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Abstract: Three-dimensional reconstruction is a crucial technique for mapping and object-search
tasks, but it is challenging in sonar imaging because of the nature of acoustics. In underwater sensing,
many advanced studies have introduced approaches that have included feature-based methods and
multiple imaging at different locations. However, most existing methods are prone to environmental
conditions, and they are not adequate for continuous data acquisition on moving autonomous
underwater vehicles (AUVs). This paper proposes a sensor fusion method for 3D reconstruction
using acoustic sonar data with two sonar devices that provide complementary features. The forward-
looking multibeam sonar (FLS) is an imaging sonar capable of short-range scanning with a high
horizontal resolution, and the profiling sonar (PS) is capable of middle-range scanning with high
reliability in vertical information. Using both sonars, which have different data acquisition planes
and times, we propose a probabilistic sensor fusion method. First, we extract the region of interest
from the background and develop a sonar measurement model. Thereafter, we utilize the likelihood
field generated by the PS and estimate the elevation ambiguity using importance sampling. We
also present the evaluation of our method in a ray-tracing-based sonar simulation environment and
the generation of the pointclouds. The experimental results indicate that the proposed method can
provide a better accuracy than that of the conventional method. Because of the improved accuracy
of the generated pointclouds, this method can be expanded for pointcloud-based mapping and
classification methods.

Keywords: sonar data processing; 3D reconstruction; sensor fusion; forward-looking sonar; profiling
sonar; underwater sensing; acoustic images; sonars

1. Introduction

Three-dimensional reconstruction from acoustic images is an important task in under-
water sensing because an acoustic sensor, that is, image sonar, is robust to water turbidity.
Because of the current improvement in sonar technologies, forward-looking multibeam
sonars (FLSs) provide high-resolution 2D acoustic images that are similar to optical images
from a camera [1]. However, compared to optical images, acoustic images experience qual-
ity degradation caused by the image-generating mechanism, such as the loss of elevation
information, perceptual ambiguity, and a low signal-to-noise ratio [2]. These drawbacks
complicate 3D reconstruction, including pointcloud generation using FLS.

For 3D reconstruction with sonar images of FLS, additional constraints are required,
which categorize the approaches for 3D reconstruction using FLS. One approach is shape
from shading [3,4]. The results from this approach depend on the environmental condition
of the seabed; thus, precise calibration is required for the environment. Another approach is
the use of feature-based methods, which are conventional approaches in computer vision al-
gorithms, such as structure from motion (SfM, [5–7]). However, feature-based methods are
difficult to implement in practical applications because of noisy data caused by interference,
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specifically with the background in sonar images, and perceptual ambiguity. Multiple-
imaging sonar views of a scene, such as space carving [8,9] and deconvolution [10], are
another approach. To obtain multiple images around an object of interest, the autonomous
underwater vehicle (AUV) with FLS should remain at a certain site or reroute the tra-
jectories that consume unnecessary time and energy. To prevent unnecessary rerouting,
Cho et al. proposed an incremental 3D pointcloud generation method with a forward-
moving AUV [11]; however, vertical ambiguity due to the vertical beamwidth caused an
improper slope in the front area of the object of interest, thus degrading the quality of
the resulting pointcloud. To improve the quality of the generated pointcloud, Joe et al.
proposed another method for underwater 3D reconstruction, which uses two sonar devices
with complementary information [12]; this method requires a segmentation process for
the front slope of an object in the pointcloud, which increases the computational load. In
addition, a Monte-Carlo-based approach for 3D reconstruction was introduced in [13],
which presented a method using a likelihood map generated by profiling sonar (PS) data
and utilized it for reconstructing the elevation information of FLS data. A drawback of this
method is biased dependence on PS information, so horizontal accuracy is not guaranteed.
To overcome the limitation, we propose an improved method using the probabilistic sensor
model and importance sampling with combined weight calculation.

In this paper, we present and address an improved method for 3D reconstruction
that is applicable for multiple objects on the seabed by using a probabilistic approach
with two sonar devices: FLS and PS. FLS is a high-frequency multibeam sonar capable of
short-range scanning with high horizontal resolution, while PS is capable of middle-range
scanning with low horizontal resolution but high reliability of vertical scanning. To exploit
complementary information, we adopted a crossed installation of two sonar devices in
such a way that the PS was laid down on its side and mounted on top of the FLS. From
this installation, the FLS scanned reliable horizontal information and the PS scanned the
vertical profile of the middle-range front area of the AUV. The fusion method is addressed
in Section 2, including the extraction of a region of interest (ROI), probabilistic sensor
model, and improved weight calculation. Through the sensor fusion of the complementary
characteristics of both sonars, 3D information is reconstructed. The proposed method
was verified using simulations and experiments. The experiment was conducted using a
hovering-type AUV in a real sea. The proposed method can generate 3D pointclouds of
vertically extruded objects deployed side by side, which can be applied for underwater
mapping and the search for small objects by using the pointcloud-based classification
method [14].

2. Method
2.1. Characteristics of Sonar Imaging

The FLS consisted of 96 transducers with a linear arrangement, and it synthesized
fan-shaped beams with 29◦ and 14◦ in horizontal and vertical spreading angles, respectively.
The returned beams were synthesized into an acoustic image with a size of 512 × 96, as
shown in Figure 1. For acoustic beam geometry, let the altitude, tilt angle, azimuth angle,
and vertical beam spreading angle of the FLS be hr, t, φ, and s, respectively. rc represents
the returned beam at the top- and front-most part of an object. The field of view (FOV) of
the FLS is determined by remin and remax, which are related to the vertical spreading angle,
tilt angle, and altitude of the FLS. In the FOV, acoustic beams returned at the equal range
are mapped into the same point (Figure 2), which causes the loss of elevation information.
If the object shapes are complex and protrude irregularly, the loss of information causes
perceptual ambiguity. Speckle noise also degrades sonar image quality. Speckle noise is
caused by an interference of the coherent return signals, and this granular noise causes
a low SNR and blurred effect on the boundary of an object in a sonar image. A noisy
background is also one of the difficulties in sonar image processing. The background is a
collection of returned beams backscattered from the seafloor, which is a mixture of coarse
particles, such as sand and small rocks. Generally, they have a good acoustic reflectivity;
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thus, the background tends to have high intensity, which hinders target object segmentation.
Because of those reasons, conventional computer vision algorithms suffer in sonar image
processing.

Figure 1. Acoustic beam geometry of the FLS and sonar image generation.

Figure 2. Acoustic beam geometry and image generation of the FLS in a 2D vertical view.

2.2. Limitation in the Single-Sonar Method

Another difficulty in 3D reconstruction with sonar images is the uncertainty in eleva-
tion information caused by the beamwidth of acoustic waves. The uncertainty in elevation
information increases as the angle of the sonar beam increases. In order to figure out the
relation, an additional simulation was conducted. In the simulation, we deployed a single
object with different front slopes and generated a pointcloud using Cho’s method in [11].
Six objects with different front slopes were used in the simulation, as presented in Table 1.
Sonar models were applied in the same configuration in the formal simulation, but the
sonar tilt angle was set to 30◦. The sonar moved forward while maintaining an altitude of
2.5 m depth.

The results are presented in Figure 3. The uncertainty caused by the beamwidth was
determined by estimating the front slope of the generated pointcloud, which is shown in
Figure 3a. The black and red circles represent the results from the FLS and PS, respectively.
Figure 3b shows the errors with respect to the slope of the input object. The error of the PS
decreased gradually as the slope of the object increased, while the error of FLS dramatically
increased from the case for the object with the slope of 60 degrees. The slope where the
error increases is called the slope limit, which can be predicted using geometric analysis.
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Table 1. Four objects used in the simulation.

Object Front Slope Dimensions
[Degrees] (W × H × D) [m]

1 90 0.5 × 1 × 1.6
2 80 0.5 × 1 × 1.6
3 60 0.5 × 1 × 1.6
4 45 0.5 × 1 × 2
5 30 0.5 × 1 × 3
6 20 0.5 × 1 × 3

Figure 3. Estimated (a) slope and (b) error rate with different front slopes of objects; black and red
circles denote FLS and PS results, respectively. The blue circles in (a) represent the predicted values
from Equation (4).

The slope limit can be modeled. Given that the elevation angle is sufficiently narrow,
the orthographic projection approximation (Figure 4) is valid [15,16], and the difference
between points p′ and p in Figure 4 becomes negligible.
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Figure 4. Orthographic projection approximation. p is the original point of P mapped by sonar
geometry, and p′ is the projected point of P on the center plane of the acoustic beam.

When an AUV equipped with an FLS moves forward, variations in the highlights in
the image can be described, as shown in Figure 5. If the AUV maintains its altitude and
the tilt angle of FLS remains constant, the position changes of the FLS are coincident with
the location changes of the AUV. The position changes are denoted by xr,t to xr,t+1, and
the highlight length in the image plane increases from Ic,t to Ic,t+1 (Figure 5a), which is
based on the sonar image generation mechanism of FLS. Based on the sonar projection
geometry, Ic,t+1 − Ic,t is approximated as f (∆r) (Figure 5b), where f (·) is the function for
transformation into pixel space. The following relation is derived:

∆r = ∆x cos(θt + θr), (1)

where θt and θr are the tilt of the FLS and the pitch angle of an AUV equipped with an FLS,
respectively.

Figure 5. Change in length of the highlight in the front area of the sonar image with the change in
sonar position. (a) presents highlight changes in sonar images of FLS, and (b) shows the corresponding
changes in range.

In the pointcloud map M, the slope of the points can be derived [12]. Given that the
derivatives between the points generated in the X-Z plane are as follows:

∆xt = ∆xr (2)

+ ∆rc

√
1− sin2(t + s/2 + θr),

∆zt = ∆zr − ∆rc(j) sin(t + s/2 + θr), (3)
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where ∆rc ≈ −∆xr cos(θt + θr) and zr is constant, then the slope is obtained:

α =
zt

xt
= tan−1(

cos(t + θr) sin(t + s/2 + θr)

1− cos(t + θr) cos(t + s/2 + θr)
). (4)

where s is a beamwidth of an acoustic wave. Usually, s is non-zero, and sonars are installed
to look forward and downward on an AUV. Therefore, the front slope always occurs if
an object on the seabed has a shape that is vertically extruded and has a relatively small
size. Therefore, there is a limitation in methods using single sonar, and we propose a
combination of two sonar devices.

2.3. Proposed Method

The proposed method of fusing two complementary types of data from two sonar
devices consists of two stages: (1) extracting the region of interest (ROI) and (2) probabilistic
point extraction (Figure 6). The FLS is installed in a forward-looking orientation, and the
axis of the transducer array is horizontal. The other sonar is installed in such a way that
the two sonars have a vertically crossed installation. The PS rotates its transducer vertically
and acquires forward vertical information. From the installation, the FLS scans horizontal
information, and the PS obtains a vertical profile of the front area of the AUV. Because
the two sonar devices have different data acquisition planes and times, the obtained data
are complementary to each other. The FLS acquires short-range data with reliability in
the horizontal direction, whereas the PS acquires far-distance data with reliability in the
vertical direction, and it acquires the data earlier than the FLS. Because the two sonars
emit fan-shaped beams, their data have high uncertainties in the vertical and horizontal
directions, respectively. The proposed method for mitigating uncertainties is divided
into two steps. The first is an iterative data acquisition and occupancy-grid-based recur-
sive update, which generate a likelihood field for the vertical information. The second is
importance-sampling-based most-likely point extraction, which uses the generated likeli-
hood map. The iterative data acquisition and recursive update are conducted using the PS,
and importance-sampling-based 3D pointcloud generation is conducted using the FLS.

Figure 6. FLS measurement model.

2.4. Region of Interest

Scattered reflections from the seabed form a background around the object, which
hinders the extraction of objects. To avoid the difficulty of the background, we set the ROI
to be different from the FOV. As the FLS on an AUV approaches an object on the seabed,
the highlight in the sonar image changes (Figure 7). When the object is located in the FOV,
the highlight is in the background. As the FLS approaches the object, the highlight is not
in the background. Outside the background, we can extract highlights returned from the
object area without disturbances from the background. The width and length of the object
can be estimated by analyzing the width and length of the highlight in that area, and even



Sensors 2022, 22, 2094 7 of 15

the height information can be obtained by measuring the maximum reach of the highlight
outside of the background. This is called the highlight extension effect (HEE) [11]. We set
the region outside the background as the ROI in the sonar image to reduce the effect from
the background.

Figure 7. Stepwise changes in the sonar image when the sonar approaches an object from (a–f).

The ROI is defined by calculating remin. Let the sonar return data be I(i, j) and let the
i-th row of I(i, j) be Ir(i), where i = {1 . . . n} and j = {1 . . . m}. Given the altitude, hr,
of the FLS, remin and the corresponding pixel index Iemin in the image space are obtained
as follows:

remin =
hr

sin(θt(ξ) + s/2)
, Iemin =

[
n

remin − rmin
rmax − rmin

]
, (5)

where ξ is the azimuth angle, where−14.5 < ξ < 14.5, and [·] is the nearest integer function.
i is the maximum number of bins, and j is the number of the transducer. Here, i × j is
512 × 96, which is the size of the sonar image. rmin is the predefined window start, which
is illustrated in Figure 2. Considering j, each transducer has an ROI, which is denoted by
S(j), and it is defined as follows:

ROI S(j) : set Ir(i, j) ∈ S(i, j) that Ir(i, j) ≤ Iemin. (6)

2.5. Sonar Measurement Model

Given the robot pose x and map m, the FLS measurement model can be considered a
probability sensor model. To deal with uncertainty in the elevation angle, the measurement
of the FLS is divided into range and elevation angles as follows:

p(zF|x, m) = p(ξ, r|x, m)

Bayes
=

p(ξ|r, x, m)p(r|x, m)p(x|m)p(m)

p(x|m)p(m)
(7)

= ηp(ξ|r, x, m)p(r|x, m), (8)

where zF is a measurement of the FLS; r and ξ are the range measurement and elevation
angle, respectively. Assuming that measurements from each transducer are independent
and the noise model of the FLS is Gaussian, the distribution of p(r|x, m) can be modeled
using the Gaussian mixture. The mixture distribution of p(r|x, m) is presented as

p(r|x, m) =α1p1(r|x, m) + α2p2(r|x, m) + α3p3(r|x, m)

+ α4p4(r|x, m), (9)
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where p1 is the measurement noise for estimating the critical point rc; p2 is the noise from
unexpected objects, such as fish; p3 is the random noise; p4 is the measurement noise
for estimating remin, which is caused by an uneven seafloor. α1,2,3,4 are parameters to be
calibrated to satisfy ∑ p(r|x, m) = 1. Each is described as

p1(r|x, m) = η
1√
2πσ

exp
(
− (r− r̂c)2

2σ

)
, (10)

p2(r|x, m) =

{
ηλ exp(−λr) r < rc

0 otherwise
(11)

p3(r|x, m) = η
1

remin
, (12)

p4(r|x, m) = ηλ exp(λr). (13)

where η and λ are normalizers; r̂c is the expected critical point; σ is the variance of the noise
in the range measurement.

Because the elevation information overlaps at one point, as shown in Figure 2, p(ξ|r, x, m)
is unknown. Therefore, we propose the addition of an additional sonar measurement zP.
Given the additional sonar measurement zP, the fused model is presented as

p(ξ, r|zP, x, m)
Bayes
=

p(ξ|r, zP, x, mp(r|zP, x, m)p(zP, x, m)

p(zP, x, m)
(14)

= ηp(ξ|r, zP, x, m)p(r|zP, x, m) (15)

Here, p(ξ|r, zP, x, m) is

p(ξ|r, zP, x, m)
Bayes
=

p(r|ξ, zP, x, m)p(ξ|zP, x, m)p(zP, x, m)

p(r|zP, x, m)p(zP, x, m)
(16)

= η
p(r|ξ, zP, x, m)p(ξ|zP, x, m)

p(r|zP, x, m)
. (17)

Therefore,

p(ξ, r|zP, x, m) ∼ p(r|ξ, zP, x, m)p(ξ|zP, x, m). (18)

If p(ξ|zP, x, m) can be obtained by sampling from the additional sonar measurement,
this assumption allows us to estimate the most likely hypothesis of the elevation angle.

2.6. Likelihood Field Generation

Given that the PS scans the same area as the FLS, we can approximate p(ξ|zP, x, m) as
a Gaussian distribution. Using this approximation, the most likely measurement of the FLS
in Equation (18) is obtained using importance sampling. Let the proposal distribution be
p(ξ|zP, x, m); then, the individual importance weight w(i)

t is assigned to each hypothesis of
the FLS measurement as

w(i)
t =

p(ξ, r|zP, x, m)

p(ξ|zP, x, m)
∼ p(r|ξ, zP, x, m) (19)

=
∫

p(r|ξ, zP, x, m′)p(m′|zP, x)dm′, (20)

where m′ is the likelihood map generated by the PS.
p(m′|zP, x) is the inverse sensor model, which gives us the occupancy probability.

Because the PS obtains range measurements by rotating its transducer head to the preset
head positions, the probability is obtained by counting the reflected beams at every cell.
Unlike the FLS, the PS obtains range measurements by rotating its single transducer and
synthesizes them using a known head position. Therefore, a bundle of scans of the PS is
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effective, and it is used for sensor fusion. The bundle of scans of the PS is represented as
p(m′|zP,t−k:t, xt−k:t), which is obtained using the occupancy grid scheme with the following
logarithmic representation:

l(m′|zP,t−k:t, xt−k:t) = l(m′|zP,t, xt)

+ l(m′|zP,t−k−1:t−1, xt−k−1:t−1)

− l(m′), (21)

where p(m′|zP,t−k:t, xt−k:t) is calculated with

p(m′|zP,t−k:t, xt−k:t) = 1− 1
1 + exp l(m′|zP,t−k:t, xt−k:t)

. (22)

For p(r|ξ, zP, x, m′), we can simplify it by extracting the range information of the FLS
in the sonar image. We can apply the difference filter after Gaussian filtering on the ROI
S(i, j) [12] as follows:

SG(i, j) =
2

∑
k=−2

S(i + k, j)G(k, j), (23)

SD(i, j) =
1

∑
k=−1

SG(i + k, j)D(k, j), (24)

where

G = [ḡ1(x; σ), . . . , ḡm(x; σ)], (25)

gi(x; σ) =
1√
2πσ

exp
(
−x2

2σ2

)
: x = [−2,−1, 0, 1, 2]T , (26)

ḡi(x; σ) = gi(x; σ)/
2

∑
k=−2

gi(k; σ), (27)

D =

−1 . . . −1

0
. . . 0

1 . . . 1


3×m

. (28)

The vector of the pixel indices of the critical points, Ic(j), is calculated by extracting
the maximum values in each column on SD(i, j) as follows:

Ic(j) = argmaxi SD(i, j). (29)

rc(j) = rmin + (rmax − rmin)
Ic(j)

n
. (30)

The critical points mean the closest point from the FLS to the object. We can replace r
with rc in p(r|ξ, zP, x, m′), which results in

p(r|ξ, zP, x, m′) ∼ p(rc|x, m′). (31)

Then, Equation (20) is modified:

w(i)
t =

∫
p(rc|x, m′)p(m′|zP, x)dm′, (32)

where (i) denotes each particle that is generated by sampling according to Equation (9).
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3. Validation
3.1. Simulation

We implemented the proposed method and verified it in a simulation environment.
In the simulation, we adopted a ray-tracing-based FLS simulator [17,18] and added a PS
model based on the FLS model. The PS simulator emulated the mechanisms using the
ray-tracing method, which was adopted to emulate the imaging mechanisms of a PS. The
acoustic signals of the PS were modeled as a set of rays, surfaces of objects were modeled
as a set of polygons, and reflections of acoustic signals from the surfaces of objects were
considered as collisions between those rays and polygons. The distance between the PS
and the point of collision ~p can be calculated as follows [18]:

~pm,n,t =
~N · ~p0

~N · ~m, n, t
~vm,n,t, (33)

where ~N is the normal vector of the collided polygon, ~p0 is the position vector at any point
on the collided polygon, m and n are ray indices, t is the time index when the PS transmits
an acoustic signal, and ~vm,n is the direction vector of the ray with respect to m and n, which
is as follows:

~vm,n,t = RpsRz(ξ)Ry(φn)Rz(θm)~fhead, (34)

where Ry and Rz are the rotation matrices with respect to the Y and Z axes, respectively,
and ξ, φn, and θm are the rotation angle of the PS and the azimuth and elevation angles of
the ray, respectively.

RPS = Rz(γPS)Ry(βPS)Rx(αPS), (35)

where αPS, βPS, and γPS are the orientation angles of the PS about the X, Y, and Z axes,
respectively. The intensity of the reflected ray is calculated as follows [14]:

I(~pm,n,t) = k
z− zo

z + z0

I0

||~pm,n,t||2
cos2 α (36)

where k is a unit conversion constant; z and z0 are the acoustic impedances of the collision
surface and water, respectively; I0 is the reference intensity of the acoustic signals 1 m away
from the profiling sonar; α is the incidence angle of the ray toward the collided polygon.

The FLS model had 96 transducers in a linear arrangement, which emitted a fan-
shaped beam with 0.3◦ and 14◦ in the horizontal and vertical directions, respectively. The
scan range of the FLS was set to 5 m, and 512 × 96 acoustic images were generated at
10 frames per second. The window start and length were set to 0.42 and 5 m, respectively.
The PS consisted of a single transducer that rotated at a preset angle using a mechanical
device. In addition, the PS model emitted a fan-shaped beam of 1.8◦ in the horizontal and
20◦ in the vertical direction. The scan speed was 3.6 ◦/s. The range of the PS was 10 m, and
the gain was 30 dB. To obtain the vertical profile, the PS was laid down and mounted on
the upper part of the FLS. The tilt angle of both sonars was 40◦ with respect to the surface.

Four different objects were deployed (Table 2) with two different deployments (Figure 8).
The objects had different front slopes, and they were placed side by side. This is because
an FLS with vertical ambiguity experiences the reconstruction of the front area of the
object. Conversely, a PS with ambiguity in the horizontal information makes it difficult to
distinguish and restore two parallel objects. To evaluate the performance, we compared the
cross-sectional area and front slope of the reconstructed results (Figure 9).
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Table 2. Dimensions of the objects used in the simulation.

Object Front Size Sectional Volume
Index Slope [◦] (W × H × D, [m]) Area [m2] [m3]

1 30 0.5 × 1 × 3 2.13 1.07

2 45 0.5 × 1 × 3 2.5 1.25

3 60 0.5 × 1 × 3 2.71 1.36

4 90 0.5 × 1 × 3 3 1.5

Figure 8. Two different deployments of objects: aligned and misaligned.

Figure 9. Comparison results: (a) sectional error rate, (b) reconstructed slope, and (c) volumetric error
rate. Red and blue lines represent the proposed and single-sonar methods, respectively; solid and
dashed lines represent the aligned and misaligned deployments, respectively; square and triangle
symbols represent the first and second objects, respectively.
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3.2. Simulation Results

Figure 10 shows the results of the comparison of the proposed method and the single-
sonar method presented in [11]. (a), (b), and (c) in each figure present the sectional area
error rate, reconstructed slope, and volumetric error rate of the pointcloud reconstructed
by each method, respectively. The solid red lines in each figure denote the results from
the proposed method, and the dashed blue lines denote the results from the single-sonar
method. Square and triangular symbols represent the first and second objects, which were
placed in front and behind, respectively.

Considering the characteristics of the two sonar devices, there could be a difference
in the cross-sections of the reconstructed results because the horizontal accuracy of the
proposed method depends on the accuracy of the FLS, and the vertical accuracy is combined
with the PS data, which could result in some differences in the horizontal accuracy of the
reconstructed results. Figure 10a shows that the error of the single-sonar method increases
with the slope of the object. Conversely, the error of the proposed method is bounded
and does not diverge over 60◦. In Figure 10b, the difference in the reconstructed slopes
of the single-sonar method is significantly increased because of the ambiguity due to the
vertical width of the acoustic waves, whereas it is bounded in the results of the proposed
method. This tendency is valid in the comparison of volumetric error rates. We observed
that it is bounded by the volumetric error rate of the reconstructed pointcloud of the
proposed method.

Figure 10. Comparison of 3D-reconstructed results for object 4: (a) before combination with only the
FLS used and the (b) proposed method.

3.3. Experiment

We applied the proposed method to experiments using an AUV named Cyclops
(Figure 11) developed at the Pohang University of Science and Technology (POSTECH) [19].
The Cyclops is a hovering-type AUV comprising eight thrusters: two for surge, four for
sway, and two for heave motions. The hardware architecture of the Cyclops consists of
two computers connected via a switching hub and sensor devices. The X-Y positions of
the AUV were obtained using the doppler velocity log (DVL) [20], and the Z position was
acquired using a pressure meter. The velocity accuracy of the DVL was ±0.2% ± 0.1 cm/s,
and the maximum position error was ±12 cm in a minute operation. The angular orien-
tation was measured with a fiber-optic gyroscope. The sensor system comprised an FLS,
called DIDSON, a PS, a laser, and optical cameras. The sensor data were synchronized and
merged with position data in the predetermined period. The environmental perception of
the vehicle was mainly based on sonar devices. The control system of the vehicle had a
hierarchical structure. A high-level controller supervised a low-level controller according
to a mission plan, and the low-level controller followed the instructions of the high-level
controller. The dynamic control system in the low-level controller was presented in [21].
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The sensor data acquisition was separated into navigation sensor data and sonar data
because the sonar data required a heavy computational load. For emergency situations,
an emergency controller would monitor the stability of the vehicle system, and human
intervention could take place by using an acoustic modem.

Figure 11. Hovering-type AUV, Cyclops, and the experimental setup in the field test.

The FLS and PS on the AUV were installed according to the specialized configuration
shown in Figure 11. The PS was configured to have a maximum range of 10 m, a gain
of 25 dB, a scanning sector of 60◦, and a rotating speed of 1.2◦/s. The FLS was set to
have a window start of 0.83 m and a scan range of 5 m, and both sonars were tilted by
25◦. The other acoustic specifications of the sonars were the same as those presented
in the simulation section. The deployed object was a concrete brick with the size of
0.19 m × 0.39 m × 0.15 m (W × H × D). The brick was deployed on the seabed, as shown
in Figure 12. The AUV with two sonar devices scanned along linear trajectories over the
object at a constant altitude of 1.8 m. Sonar and AUV data were associated at a frequency
of 10 Hz.

The results are shown in Figure 13. The direction of the scan shown in Figure 12 was
from left to right. Before combining the two sonar types of data (FLS only), the ambiguity of
the acoustic beamwidth caused an undesired slope in front of the points, which increased
the error of the 3D reconstruction (Figure 13a), whereas the proposed method improved
the accuracy of the front slope and mitigated the error in the 3D reconstruction of the
objects. The estimated slope of the object using the single-sonar method was 63.89◦ with
an error rate of 0.29, whereas that using the proposed method was 85.77◦ with an error
rate of 0.047. The error rates for the area of the cross-section of the reconstructed results
were 0.57 and 0.12 for the single-sonar and proposed methods, respectively. Regarding
volumetric errors, the error rates using the single-sonar and proposed methods were 0.81
and 0.18, respectively.
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Figure 12. The target object captured by the camera on the AUV: concrete block (0.19 m × 0.39 m ×
0.15 m (W × H × D)) deployed on the seabed.

Figure 13. Field test results: (a) before combining the two types of sonar data; (b) the proposed
method. The black solid line shows the size of the reference object.

4. Conclusions

Herein, we presented a probabilistic sensor fusion method using two sonar devices
to reconstruct elevation information from a sonar image. The FLS provides short-range
scanning with a high horizontal resolution and the PS provides middle-range scanning
with a low horizontal resolution, but high reliability in vertical scanning. To combine
the complementary information from the two sonar devices, we presented a proposed
method and conducted verification tests in a simulation and in a real sea. The field test
was conducted using a hovering-type AUV equipped with sonar devices. To verify the
proposed method, we compared the resulting pointcloud from the conventional method
in [11] with that from the proposed method and evaluated the errors in the cross-sectional
area and volume. The error rate for the cross-sectional area was improved from 0.57 to 0.12,
and the volumetric error rate was also decreased from 0.81 to 0.18. The results indicate that
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the proposed method improved the accuracy of the generated pointcloud. This method
can be utilized for pointcloud-based mapping, classification, and segmentation tasks.
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