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Abstract: Secure and reliable sensing plays the key role for cognitive tracking i.e., activity identifica-
tion and cognitive monitoring of every individual. Over the last years there has been an increasing
interest from both academia and industry in cognitive authentication also known as biometric recogni-
tion. These are an effect of individuals’ biological and physiological traits. Among various traditional
biometric and physiological features, we include cognitive/brainwaves via electroencephalogram
(EEG) which function as a unique performance indicator due to its reliable, flexible, and unique
trait resulting in why it is hard for an un-authorized entity(ies) to breach the boundaries by stealing
or mimicking them. Conventional security and privacy techniques in the medical domain are not
the potential candidates to simultaneously provide both security and energy efficiency. Therefore,
state-of-the art biometrics methods (i.e., machine learning, deep learning, etc.) their applications
with novel solutions are investigated and recommended. The experimental setup considers EEG
data analysis and interpretation of BCI. The key purpose of this setup is to reduce the number of
electrodes and hence the computational power of the Random Forest (RF) classifier while testing EEG
data. The performance of the random forest classifier was based on EEG datasets for 20 subjects. We
found that the total number of occurred events revealed 96.1% precision in terms of chosen events.

Keywords: cognitive authentication; IoT; healthcare; EEG; biometrics; sensing

1. Introduction

The key goal of the cognitive authentication is to identify, trace and track individual
differences of biological signatures, behavioral features such as facial expressions, fin-
gerprints, voice, eye movements, gestures, and postures, etc. [1,2]. At present numerous
emerging strategies related to the biometric authentication are being integrated and evolved
in interdisciplinary domains i.e., personal identification, access and assets monitoring ap-
plications. Among biometric-based technologies it is witnessed that EEG signals gathered
during behavioral and/or mental activity can be adopted for reliable authentication and
identification [3]. On one hand EEG enabled systems are contributing into the human
identity monitoring field, while at the same time we are facing various critical challenges
such as security, accuracy, privacy, and robustness, etc. To fix these concerns it is very vital
to develop innovative and secure methods to protect and secure the individual privacy [4].
The Human Computer Interface (HCI) is playing a catalyst role while displaying stimuli
(visual or auditory) and capturing signals recognizing the personal identity trait. There
are still large research gaps regarding security, privacy and energy efficiency. Resolving
emerging problems and trends in association with strong ties of Brain Computer Interface
(BCI) such as virtual headsets and internet are key parameters in personal authentication
and recognition [5,6].
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Traditionally security methods are not up to scratch and effective when looking at
simple legalization and identity monitoring issues. So, to cope with these problems an
EEG based physiological system is a suitable candidate for the upcoming next generation
systems [7,8] due brainwaves reflect/mimic the human mode and actions performed.
The secure, prominent and malware detection capabilities of brainwaves make EEG i.e.,
brainwaves unique and attentive for many fields especially wireless networks, various
industries, and academia. Few decades ago, some researchers worked and addressed the
emerging role and importance of brain signals while identifying and monitoring the activity
of the individual entities [9]. Biological features are key since long time and emphasized
by researchers and academics [10]. Brainwaves are related to the neurons of the human
showing various brain activity in regular and random ways [11]. Due brainwaves’ strong
connection and association with mental tasks, their states are hard to interpret, copy and
hijack from external source if used as passwords. Moreover, EEG signals are interlinked
with someone’s thoughts, knowledge, and memory which makes it hard for someone to
exploit, steal and replicate [12,13]. EEG reflects and contains the information from human
neurons via small, more effective, and lightweight devices [14–16]. To fulfill and meet the
demands of public citizens it is to provide a highly secure and energy efficient protective,
flexible, scalable, unique, and stable biometric system to compensate for the drawbacks of
current conventional platforms [17,18]. However, EEG performance suffers in some fields
due to noise, interference, and compatibility issues. EEG enabled systems still need higher
maturity and improvement in high-level security, comfort, and ease to end users. Therefore,
it is very important to propose a novel, and unique EEG enabled biometric platform for
real time or near real time healthcare applications. This paper reviews, addresses current
trends and practices in the field of EEG based biometric systems and discusses the key
merits, demerits with a recommended tentative future solution.

Authentication is considered as the key part in computer platform security, and
this prevents access by hackers and illegal users. In addition, the process is to match or
check the similarity and coherence between stored and obtained data. In an agreement
condition, a person or a computer is potentially allowed to access the system else pro-
hibited. It is important to have the accurate authentication rights to access the system.
The result of a non-secure system is information privacy leakage and breaches which will
further result harming the customer. Today’s most powerful authentication systems have
password protection and identity monitoring. Users make themselves recognizable via
words/passwords, but this let alone is not enough to fully identify and protect personal
information. The traditional password protection is lacking in cognitive uniqueness there-
fore anyone can steal and hack it. To advance a poor password and keep it secure the
user needs to increase the complexity-level which will be very hard to memorize. To
progress and replace current orthodox security techniques, it is suitable to introduce and
address the notion of biometric authentication. Tangible features as fingerprints, voice
and facial expressions are hard to be compromised and stolen by attackers and intruders.
Thanks to tangible brain readings recorded via EEG, it creates strong unique identity traits
hard to replicate. It is observed and analyzed that other physiological features such as
Electrocardiography (ECG) is easy to attack and exploit.

The main contribution of this paper is to present an extensive review about a secure,
reliable cognitive/EEG-based authentication system for the IoT-driven healthcare applica-
tions as revealed in Table 1. The paper analyses 20 subjects’ EEG datasets imported from the
Physionet bank ATM database and validates the performance of the proposed framework
in terms of performance indicators via accuracy, precision, true positive (TP) rate and
precision with the help of the Random Forest (RF) classifier as shown in Table 2. In addi-
tion, this research focuses on EEG-based biometric systems, their advantages, limitations,
applications, and to propose a novel framework approach.
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Table 1. Related Works.

Ref. No. Applications Proposed Solution Merits Demerits

[1–10] EEG, ECG, Secure BSN for
medical care Security and privacy Energy efficient Complex and inefficient

[10–15]

Smart, secure, and private
media and bio-signal based

Healthcare, IoT, physiological
signals

Secure power control Duty-cycle, data rate High energy and battery drain
during media transmission

[16–20]
Vital sign signals, security in
cloud healthcare, EEG, ECG,

medical IoT
Cloud and battery enabled Fairy and battery efficient Less power-aware and secure

[21–25]
WSNs, Secure and

energy-aware IoT and BSN,
EEG, vital sign signals

Frameworks and protocols Extensive survey for
healthcare

Not focused on mobile
healthcare

[26–30]
Medical IoT, EEG, Data
integrity and security in

healthcare

Energy-aware and routing
protocols

Energy optimization and
efficient routing

Complex and less
battery-efficient

[31–35]
EEG, Privacy in medical

industrial applications, smart
healthcare

Energy harvesting and
duty-cycle enabled Battery and energy-aware Inappropriate for medical

healthcare

[36–38]
EEG, medical IoT, Security and
privacy in Telemedicine and

BAN
QoS optimization based Efficient QoS management Less Battery and energy

-efficient for healthcare

[39–41]
EEG, ECG, SpO2, smart and
Secure healthcare, efficient

Cellular networks

TPC and relay selection
based

Novel Architecture and
resource allocation

method

High battery and energy drain in
medical healthcare system

[42–44] Private and secure
communication systems

TPC and resource
allocation

Energy optimization in
wireless and sensor

networks

Complex and less reliable for
dynamic healthcare

[45–48]
ECG based secure BSN,
Telemedicine, remote

healthcare

Energy and battery-based
frameworks and method

Efficient resource
allocation

Complex and less battery-aware
for medical services

[49–51] Resource allocation in smart
medical networks, EEG TPC and radio-aware

Intelligent resource
monitoring in radio

networks
Unsuitable for healthcare system

[52–56]
Efficient and secure Future
Networks, EEG, vital sign

signals

QoS and Energy
Scavenging

Novel energy and QoS
efficient

Complex and less reliable for
healthcare system

[57–61]
ECG, EEG, physiological

signals, smart healthcare, IoT,
lifecycle

TPC and QoS-aware
framework Detailed survey Not focus at joint duty-cycle and

TPC

[62–66] Secure and cryptographic IoT
for healthcare

Energy and
battery-oriented

Novel Physical layer and
framework for healthcare

Complex, less reliable without
duty cycle

[67–70]
Green, battery-aware

healthcare, BSN, medical IoT,
ECG, EEG

Fuzzy based secure Secure home monitoring High energy drain

[71–74] EEG, ECG, secure and
pervasive WSN TPC and battery-based Efficient media

transmission More battery drain

[75–77] Smart healthcare, Biometric
based IoT, vital sign signals

Framework and
battery-aware

Efficient lifecycle
management Less energy saving

[78–83] EEG, medical IoT, Secure
Telemedicine and CPS

Optimal resource
allocation

QoS monitoring and
management More energy and battery drain

[84–90] EEG, healthcare, Ubiquitous
secure and digital based TPC based and framework Novel ECG monitoring

algorithm and framework More battery drain
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Table 1. Cont.

Ref. No. Applications Proposed Solution Merits Demerits

[91–98] Smart and Green systems,
EEG, Security

Routing protocols and
framework Routing and battery-based More energy dissipation

[99–110] Smart healthcare,
Cryptography and privacy TPC-aware Novel Framework and

method High battery drain

[111–114] BCI, EEG datasets EDF tool for data Performance metrics RF classifier

Table 2. Experimental analysis of EEG data by using Random Forest classifier.

Subject Accuracy TP Rate Precision AUC

S1 86.01% 0.86 0.902 0.956
S2 67.3% 0.670 0.654 0.836
S3 90.01% 0.90 0.951 0.956
S4 96.11% 0.961 0.961 0.987
S5 64.41% 0.644 0.65 0.713
S6 62.34% 0.623 0.624 0.81
S7 60.12% 0.601 0.62 0.713
S8 89.37% 0.894 0.892 0.951
S9 84.11% 0.841 0.80 0.930
S10 99.43% 0.994 0.965 1
S11 95.73% 0.96 0.965 0.988
S12 88.41% 0.884 0.815 0.875
S13 60.17% 0.602 0.601 0.80
S14 61.38% 0.614 0.602 0.780
S15 59.44% 0.594 0.673 0.804
S16 95.31% 0.953 0.954 0.985
S17 89.43% 0.894 0.910 0.976
S18 90.37% 0.904 0.900 0.968
S19 61.42% 0.614 0.601 0.801
S20 98.31% 0.983 0.983 0.976

The paper is organized as follows. Section 2 presents an extensive review of current
work, further in Section 3 a secure and reliable cognitive/EEG-based authentication system
is presented. Section 4 proposes the novel framework for the same system. Methods of the
system are addressed in Section 5. Detailed applications of are explored in Section 6. After
in Section 7 tentative solutions and recommendations are presented. EEG data collection
and experimental setup is presented in Section 8. Last in Section 9 a conclusion of the paper.

2. Existing Work

In the following section, several papers by various researchers are listed and compared
in relation to focus and respective traits with the aim to provide a secure solution for public.
With respect for all individual efforts there is still room for innovative solutions using EEG.
Some of the relevant research contributions are listed, what focus and crosschecked in
Table 1 below.

First part of this extensive survey presented the security and privacy related tech-
niques, solutions, and challenges, while the second part was mainly concerned with the
biometric enabled systems and their comparisons to the traditional platforms, limitations,
and advantages. Thirdly, proposes the tentative solutions, and recommendations.

3. Deficiencies in Authentication Methods in IoT-Based Healthcare Applications

Current traditional human physiological features are not satisfying the needs for
several domains i.e., medical hospitals, industrial platforms, and academia. In comparison
to the traditional password authentication process, the biometric tracking is more feasible
and unique with its physiological features. The output from the human body parts result
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in reduced efforts memorizing extra passwords and security codes. The biometric input
tracking from human is given below:

• Fingerprint scans: Scans and maps fingers.
• Handprint scan: Tracks and scans the entire pattern of the hand.
• Voice identification: Recording human voice signals and traits.

Some important steps must be taken into consideration though while introducing the
concept of real-time applications.

For a system of this kind, it needs some common prerequisites to perform to meet
individual unique needs;

i. Universal: Monitoring the identity of the system-users we need biological traits to
minimize the chances of information leakage.

ii. Uniqueness: To differentiate every human physiological feature from others to
achieve an accurate error free result.

iii. Stability: There should be less variation and more accurate outcome.
iv. Flexibility: Adaptive and scalable in nature regarding the physiological features.

As a result, it will be hard decoding and leaking the secret information.
v. Acceptability: Important is to get individual consent for tracking and storage due

private nature.
vi. Durability: Biological features are harder to replicate and this way also more sus-

tainable dealing with security issues.

As we have already said EEG based authentication is widely adopted, precise, secure,
and broadly accepted in the Security domain. The EEG activity mirrors different modes
such as anger, happiness, crying, sadness, etc. Every single trait is unique therefore has a
separate impact on entire individual signature performance. Mental activity and performed
actions are replicated and mirrored in the EEG and works as signifiers during data analysis.
These mental tasks have close and strong ties with the produced EEG patterns which
serve to be more secure, and this way keep away a common intruder or un-authorized
entity. Hence, in this situation it can be said that EEG based biometric is the two-step
authentication and integration process. There are several other fields where EEG has
remarkably played the major role in providing the security and innovative practices, that is
why EEG based features outperforms the others. Most importantly, EEG or brainwaves
are related to the human neurons so when these are active and functioning properly than
several signals and information types can be exchanged. In other words, we can say that
EEG is a more prominent communication pattern identifier unlike other biological signals.

In case of emergency, injuries, and other accident issues the biometric pattern(s) can
be affected and people are in this case not allowed to attend personal authentication until
their injuries are healed. One hazard and limitation, fingerprints can still be performed in a
state of dizziness and inactive mode. If fingerprints are cross checked with the EEG signal
though it is still hard to be hijacked and leaked. EEG based techniques in comparison to
fingerprint authentication is facing a critical challenge of Gaussian noise which can affect
sensitive healthcare information. This means we must be aware of both pros and cons from
embodied electrodes/leads.

4. Proposed Framework of Cognitive Authentication System

We would like to propose a novel cognitive authentication framework comparing
various core concepts of privacy and security provisioning shown in Figure 1. This cognitive
authentication framework of cognitive/EEG signals are processed, extracted and classified
by adopting machine and deep learning based on adaptive methods. After human computer
interaction (HCI) is established the feedback from HCI via the original EEG signal plays
a significant role when managing and monitoring the brain wave authentication. Our
proposed framework is most simple, efficient, and secure for the medical healthcare sector
applications facilitating the patients and physicians at an economical rate. We aim to
develop a prototype of brain wave monitoring under strict security assurance. The key
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characteristic of the proposed framework follows. To limit complexity a dynamic self-
identity management mechanism i.e., biometric system can be developed merely with the
EEG signals. From previous research results we realize there is no mature nor practical
biometric system of self-adaptive nature character i.e., security and energy optimal. In this
regard, it is vital to have an EEG-based cognitive ideal authentication system allocating
parameters in an efficient and authenticated way.
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4.1. Simple and Efficient

It is observed and analyzed from previous research studies that high performance
can be achieved from a well deployed and secure system [15–19], while with a more
computational complex task(s) system a threshold is met due to more resources e.g., time
consumption and longer delay. The authentication, balances between individual entities on
one hand which on the other hand affects other parts of the system.

4.2. Channels and Electrodes

Numerous types of EEG headsets are adopted for exact and accurate measurements
to provide high level security in both clinical and academic contexts. It is proved that
as the number of leads/channels are increasing than higher and better accuracy will
be achieved [11]. With high accuracy there are less chances of information hack and
eavesdropping. A strong presence of security level is a prioritization. A simple and less
probes-based EEG system takes less computational power and results in compromised
security, that is why not a potential candidate [15–20]. Researchers [21–25], propose wet
EEG electrodes for high signal accuracy, calibration and less noise, interference unlike the
dry leads.

4.3. Data Collection Pattern

Large data sets enhance the accuracy of the adopted algorithms. Researchers in [12]
examine the voluminous datasets into single and multi-patterns. Authors in [14] examine
categorization of different subjects based on different factors for example, maximum
number of participants, accuracy of the system and outcome. Systems with data from few
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subjects are not robust. Researchers in [20] present data gathering tools based on several
subjects with their unique features and problem-solving traits.

4.4. Computational Cost

Computational cost is related to several techniques and parameters such as number
of electrodes, thinking responses, heartbeat fluctuations, behavior analysis, and neural
and fuzzy based machine learning methods, etc. Integration of classified traits extend and
promote accuracy levels even if longer delays.

4.5. Stability

Cognitive/EEG or human brain waves are dynamic and well pattern-based mecha-
nism with adaptive nature. In addition, the action and activities are revealed according
to priorities and choices of humans towards training [23] of their mind. Most of the time
real-time data sets are helping to identify the behaviors and ties in terms of his/her con-
sistency and attitude [25]. In the long run data sets are not suitable candidates analyzing
an entire behavior of a human. Live human actions in combination with mental tasks are
more promising and relevant fully incorporating the desired tasks.

4.6. Flexibility

Traditional biometric based systems are hard to change due to their close association
with the human biological features unlike the password-protection based on secure and
authenticated attributes. In the present era, EEG enabled biometrics has created huge
attention worldwide according to the advancements of capturing human brainwaves and
mental task readings [11].

5. Methods for Cognitive Authentication System

There are several methods for security and privacy preserving data and information
but biometrics is the best suited method to deal with the vulnerability problems. Here we
present some of the techniques providing efficient methods.

5.1. Machine Learning

Self-adaptive and intelligent techniques are the key ingredients to revolutionize the
digital world without the intervention of the external features and resources. The machine
learning (ML) driven techniques are highly dependent on the datasets by analyzing and
examining the critical challenges for instance, linear regression, hierarchical, and clustering
etc for the clear understanding of desired target. So, this sub-section highlights the impor-
tance of intelligent techniques in portraying the clear characteristics of EEG to evaluate the
disease type. After careful examination and importance of the self-driven mechanism ML
is separated into following keys methods.

â Supervised learning: In this method tags are assigned to specific data types by clas-
sifying main groups/category(ies). Besides, data patterns are extracted based on
preliminary data models by properly guiding the future techniques.

â Unsupervised Learning: There is no particular label to the clustered data sets due to
the self-learning learning nature of the data-driven model. In addition, data patterns
are recognized based on previous gained knowledge.

â Reinforced Learning: The key characteristics of this data model is to communicate
with external entities by collecting and enhancing the knowledge. Then a reward or
penalty will be assigned based on the action (i.e., success/failure) taken accordingly.
Furthermore, data models are trained and analyzed by adopting two intelligent sub-
areas such as, support vector machine (SVM) and deep learning (DL). Both SVM and
DL follows the supervised learning strategy to further improve the performance of
entire system. In last, this learning mechanism helps the brain to analyze the EEG
behavior in a better, self-adaptive and effective way.
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For further understanding the clustering and classification challenges in data models
such as SVM is considered as the key role player. Data sets are spread and adopted in
multi-dimensional areas with number of rows and columns. While this paper considers the
EEG as an evolutionary mechanism for understanding the human brain activity. SVM is
involved to build hyper-planes and by classifying and categorizing the data/data models,
the hyper-plane is very vital to compose the desired datasets. In the bunch of data sets one
hyper-plane is enough to lead the entire group. Wise selections of hyper-planes give better
options to play with datasets managing, monitoring, and classifying them into intendable
and interpretable platform outcomes. Furthermore, hyper-planes are the key ingredient to
deal with the datasets in this intelligent data world.

5.2. Deep Learning and Neural Network

Deep learning (DL) lies under the umbrella of machine learning, and it is used to
model accurate and efficient modelling of random and abstract data content(s). The DL
adopts less computational steps to complete a task with short time span unlike traditional
ML methods, so it is preferred in most research. DL foundations are also key steps toward
an artificial human nervous system integrated with robotics and self-driven fields. Besides,
a multi-layer hierarchy is adopted in the entire system with its input from previous layer
as output of the next coming one, this will continue up to the intended outcome with
minimum error. All the interconnected layers exchange the information among each other
and other associated entities at lower and higher levels through the specific functional
units, neurons. Most of the interconnected entities i.e., neurons function by adapting vital
procedural parameters from well-known DL models for instance, deep neural networks
(DNN), convolutional neural networks (CNN), and recursive neural networks (RNN). In
this research DNN is considered as the game changer and potential candidate to tackle the
entire process in EEG monitoring, clustering, and management.

Our targeted DNN platform comprises input, output, and hidden layers to form
the long lasting and collaborative hierarchical network for data exchange with specific
processing units and task allotment. Each layer is characterized with the number of nodes
to fulfill the criteria of the network by properly designing the entire platform with slightly
more deviation in the hidden layer format with distinct features. In addition, a hidden
layer plays the major role in analysing the computationally complex process of several
inputs and outputs.

5.3. Self-Adaptive and Dynamic Resource Allocation

Using the methodology of neural network and fuzzy logic the resources such as,
battery lifetime and power can be allotted to medical devices in a fair and intelligent way.
Security is the major challenge for EEG devices, power and battery lifetime results in less
storage space for these devices.

In this regard compressive sensing is the potential candidate in most of the traditional
platforms, but still there are several limitations while dealing with EEG based biometric envi-
ronment. So, to remedy most of the issues chaotic compressive sensing is a suitable option.

6. Applications of Cognitive Authentication System

There are various applications of EEG-based cognitive authentication systems, some
widely scoped and discussed one by one below.

6.1. Medical Healthcare

Pervasive nature of mobile devices in healthcare domain face hard challenges while
securing the sensitive information between various entities from patients to physicians and
from medical clouds to hospitals. In other words, we can say that there is a need of novel
EEG based biometric techniques to fix both the energy efficiency and security issues.
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6.2. Industrial Enterprises

In today’s emerging era of the forth industrial revolution, Industry 4.0, there is a need
of highly demanded security and authentication methods to deal with the security and
management issues of voluminous data from different industries. If customers are not
getting proper security while buying any product it will be hard to gain their trust. Thus,
product owners must guarantee valuable security and efficient methods.

6.3. Access Control and Personal Identity Management

Personal security and identity monitoring is the first and foremost priority of everyone
signing any contract, agreement, or bond with anyone, anywhere. Without proper trust
and belief one cannot assign, handover his/her property at risk. Specially, in the healthcare
domain it is very vital to respect and protect patient’s secret and sensitive data and keep it
away from any harm. Hence, it is important to propose novel access control for personal
data/information management.

7. Advantages, Limitations, Tentative Solutions and Recommendations

This section presents the novel tentative solutions with potential recommendations
for solving the security issues in most of the areas especially medical information commu-
nication technology (MICT) for healthcare.

EEG-based cognitive systems with biological features are key players in selecting a
suitable protocol to monitor and identify the identity of individuals for the better and
strong security levels. Noise and interference occurs between neurons while adopted for
human identity recognition due to separated and unique roles for each biological trait
in the biometric system. Moreover, collected random neurons are associated with the
mental tasks and superimposed behavior of other similar functional brainwave signals in
speeding up the entire process. Physiological features such as eye movements, hear-rate,
blood circulation are a little bit different from the EEG signals. The huge and bulky load
of brain responses, the interference and noise levels are relatively low while recording the
EEG signals. Thus, some careful and efficient steps must be taken to remedy most of the
unwanted noise in the very sensitive information throughout the system. The main beauty
of the EEG based signals for biometrics is that there is slightly less noise and artifacts [42].
The downside of EEG enabled biometrics is that the security level is less reliable when
low-cost hardware devices are adopted. These security challenges are part of practical
issues in the healthcare domain [11].

EEG based systems are not new, also widely portrayed in various domains since long
time. Some key problems faced while deploying such system, there are no direct off the
shelf suitable tools and software, second, more computational complexity, and delay in
transmitting/exchanging information to intended users.

7.1. Advantages of Cognitive Authentication System

Emerging trends and rapid proliferation in the technological EEG-driven cognitive
authentication systems era emit every living being unique brain pulses for stimulating
the visual and auditory sections. EEG maps the signal of brain activity related to either
(1) screen stimuli or (2) thought process. If gaze is used in addition to a thought process, then
we can add these screen coordinates as an additional authenticator for security reasons. If a
person looks at a stimulus it generates both an EEG signal via the electrodes and also a gaze
pattern via gaze tracking. The latter shows what a person is looking at on the screen while
the EEG signal indicates a COS/SIN curve which does not reveal anything of gazed location
on the screen nor the gazed content. The abstract thought processes of thinking, emotions,
dreams, perceptions, feelings, levels of happiness and sadness all impact on the outcome of
mental process generating unique EEG patterns accordingly. In an event-triggered situation,
the critical brain waves will show different responses in comparison to a normal situation.
These various patterns are hard to crack if anonymous to the intruder. Moreover, EEG
based security methods are more robust to handle hacking and eavesdropping as compared
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to conventional methods. In case of illegal and forceful authentication by intruders and
attackers, the security level will not be compromised. Therefore, it can be said that other
less secure and ineffective methods are easy to be interpreted and compromised and not
reliable and sustainable entities in a security provisioning domain [8]. In other words, it
can be said that EEG signals are built-in, or by-default featured for high level security and
are hard to comprise as compared to other technologies [6]. Due to simple, effective ways,
they are hard to decode. These technologies revolutionize the biometric platform era with
high end security patterns in combination.

7.2. Limitations of Cognitive Authentication System

The EEG signal capturing devices are low power oriented which is not a limitation
itself. Pre-processing is more sensitive to handle due fast paced feedback responses happen-
ing in a few microseconds. Most of the current technologies are leads/electrodes integrated
for calculating the EEG signals with non-invasive nature. However, the responses recorded
by an electrode varies to a large extent even if its position deviates by a minuscule pat-
tern [29]. Electrodes must be implanted in a careful, exact, and proper manner while
providing high authentication for a system. Consistency between EEG signals before and
after examination is important to take under consideration [30].

Subjects with both physiological and mental conditions and their data readings must
be synchronized to meet a sustainable and stable accurate baseline performance maintain-
ing high security level. The captured brainwaves reveal the mental task via continuous
measurements. This means any slight change in mood or mental state will be reflected
during measurements. To prevent and to create a calibrated baseline, it is required to keep
a steady mental state prior EEG recording.

Therefore, it is preferred to put individuals in rest mode by closing their eyes and
turn-off all unwanted sources to provide high level efficiency for collecting the accurate
and desirable EEG signals. This way we can get eliminate data noise and disturbances.

7.3. Recommended Solutions
7.3.1. Solution1: Chaotic Compressive Sensing Enabled Authentication Scheme

A chaotic random captured mental process is hard to interpret. A more secure mecha-
nism is sought for. The simple non-random data generation technique is more promising
to build a matrix for a strong security platform [43]. In addition, this procedure forms a
unique matrix by well-defined and clear steps. Most popular example of a chaotic process
is the chebyshev chaotic filters [50–53] for further data generation operation.

The principle of this solution is based on the generation of a particular matrix en-
crypting the information, then transmitted over the wireless channel and finally decoded
at the receiver side i.e., edge computing embodying higher security measures. The main
advantages are to occupy less storage space, security and energy efficiency in the medical
healthcare applications, as shown in Figure 2.

Efficient and voluminous storage space reduction are main traits of the compressive
sensing providing a secure and energy efficient system in the healthcare environment [25].
Small size nodes communicate among themselves and neighboring nodes with help of
intermediate routers i.e., relays up to shorter distance. Those relay nodes are necessary
exchanging information between themselves (from-to), but it is not necessary to interpret
and decrypt the messages from any outside device/relay. Only an authorized entity is
allowed to decrypt/decode the message from a transmitting entity. Based on that message
sharing capability using a sender-receiver pair, a measurement matrix will be generated to
avoid information leakage and eavesdropping.
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A random key is generated in a dynamic way unlike the traditional methods, so it
is robust and accurate. This optimizes the resources in an efficient and autonomous way
and will be widely used in the Bluetooth low energy domain including internet of medical
things-based applications, as presented in Figure 3.
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7.3.3. Solution 3: Adaptive and Random Key Generation Mechanism

This solution can be effective and sufficient for the emerging mobile healthcare appli-
cations such as, Low Range (LoRa). The key mechanism of this approach is to generate
the master key, which is eXclusive OR (XORed) with the certificate from a third trusted
party. After receiving a certificate and a master key then an initial key will be produced
protecting the entire system by adaptively adjusting the keys, as revealed in Figure 4.
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8. Experimental Setup

To demonstrate the EEG based authentication method an experiment has been con-
ducted to be able to showcase how we practically design, set up and use these measure-
ments. Below are required steps including chosen datasets, events, classifiers, and results
from these.

8.1. A. EEG Data Sets

We obtained EEG motor movement/imagery datasets from one of the largest and
widely used databases called Physionet [112–114]. The selected datasets comprise 2 min
indivudal EEG recordings of 109 subjects using the European Data Format (EDF) web
browser. The data contains 64 scalp electrodes while performing a few tasks shown in the
Table 2 below. In this experiment we considered only 20 subjects (s1, s2, to s20) out of total
109 data recordings.

One of the EEG subject scenario procedures are asking subjects to perform two actions
at the same time i.e., reinforced activity consisting of opening and closing their right and
left hand physically and at the same time mimicing the movements mentally. After this
activity the subjects are asked to relax so baseline can be met.

8.2. B. Event Extraction

The recordings are in a comma-seperated-values (CSV) format containing Motor
movement/imagery EEG data obtained from Physionetbank ATM and further analyzed via
the European Data Format (EDF) browser. The main purpose to choose the EDF browser to
obtain annotations and events during the experiments with temporailty, including start
and total time of entire experiment. The chosen datasets carry three annotations which are
time 0, time 1, and time 2 [T0, T1, T2] measuring the performance by included subjects.
Notice all time related actions are performed as indiviudal isolated tasks. Further detail of
the annotations are given as:

• T0 shows either (1) the event where the subject is in entire rest position or (2) perform-
ing any imagined motor movement task.

• The T1 event reveals the subject’s left-hand movement while performing either a
physical or mental task.

• T2 is mainly reserved for observing subject’s right-hand movement either physically
or mentally.
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8.3. C. Classification

The EDF browser is used to achieve annotations for output labels so it is possible to
run the classifiers; T0, T1, and T2 for each subject. For each classifier we have 64 electrode
data points involved for effective and accurate classification as shown in Table 2.

The effective classification result is using the Random Forest method creating decision
trees from training datasets in a random fashion [112–114]. The selection of an individual
decision tree and different decision trees are the main decision factors of a final class of
an object under test. The Random Forest classifier is adopted in our experimental setup
because it is efficient and gives accurate estimation and classification with multi-inputs by
large datasets.

8.4. D. Results and Discussion

The weighted mean of all included classes for each of the 20 subjects by considering the
Random Forest Classifier for measuring the performance in terms of four main performance
indicators for instance, accuracy, precision, true positive rate (TPR) and ROC area is
presented in Table 2.

Precision: The small fraction of related events from the total number of occurred
events in the experimental setup defines the precision. Suppose precision for S4 is 0.961,
which reveals that 96.1% of chosen events are identical or related to each other as presented
in Table 2.

True Positive (TP) Rate: The small number of positively corrected instances from total
positive events gives the status of TP rate. One of the examples in Table 2 highlights the TP
rate for S10 is 0.994 which means that events are classified with correction upto 99.4%.

Area Under Curve (AUC): For accuracy measurement of classifiers AUC is the ap-
propriate indicator for test verfication, so higher the AUC means the better the test is. For
instance, If AUC is 1, it means test of classifier is good and effective, while 0.5 shows poor
or ineffective test. Table 2 shows the AUC value less than 0.7 for some subjects, and greater
than 0.6 for most of the subjects. It is observed that test does not fail (less than 0.5) for any
subject in our experiment which means Random Forest classifier is the potential candidate
with better accuracy for 20 subjects.

Working through the cognitive authentication method and reviewing prior works, it
is realized that any possible weaknesses such as possible falsification of data and/or online
hijacking must be highlighted. Any data type, and number of features and signatures can
be hard to replicate/mimic as previously said but even an inserted malware could possibly
crack individual features over time. So, there must be potential solution for cognitive
authentication with strong protective wall/firewall. In near future study we will run a
cognitive authentication and try to hijack the authenticator/intruder with and without
using firewall to check how long it takes to breach the security and reveal the identity.
In other words, it can be safer if we connect cognitive authentication with two-factor
authentication for strong security measure.

9. Conclusions and Future Research

This paper broadly presented the state-of-the art solutions and recommendations to fix
the security and privacy problems by proposing the novel EEG-driven secure and reliable
cognitive authentication system for a IoT-based healthcare system. An EEG-based cognitive
authentication framework is proposed. Most remarkable and prominent EEG enabled
biometric platforms are explored and addressed by both researchers and academics from
practical aspects. It is analyzed and predicted from the broader scope and outcome of
the EEG-driven biometric system that this can be adopted as a guide and trend setting
solution for the next generation systems. It can be emphasized that future biometric
environments must be developed in such a way that EEG channels/leads, algorithms, and
signal processing techniques have strong ties with high level of coordination. By keeping
in view, the demand of the healthcare in today’s world it is investigated that the energy
optimization and security of nodes during information exchange are critical factors.
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The key purpose of our experimental setup is to reduce the number of electrodes
and hence the computational power of Random Forest classifier while testing EEG data.
MATLAB is adopted for analysis and measuring the performance of the random forest
classifier by testing EEG datasets of 20 subjects. We found that the RF classifier outperforms
by revealing accurate and effective results, thus can be recommended for future similar
scenarios and applications.

Hence, our future research will focus on the chaotic compressive sensing and self-
adaptive i.e., machine learning strategies for the betterment of both security and power
allotment in a fair way. In addition, the hardware, and the software platform for the chaotic
compressive sensing for the e-Healthcare applications will be developed.
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