experimentally evaluated in terms of response time using synthetically generated data. The
performance evaluation results depict that our recommender can provide recommendations
within the recommended system response time boundaries provided in [70].
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Future work efforts are going in parallel and complementary directions: (i) enhancing
the DW multidimensional model by incorporating new measures/facts that may improve
the recommendation process; (ii) utilizing 3D visualization and domain-specific languages
to present sensor recommendations in a user-friendly manner; (iii) enhancing data analytics
functions by incorporating advanced data analysis methods (e.g., deep neural networks).
Another potential research direction will be dedicated to the realization of the identified rec-
ommendation capabilities in [44] for the other processes of the PSS customization lifecycle.
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