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Abstract: Breathing rate is considered one of the fundamental vital signs and a highly informative
indicator of physiological state. Given that the monitoring of heart activity is less complex than the
monitoring of breathing, a variety of algorithms have been developed to estimate breathing activity
from heart activity. However, estimating breathing rate from heart activity outside of laboratory
conditions is still a challenge. The challenge is even greater when new wearable devices with novel
sensor placements are being used. In this paper, we present a novel algorithm for breathing rate
estimation from photoplethysmography (PPG) data acquired from a head-worn virtual reality mask
equipped with a PPG sensor placed on the forehead of a subject. The algorithm is based on advanced
signal processing and machine learning techniques and includes a novel quality assessment and
motion artifacts removal procedure. The proposed algorithm is evaluated and compared to existing
approaches from the related work using two separate datasets that contains data from a total of
37 subjects overall. Numerous experiments show that the proposed algorithm outperforms the
compared algorithms, achieving a mean absolute error of 1.38 breaths per minute and a Pearson’s
correlation coefficient of 0.86. These results indicate that reliable estimation of breathing rate is
possible based on PPG data acquired from a head-worn device.

Keywords: breathing rate; machine learning; PPG; VR headset; motion artifact removal; information
fusion

1. Introduction

A by-product of affective computing research for real-world applications has been
the exploration of improved methodologies, sensor technologies, and computational ap-
proaches [1,2]. Such advances allow for the reliable detection of various physiological
signals, such as heart rate. Nowadays, these are provided as part of novel wearable de-
vices [3] that can be applied in different settings, including virtual reality (VR). The benefits
of utilizing affective computing approaches via wearable sensors include, but are not
limited to, improving human-computer interactions and assisting in the development of
healthcare and wellbeing interventions.

Monitoring breathing activity is an essential component of affective computing ap-
proaches. Changes in breathing rate have been explored as an index of clinical deteriora-
tion [4], anxiety [5], and affective states [6]. Increased breathing rate is also associated with
stress, and negative and high arousing experiences [7]. Approaches for monitoring breath-
ing rate include a chest strap that monitors chest movement and abdomen movements (e.g.,
NUL-236 [8]), a finger-clipped pulse oximeter (e.g., Renesas OB1203SD-RL-EVK [9]), or
a face-worn breathing mask [10,11] While these devices provide accurate measures, their
usage is mostly limited to laboratory environments
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Given that the monitoring of cardiac activity is less challenging than the monitoring
of breathing, e.g., using photoplethysmography (PPG) or electrocardiogram (ECG) sensors
incorporated in chest- or wrist-mounted devices, a variety of algorithms have been devel-
oped to estimate breathing activity from heart activity. However, there is still no thorough
comparison between the accuracy of the breathing rate extracted using ECG/PPG-based
approaches and the classical systems that are monitoring chest movement.

The overall respiration control system consists of a network of neurons in cortex and
medulla/pons that exert voluntary control and automatic control. Spontaneous respiration
is produced by rhythmic discharge of motor neurons that innervate the respiratory muscles.
One physiological relation between breathing and heart activity, often utilized by breathing
rate estimation algorithms, is the following:

• During inhalation (Figure 1a), the respiratory neurons regulate the activity of the
respiratory muscles. One of them is the diaphragm, which plays a major role in
breathing control. In fact, during inhalation, it moves downward and makes more
room in the chest. This causes the heart volume to increase. The sinoatrial node
informs the central nervous system (CNS) of the increased heart volume, and, in turn,
the CNS sends a signal back to the heart to increase the heart rate [12].

• During exhalation (Figure 1b), this process is reversed. That is, the diaphragm relaxes
and shrinks the room in the chest, resulting in a decrease in heart volume. The CNS,
informed about the decreased heart volume by the sinoatrial node, sends a signal to
the heart to decrease the heart rate.
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Figure 1. Heart, lungs, and diaphragm during: (a) inhalation; (b) exhalation. Illustration based on
magnetic resonance imaging (MRI) of natural chest movement [13].

Thus, during inhalation, the heart rate increases; during exhalation, the heart rate
decreases. Consequently, by continuously monitoring each heart bit and the corresponding
peak-to-peak (P-P) intervals, i.e., the duration between two consecutive heart bits, can be
estimated when a subject is inhaling and exhaling. Such P-P intervals, for example, can be
extracted from PPG data.

Even though the relation between heart and breathing activity is well known, esti-
mating breathing rate from heart rate outside of a laboratory setting is still a challenge,
which is why consumer fitness devices are rarely providing breathing rate estimations,
even though most of them incorporate a PPG sensor. The challenge is even bigger when
new wearable devices with novel sensor placement are used. The specific device used
in this study is a head-worn VR mask equipped with a PPG sensor, which is placed on
the forehead of a subject. To tackle this challenge, we designed a novel breathing rate
estimation algorithm based on advanced signal processing and machine learning (ML)
techniques. The algorithm takes as input 20-s PPG data, which are filtered, and motion
artifacts are removed from them. The filtered PPG data are then used to detect the P-P
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intervals. Representative features are calculated from both the P-P intervals series and the
filtered PPG data. The features are then fed to a regression ML model, which outputs the
estimated breaths per minute from the input window. The proposed algorithm is compared
to existing approaches from the related work using two separate datasets.

The key contributions of the work presented in this paper can be summarized as follows:

• Preparation of two annotated datasets containing PPG data from a total of 37 subjects,
intended to be used for evaluation of the performance of breathing rate estimation
algorithms. The data were acquired using a head-mounted PPG sensor (centered on
the forehead). We provide public access to one of the datasets (13 subjects).

• A novel ML-based method for estimation of breathing rate from PPG data.

(a) The method utilizes the correspondence between PPG and breathing rate by
extraction of representative features from P-P time-series, including pulse rate
variability (PRV) features, and various PPG-derived signals, some of which
have not been used before by other research groups. It uses a window size of
20 s, which is shorter than state-of-the-art approaches, making our algorithm
more responsive to physiological changes.

(b) The method includes a novel scheme for removal of motion artifacts from the
PPG data, as well as an efficient signal quality assessment procedure that
identifies low-quality signals and rejects data unfit for accurate breathing
rate estimation.

(c) To the best of our knowledge, this is the first study that employs an ML-based
method that estimates breathing rate from PPG data acquired from a head-worn
device (VR headset).

• An extensive evaluation of the method is carried out here, including: (i) a comparison
of our proposed method with three state-of-the-art benchmark/reference approaches;
(ii) an analysis of the effects of changing the window size on its performance in
terms of mean absolute error (MAE) and Pearson correlation coefficient (PCC); (iii) a
comparison of the results obtained using different feature subsets; (iv) an analysis of
the features’ importance and their contribution to the ML model’s predictions using
the Shapley additive explanations (SHAP) method.

The remainder of the paper is organized as follows: In Section 2, we discuss the
existing approaches for breathing rate estimation from PPG signals. In Section 3, we
present the details on our collected datasets used for the development of the breathing rate
algorithm. In Section 4, we describe the developed ML methodology for real-time breathing
rate estimation from head-worn PPG sensor signals. Section 5 describes the evaluation
setup and the comparison (baseline) methods used in the study. The evaluation results
are presented and discussed in Section 6. Section 7 concludes the paper and provides
recommendations for future work.

2. Related Work

In this section, we present a summary of existing breathing rate algorithms that utilize
cardiac activity to estimate breathing rate, focusing on those based on PPG data.

Breathing activity may cause the PPG signals to modulate in three main ways, as
illustrated in Figure 2a. These are: baseline wander (BW) modulation, which is influenced
by changes in artery vasoconstriction and intrathoracic pressure throughout the breathing
cycle; amplitude modulation (AM), which reflects changes in intrathoracic pressure and
stroke volume during inhalation; and frequency modulation (FM), also known as the respi-
ratory sinus arrhythmia (RSA), which causes the heart rate to increase during inhalation and
to decrease during exhalation [14]. Signals dominated by these respiratory modulations can
be extracted using various techniques, which mainly fall into two categories: filter-based
or feature-based techniques (Figure 2b). Filter-based techniques consist of filtering the raw
PPG signal to attenuate non-breathing frequency components. Feature-based techniques
consist of extracting beat-by-beat feature measurements from the PPG signal.
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Figure 2. (a) PPG signals are subject to three respiratory modulations: baseline wander (BW),
amplitude modulation (AM), and frequency modulation (FM); (b) Comparison of feature-based (red)
and filter-based (green) techniques for extraction of exemplary respiratory signals.

Most breathing rate algorithms estimate the breathing rate by analyzing a window
of these respiratory signals derived from the PPG data using various signal processing
techniques. These techniques act in either the time or frequency domain. Time-domain
techniques are focused on detection of individual breaths. The breathing rate is then esti-
mated through the mean duration of the breaths detected in a previously defined window
of data. These techniques typically detect individual breaths through peak and trough
detection in the respiratory signals using adaptive thresholding methods [15,16]. One such
method is presented by Schäfer et al. [17]. They propose a method based on counting
prominent oscillations in the PPG data originating from breathing activity. The method
includes detrending of respiratory signals derived from the PPG data, detection of peaks
and troughs in the derived signals, and eventually applying heuristic rules to identify valid
breaths. These rules are based on the idea that distinct breathing cycles are not character-
ized by the position of their maxima, but rather by the amplitude of the corresponding
oscillation. Their results show that the FM of young subjects yields good approximations
of mean breathing rate when using PPG segments longer than 60 s. Frequency-domain
techniques, on the other hand, are focused on identifying the frequency component related
to breathing in the respiratory signals. Such techniques most commonly entail spectral
analysis of the frequencies contained in the respiratory signals. The spectral analysis
consists of identifying the breathing frequency from a power spectrum calculated mainly
using: fast Fourier transform (FFT) technique [18–20] and auto-regressive modelling [21,22].
In general, when using spectral analysis-based methods, the breathing rate is identified
as the frequency corresponding to the spectral peak with the greatest magnitude in the
range of 0.1–0.5 Hz, which is associated with spontaneous breathing rates. The use of
frequency analysis-based methods has been extensively demonstrated. Karlen et al. [23]
proposed a method for estimating the breathing rate from PPG signals. They derive three
respiratory signals (BW, AM, FM) from the PPG signals using an incremental-merge seg-
mentation algorithm and analyze the frequency content of each derived signal using the
FFT technique. They experimented with window sizes of 16, 32, and 64 s and observed a
positive trend for a lower error rate in larger windows. Their results also showed that the
combination of the three derived respiratory signals contributes to a more robust estimation
of breathing rate compared to individual estimation methods, achieving a root mean square
error (RMSE) of 3 breaths per minute (bpm) for 32-s windows. Garde et al. [24] proposed
an algorithm based on correntropy spectral density function (CSD) applied to the PPG
data, which estimates the breathing rate by detecting the maximum frequency peak within
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the breathing frequency band. They investigated two window sizes of 60 s and 120 s and
showed that longer windows significantly decrease the estimation errors; they achieved an
RMSE of 4.2 bpm when using 60-s windows and 1.9 bpm when using 120-s PPG segments.
Auto-regressive modelling has also been used to calculate the power spectral density (PSD)
and identify the frequency contained within a respiratory signal. Shah et al. [25] used auto-
regressive modelling to estimate child breathing rates during evaluation in the emergency
department from PPG segments contaminated with movement artifacts. They achieved
an MAE of 5.2 bpm for the age group of 5–12 years. Pimentel et al. [22] also used multiple
auto-regressive models of different orders to determine the dominant breathing frequency
in three respiratory signals (BW, AM, FM) derived from PPG signal. Their method was
tested on two datasets collected in different clinical settings, achieving an MAE of 1.5 bpm
and 4.0 bpm using a window size of 32 s.

Even though ML has already infiltrated many domains of health informatics [26], its
efficiency in the field of breathing rate estimation from wearable sensors data has not been
thoroughly explored; studies that have attempted to estimate breathing rate from PPG
data using ML have been scarcely published. Shuzan et al. [27] proposed an ML method
for breathing rate estimation from PPG data based on Gaussian process regression. They
extracted several statistical and time-domain features from pre-processed PPG signals, with
a window size of 32 s, as well as from their first and second derivatives. Their method was
evaluated on data from 39 subjects collected during a resting period and achieved an MAE
of 1.97 bpm using 5-fold cross-validation. Bian et al. [28] proposed an end-to-end deep
learning (DL) method based on convolutional neural network architecture for breathing
rate estimation from PPG data. Their DL architecture used only raw PPG signals as input,
segmented with a window size of 60 s. Even after optimizing the hyperparameters of the
DL architecture, their method achieved an MAE of 3.8 ± 0.5 bpm on data acquired in a
clinical context using 5-fold cross validation, when only real data was used for training.
The inclusion of synthetic data in the training process, however, decreased the MAE to
some degree, to 2.5 ± 0.6 bpm.

In this study, we propose a novel breathing rate estimation method for extracting the
breathing rate from PPG signals, based on advanced signal processing and ML techniques.
The main motivation for using an ML-based approach for breathing rate estimation was its
ability to fuse easily multiple representations of the breathing information encoded in PPG
signals. Filter-based approaches usually focus on a single breathing representation and, as
a result, they often fail to provide reliable estimation when the information is not clearly
visible in the signal. Researchers have even made efforts to fuse multiple respiratory signals
without using ML methods [29,30]; however, these methods require extensive tuning in
order to work in different situations. Additionally, the availability of annotated datasets
offers the possibility to develop and test adaptive and ersonalized ML models, which
usually show better results compared to general rule-based approaches. To overcome the
limitations of the filter-based approaches and to automatically learn the most relevant
respiratory representation in various situations, our method utilizes the correspondence
between breathing activity and heart activity by extraction of novel representative features
from multiple PPG-derived signals. The extracted features are used to train a regression
model that extracts a mean breathing rate from an input window. To the best of our
knowledge, this is the first study that employs an ML method based on data from a PPG
sensor mounted on a head-worn device.

3. Data

For development and evaluation of the breathing rate estimation algorithm, we collected
data from a total of 37 subjects during controlled breathing protocols. Ethical approval was
obtained from the Bournemouth University Ethics Committee on 30 November 2020 (approval
no. 33494). As per ethical requirements, all subjects also provided written informed consent
before participating in the study. For data collection, we used the emteqPRO system [31,32],
consisting of a VR sensor mask insert with a Pico Neo 2 Eye VR headset (Figure 3).



Sensors 2022, 22, 2079 6 of 22

Sensors 2022, 22, x FOR PEER REVIEW 6 of 23 
 

 

3. Data 
For development and evaluation of the breathing rate estimation algorithm, we col-

lected data from a total of 37 subjects during controlled breathing protocols. Ethical ap-
proval was obtained from the Bournemouth University Ethics Committee on 30 Novem-
ber 2020 (approval no. 33494). As per ethical requirements, all subjects also provided writ-
ten informed consent before participating in the study. For data collection, we used the 
emteqPRO system [31,32], consisting of a VR sensor mask insert with a Pico Neo 2 Eye VR 
headset (Figure 3). 

 
Figure 3. The emteqPRO Mask installed into the Pico Neo 2 Eye Virtual Reality (VR) headset. 

Each subject was instructed on how to wear the VR headset properly and we ensured 
the fit and the comfort of it prior to the start of the data collection procedure. From the 
biometric sensors incorporated in the emteqPRO system, we used only the data provided 
from the PPG sensor (centered on the forehead) and the accelerometer sensor. The PPG 
sensor, embedded within the emteqPRO mask, is a reflective type of PPG sensor. It has a 
high-intensity green light-emitting diode (LED) that sends light into the tissue and records 
how much light is reflected back to the diode, thus, measuring the expansion and contrac-
tion of capillaries based on blood volume changes. During the data collection procedure, 
PPG and accelerometer data were continuously recorded at fixed rates of 25 Hertz (Hz) 
and 50 Hz, respectively. 

We conducted two data collection procedures, which resulted in two datasets: 
• Dataset 1: This dataset includes data from 27 healthy subjects, 17 males and 10 fe-

males, with a mean age of 35 ± 14.2 (range 16–68). All the subjects followed breathing 
instructions via visual cues. Each subject completed one breathing session, contain-
ing breath cycles with different durations: small breaths of 3 s (10 repetitions), me-
dium breaths of 5 s (8 repetitions), and large breaths of 8 s (6 repetitions), in that 
specified order. The total duration of the session was 2 min and 20 s, including 1-s 
breaks between each inhalation and exhalation. The total size of this dataset in 
minutes is 63 min. 
Figure 4 depicts aggregated heart rate for all 27 subjects from Dataset 1. To avoid 
subject-specific differences, the heart rate was normalized using person-specific min-
max normalization. The figure clearly depicts the relationship between the heart rate 
and the breathing rate, captured via emteqPRO. Namely, the heart rate is lower at 
the beginning of the breathing session, which corresponds to higher breathing 
rates—17 breaths per minute (bpm), on average, in the small breaths (duration of 3 
s) scenario. As the breathing session progresses, the heart rate values rise. The highest 
heart rate values can be observed towards the end of the breathing session, which 
corresponds to the lower breathing rates (9 bpm on average) in the large breaths (du-
ration of 8 s) scenario. 

Figure 3. The emteqPRO Mask installed into the Pico Neo 2 Eye Virtual Reality (VR) headset.

Each subject was instructed on how to wear the VR headset properly and we ensured
the fit and the comfort of it prior to the start of the data collection procedure. From the
biometric sensors incorporated in the emteqPRO system, we used only the data provided
from the PPG sensor (centered on the forehead) and the accelerometer sensor. The PPG
sensor, embedded within the emteqPRO mask, is a reflective type of PPG sensor. It has
a high-intensity green light-emitting diode (LED) that sends light into the tissue and
records how much light is reflected back to the diode, thus, measuring the expansion
and contraction of capillaries based on blood volume changes. During the data collection
procedure, PPG and accelerometer data were continuously recorded at fixed rates of
25 Hertz (Hz) and 50 Hz, respectively.

We conducted two data collection procedures, which resulted in two datasets:

• Dataset 1: This dataset includes data from 27 healthy subjects, 17 males and 10 females,
with a mean age of 35 ± 14.2 (range 16–68). All the subjects followed breathing
instructions via visual cues. Each subject completed one breathing session, containing
breath cycles with different durations: small breaths of 3 s (10 repetitions), medium
breaths of 5 s (8 repetitions), and large breaths of 8 s (6 repetitions), in that specified
order. The total duration of the session was 2 min and 20 s, including 1-s breaks
between each inhalation and exhalation. The total size of this dataset in minutes is
63 min.

Figure 4 depicts aggregated heart rate for all 27 subjects from Dataset 1. To avoid subject-
specific differences, the heart rate was normalized using person-specific min-max normal-
ization. The figure clearly depicts the relationship between the heart rate and the breathing
rate, captured via emteqPRO. Namely, the heart rate is lower at the beginning of the breath-
ing session, which corresponds to higher breathing rates—17 breaths per minute (bpm), on
average, in the small breaths (duration of 3 s) scenario. As the breathing session progresses,
the heart rate values rise. The highest heart rate values can be observed towards the end of
the breathing session, which corresponds to the lower breathing rates (9 bpm on average)
in the large breaths (duration of 8 s) scenario.

• Dataset 2: This dataset includes data from 13 healthy subjects, 7 males and 6 females,
with a mean age of 28.8 ± 12.9 (range 20–59). All the subjects followed breathing
instructions via audio cues, i.e., they were synchronizing their inhaling and exhaling
with the different sound present in guided audio they were listening to. The dataset is
divided into two parts:

(a) Data from 3 subjects who completed five breathing sessions with a constant
rate of 8, 12, 18, 12, 8 bpm, in that specified order. Each session lasted for one
minute. There was a break between sessions of 1 min.
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(b) Data from 10 subjects who completed five breathing sessions with a constant
rate of 12, 14, 16, 14, 12 bpm, in that specified order. Each session lasted for
two minutes. There was a break between sessions of 1 min.
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Figure 4. Aggregated heart rate for 27 subjects from Dataset 1. The increase in the heart rate
corresponds to the increase in the duration of the guided breaths performed by the subjects.

The total duration of this dataset in minutes is 115 min.
Figure 5a depicts aggregated heart rate for the 13 subjects from Dataset 2.a, while

the aggregated heart rate for the 10 subjects from Dataset 2.b is shown in Figure 5b. To
avoid subject-specific differences, the heart rate was normalized using person-specific
min-max normalization. Figure 5a shows that there is a linear increasing trend in the heart
rate during the overall breathing session. However, that trend does not correspond to
the breathing rates. To be more specific, all subjects have a minimal heart rate during
the first breathing sub-session of 8 bpm, but they also have a maximal heart rate during
the last breathing sub-session of 8 bpm. This is because the breathing sub-sessions are
continuous (no breaks between two consecutive sub-sessions) and short (close to 60 s); thus,
the changes in the heart rate caused by previous sub-sessions influence the heart rate in
the following sub-sessions. Furthermore, in Figure 5b it can be seen that there are no big
fluctuations in the heart rate, regardless of the breathing rates. A probable explanation for
the absence of bigger fluctuations in the heart rate, which, in turn, is present in Figure 5a
and in Figure 4, is the absence of more extreme breathing rates. Figure 5b contains only
breathing rates between 12 bpm and 16 bpm, which are less extreme compared to the
breathing rates present in Figure 5a (8–18 bpm) and Figure 4 (9 bpm–17 bpm).
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4. Method

This section describes our approach for automatic breathing rate estimation using
PPG data. The block diagram of the proposed pipeline is shown in Figure 6. The PPG
signals collected using the emteqPRO mask installed in a VR headset were firstly seg-
mented into windows of 20 s. The segmented PPG signals were filtered using two separate
filtering procedures; motion artifacts were removed from the resulting filtered signals.
The filtering procedures were followed by the extraction of additional data streams based
on P-P intervals. Then, we extracted four categories of features, which were designed to
describe various aspects of the PPG-derived data streams. The extracted feature vectors
were used to train a regression ML model, based on the extreme gradient boosting (XG-
Boost) algorithm. These steps are described in detail in the following subsections. The
preprocessing of the data and the model training procedure was implemented using the
Python programming language.
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4.1. Data Preprocessing

Proper data pre-processing is one of the essential steps in ML methods that has a
significant impact on the generalization performance of the ML models. The raw PPG
signals acquired with the emteqPRO system underwent a series of preprocessing steps to
convert them into an appropriate format for subsequent processing. The preprocessing
steps developed as part of our method for estimation of breathing rate from PPG signals
included data segmentation and filtering of the raw PPG signals, assessment of the quality
of the input data and removal of motion artifacts from the PPG signals, and extraction of
additional PPG-derived data streams. The data preprocessing steps are described in the
following subsections.

4.1.1. Data Filtering

The initial step of our breathing rate estimation procedure is the selection of an ap-
propriate window size for segmentation of the continuous PPG signal. Previous studies
related to breathing rate estimation typically employed window sizes ranging from 30 to
60 s [33]. In our work, we focused on a shorter window size that makes the algorithm more
responsive to physiological changes and is more practical for real-time implementation
of the algorithm. For instance, shorter windows reduce both the time required to mea-
sure the breathing rate and the computational requirements of the algorithm. Therefore,
the PPG signals were segmented using a window size of 20 s, with a 1-s slide between
consecutive windows.

The next step in the preprocessing pipeline is filtering of the raw PPG signals pro-
vided by the emteqPRO system. We employed two separate filtering procedures. The
resulting PPG signals from the first filtering procedure were used for extraction of P-P
intervals; the resulting signals from the second filtering procedure were directly utilized
for feature extraction.
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In the first filtering procedure, we firstly applied a third-order band-pass filter to
the PPG signals to remove signal components that are mostly caused by dynamic human
motion and are not related to breathing. The lower and the higher cutoff frequency were
set to 0.5 and 2.75 Hz, respectively. Furthermore, the PPG signals were filtered with a
moving-average filter and winsorization was applied to remove outlier values.

The second filtering procedure consists of similar steps to the first procedure. A third-
order band-pass filter was applied to the PPG signals, this time with cutoff frequencies of
0.15 and 0.4 Hz. These values were selected because a normal respiratory rate in healthy
people is between 9 to 24 breaths per minute. This range is even smaller for healthy adults,
ranging from 12 to 20 breaths per minute [34]. The second step of this filtering procedure
included a moving-average filter applied to the band-pass filtered PPG signals.

4.1.2. Signal Quality Assessment and Motion Artifacts Removal in PPG Signals

Even though PPG is a simple and convenient method for measuring heart activity,
it is not robust to motion artifacts. When there is a lot of movement, the PPG data is
usually corrupted by motion noise that appears in the form of distorted signals with large
amplitudes in the signal, which are not related to heart activity. This effect is shown in
Figure 7, where the PPG signal is depicted alongside a corresponding output from an
accelerometer sensor (also incorporated in the emteqPRO VR mask). When no motion is
present, the PPG signal form is stable (Figure 7a). However, when there is movement, the
PPG signal form is altered to some extent (Figure 7b).
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Motion noise can also be reflected in the frequency domain and may overlap with
the frequency range of breathing activity [35]. Therefore, signal quality assessment and
removal of motion artifacts present in the PPG data are vital to ensure that the proposed
method will also generalize well to PPG data acquired in real-world setting during different
physical activities. Therefore, we developed a signal quality assessment and motion artifacts
removal procedure that utilizes accelerometer data to avoid motion-artifacts corrupted
segments in the PPG signals.

To quantify the movement, we used the absolute sum of changes of the acceleration
magnitude signal, calculated on 1-s window. The absolute sum of changes of a given signal
is calculated as in Equation (1):

absolute sum of changes =
n−1

∑
i=0
|xi+1 − xi| (1)

where x is the vector containing the data for the specific segment, and n is the number of
samples in the segment.
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By analyzing the acceleration signals of the breathing rate sessions of each subject (from
both datasets), we concluded that, in more than 90% of the recordings, there was no motion
that could significantly disturb the PPG signals and interrupt the measurements. Therefore,
we took the upper extreme value of the absolute sum of changes of the acceleration
magnitude signals (segmented using 1-s window size) as a threshold for further analysis.
Having a threshold that is based on data where the motion is limited allows us to be
confident that the breathing rate is estimated using a stable PPG signal and that the derived
measurements are likely to be accurate.

Once the threshold was defined, we analyzed the 20-s PPG segments alongside the cor-
responding acceleration signals, i.e., acceleration magnitude signals. Depending on which
filtering was applied to the PPG signal (Section 4.1), we utilized the following two rules:

1. When analyzing the resulting PPG signals from the first filtering procedure (those
signals are later used for extraction of P-P intervals) and their corresponding accel-
eration magnitude signals, we slide over the acceleration magnitude signals using
a 1-s window and compare the absolute sum of changes of the particular window
with the previously calculated threshold value. If the calculated value was larger than
the predefined threshold, the corresponding 1-s PPG signal was removed, otherwise
it was kept. The main idea here was, in a window of 20 s, to gather at least 15 s of
“good” PPG signal (without motion artifacts) in order to further proceed with the
extraction of P-P intervals. If the resulting PPG signal with decent quality is shorter
than 15 s, we consider it as not sufficient for appropriate analysis and discard the
whole 20-s window.

2. When analyzing the resulting PPG signals from the second filtering procedure (those
signals are later used for frequency-domain feature extraction), we checked if short
motion artifacts (1-s segments) affect the low-frequency breathing rate information
contained in the PPG signal. The analysis showed that short movements, in general,
result in high-frequency components and that they do not overlap with the frequency
range of breathing activity. However, having multiple consecutive 1-s windows of
the acceleration magnitude signal with an absolute sum of changes greater than the
predefined threshold corrupted the PPG signal frequency range and the breathing rate
information was lost. Therefore, we discarded the 20-s PPG segment if three or more
consecutive 1-s windows had an absolute sum of changes greater than the predefined
threshold unless those three consecutive windows were at the beginning or at the end
of the 20-s segment.

4.1.3. Data Streams Extraction

Once the filtering procedures were applied to the raw PPG signals, the next step
of the data preprocessing pipeline was the extraction of additional data streams based
on P-P intervals. The idea behind generating the P-P interval series was to utilize the
correspondence of the P-P intervals duration with breathing activity [36]. The P-P intervals
were extracted from the resulting PPG signals from the first filtering procedure. The
extraction of the P-P intervals was done using our proprietary peak detection method
applied on the filtered PPG signals. Additionally, in this step, a Hampel filter [37] was
applied to the extracted P-P intervals series to remove outlier values. From the final P-P
data stream, we also retrieved an over-sampled P-P intervals series using a quadratic
interpolation function. The P-P intervals series was over-sampled to 25 Hz.

At the end of the data preprocessing procedure, we end up with three different data
streams derived from the original raw PPG signal provided by the emteqPRO system:
PPG filtered signal, P-P intervals time series, and an oversampled P-P intervals time series.
These are then used for extraction of representative features.

4.2. Feature Extraction and Model Training

PPG waveforms are rich in detail and contain numerous features of interest. One of
the features that are encoded in PPG signals is the breathing rate. However, there are many



Sensors 2022, 22, 2079 11 of 22

factors that influence the PPG signal and, as a result, the extraction of breathing rate from
PPG data is not a straightforward task. Thus, we extracted a number of features, which
were designed to describe the various aspects of the three PPG-derived data streams. Those
features can be divided into four categories: PRV-based features, RR-PSD-based features,
peak–valley-based features, and PPG-PSD-based features.

PRV-based features: For this group of features, we employed the regular P-P data
stream, which was retrieved by detecting P-P intervals in the filtered PPG signals. We
extracted general PRV features, which provide information related to breathing activity,
including standard deviation of the P-P intervals, average increasing time of the P-P
intervals, median duration of the P-P intervals, and the number of peaks per second.

RR-PSD-based features: This set of features was calculated from the spectral repre-
sentation of the P-P intervals. The spectral representation captures the periodicity of the
P-P intervals that is related to breathing activity. To derive the spectral representation of
the P-P intervals, we calculated the PSD using Welch’s method. Given that Welch’s method
assumes equidistant measurements when estimating the PSD, the P-P intervals were first
oversampled to 25 Hz using a quadratic interpolation function. The PSD estimates the
power distribution of an input signal over a specific frequency range, in our case between
0 and 12.5 Hz. Based on our previous work [38], we calculated the following features using
the PSD as an input signal:

• Five dominant frequencies and their normalized amplitude.
• Binned distribution—shows the distribution of the FFT magnitudes into 10 equal sized

bins ranging from 0 Hz to 2 Hz.

Peak–valley-based features: Given that with inhalation the heart rate increases (lead-
ing to shorter P-P duration) and that during exhalation the heart rate decreases (leading to
longer P-P duration) [39], periodic changes are noticeable in the interpolated P-P intervals
(see Figure 8). While these periodic changes are already captured by the PSD-based features,
one additional way to capture this relation is to calculate the distances between the peaks
(red points in Figure 8) and the valleys (green points in Figure 8) in the interpolated P-P
intervals series. For each window we calculate three different metrics:

1. Amplitude delta—calculated as the amplitude change between a peak and the corre-
sponding valley after the peak.

2. Duration delta—calculated as the distance in time between a peak and the correspond-
ing valley after the peak.

3. Speed delta—calculated as the amplitude delta divided by the time delta.
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These three metrics are calculated for each peak available in the input window. Since
the number of peaks would be variable in a fixed 20-s window, we calculate aggregating
statistics (median, minimum and maximum values) over all the values for one metric. Thus,
we end up with 9 features (3 metrics aggregated with 3 statistical descriptors).

PPG-PSD-based features: This group of features was extracted from the spectral
representation of the filtered PPG signals generated after the second filtering procedure.
Given that, in these signals, we isolated only the frequencies that are related to breathing,
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the spectral representation here reflects the periodicity of the PPG signals that is related
to breathing rate [40]. These features included the five dominant frequencies and their
normalized amplitude, as well as the FFT magnitudes binned distribution.

Eventually, those features are fed to a regression ML-model, based on the extreme
gradient boosting (XGBoost) algorithm [41], which uses decision trees as base estimators.
Each tree maps the input data to one of its leaves that contains a continuous score. The
training proceeds iteratively, adding new trees that predict the residuals or errors of prior
trees that are then combined with previous trees to output the final prediction, which, in
our case, is the estimated breaths per minute.

5. Experimental Setup
5.1. Baselines

To provide benchmark results and confirm the performance of our proposed method,
we employed three baseline methods:

• Dominant frequency in the PPG signal—A baseline method that finds the dominant
frequency in the raw PPG signal and calculates the breathing rate (in breaths per
minute) as in Equation (2):

breathing_rate = 60/(1/dominant_PPG_frequency) (2)

• HeartPy—A baseline method from an open–source Python library [42] that estimates
breathing rate from P-P intervals data. It over-samples the P-P interval series by
interpolation and finds the dominant frequency in the over-sampled P-P interval
series. The breathing rate (in breaths per minute) is then calculated as in Equation (3):

breathing_rate = 60/(1/dominant_RR_frequency) (3)

• DL approach—An end-to-end DL approach based on residual network architecture
proposed by Bian et al. [28]. This method takes raw PPG data as input, learns the
rules through training, and produces breathing rate estimation. The training of the
DL model was done by using additional synthetic PPG data as described in the
original study.

5.2. Validation and Evaluation Metrics

A leave-one-subject-out (LOSO) cross-validation technique was used to measure the
performance of the proposed ML method. The LOSO cross-validation procedure is repeated
N iterations, where N is the number of subjects in the dataset. In each iteration, data from
one subject are used to test the model, while data from the remaining subjects are utilized to
train the model. This procedure is repeated until all subjects’ data have been used as testing
data. This cross-validation technique eliminates the possibility of the model learning the
subject’s identity by ensuring that data from one subject is not included into both the train
and test sets. As a result, the evaluation is person-independent, i.e., it simulates how the
model will behave in practice—on subjects that are not included in the training process.

We report two evaluation metrics: mean absolute error (MAE), which shows how
close the model’s output values are to true values, directly interpretable in terms of the
unit in question—breaths per minute (Equation (4)); and Pearson’s correlation coefficient
(PCC), which measures the linear correlation between the model’s output values and the
true values (Equation (5)).

MAE =
1
n ∑n

i

∣∣∣ypredicted − ytrue

∣∣∣ (4)

PCC =
∑n

i (ytruei − ytrue)
(

ypredictedi
− ypredicted

)
√

∑n
i (ytruei − ytrue)

2 ∑n
i

(
ypredictedi

− ypredicted

)2
(5)
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6. Results

The performance of the proposed method for breathing rate estimation was tested
through a series of experiments, and the results are presented in this section. Section 6.1
presents the results obtained with the proposed method using a window of 20 s. The
performance of the proposed method is also compared against two other comparison
methods. Section 6.2 shows the impact of the data window size on the performance of the
proposed method. Lastly, in Section 6.3, we analyze the importance of different feature sets
and their influence on the performance of the proposed method. All results presented in
this section are obtained using LOSO cross-validation.

6.1. Comparison with Baselines

This section describes the evaluation results obtained on the datasets described in
Section 3. We compared the results obtained on three different combinations of data.
Namely, we performed a LOSO cross-validation on the subjects’ data from Dataset 1 only,
from Dataset 2 only, as well as on data from those two datasets combined. Table 1 presents
the results obtained with the proposed method, as well as the results obtained with the
three baselines. As described in Section 4.1, the performance of each method was obtained
using a window size of 20 s.

Table 1. Average mean absolute error (MAE), interpretable in breaths per minute, and Pearson’s
correlation coefficient (PCC) achieved with the proposed ML-method and three baseline methods,
using a window size of 20 s. The results are achieved using leave-one-subject-out (LOSO) cross-
validation, on three dataset combinations.

Dataset
Our Method HeartPy Dominant Frequency DL Approach

PCC MAE PCC MAE PCC MAE PCC MAE

Dataset 1 0.88 1.37 0.57 2.18 0.51 2.50 0.54 2.45

Dataset 2 0.81 1.04 0.45 2.38 0.44 1.45 0.55 1.15

Dataset 1 + Dataset 2 0.86 1.4 0.50 2.30 0.47 1.78 0.54 2.17

Our proposed method outperforms the baseline methods, for all three dataset combi-
nations, in terms of both MAE and PCC. Furthermore, it shows comparable results on all
three dataset combinations, which suggests that the approach is stable and the inclusion
of data from new subjects can even improve the results. When using the combination of
both datasets for evaluation (LOSO on 37 subjects in total), with the proposed method, we
achieve an MAE of 1.4 bpm, and a PCC of 0.8, indicating that it can easily adapt to changes
in the breathing rate scenario. The high correlation score is particularly important when
analyzing breathing rate during everyday activities. The range of breathing rate during
everyday activities is relatively short (between 12–20 bpm in healthy adults), so even a
dummy regressor that always outputs the same average value as an estimation might show
low MAE. However, since it is not sensitive to changes in the breathing rate, it will produce
an extremely low PCC. Such behavior can be observed when the algorithms are evaluated
on Dataset 2. If we compare the results from our method and the dominant frequency
approach, the MAE difference is only 0.41 bpm, but the PCC achieved with our method is
almost twice as high.

Another thing that can be observed from the results presented in Table 1 is that the
method that is based on P-P data (HeartPy) outperforms the method that is based on
raw PPG data (dominant frequency in the PPG signal) in terms of MAE, when evaluated
on Dataset 1. However, the later produces lower MAE when evaluated on Dataset 2.
This suggests that both approaches are able to estimate the breathing rate to some extent,
however, they are not robust enough to be used in situations when larger fluctuations in the
breathing rate can be expected. This outcome supports our idea that an ML-based approach
that can combine multiple sources of information is more effective for accurate estimation
of breathing rate. The DL approach performs well when evaluated on Dataset 2; however,
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the results obtained for Dataset 1 in terms of MAE are 1.08 higher than the results obtained
with our proposed method. Originally, the DL approach used a window size of 60 s, so
we suspected that having three-times-shorter window size might be a huge limitation to
accurately capture the breathing content. We tested the performance of the DL approach
using the proposed window size of 60 s and the results show 2.15 MAE for Dataset 1,
1.13 MAE for Dataset 2 and 1.87 MAE for both datasets combined. This proved our theory
that the performance of the DL approach is highly dependent on the window size.

Figure 9 presents the MAE per subject, achieved with our proposed method for the
three dataset combinations presented in Table 1. The results for Dataset 1 (Figure 9a)
show noticeable variation of the MAE between different subjects. For most of the subjects
(17 out of 27), the method achieves an MAE below 1.5 bpm. However, for five subjects, the
predictor performed poorly, achieving an MAE higher than 2 bpm. The main reason for
this was the noisy PPG data obtained during the data collection procedure.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 23 
 

 

  
(a) (b) 

 
(c) 

Figure 9. Average mean absolute error (MAE) per subject, interpretable in breaths per minute, 
achieved with the proposed method using leave-one-subject-out (LOSO) cross-validation on: (a) 
Dataset 1; (b) Dataset 2; (c) Dataset 1 + Dataset 2. 

In Dataset 2, there is a significant difference between the scores achieved for the first 
three subjects (Dataset 2.a) and the remaining subjects (Dataset 2.b), as seen in Figure 9b. 
The main reason for this outcome is that these three subjects completed five 1-min breath-
ing sessions with a constant rate of 8, 12, 18, 12, and 8 breaths per minute, in that specified 
order. This scenario is different from the scenario the remaining 10 subjects were follow-
ing during the data collection procedure (five 2-min breathing sessions with a constant 
rate of 12, 14, 16, 14, 12 bpm, in that specified order). Consequently, the model did not 
have enough data to learn the edge cases—the extremely low breathing rates of 8 bpm, as 
well as the higher breathing rate of 18 bpm. Another explanation for the higher MAE re-
lates to the physiological relationship between the breathing rate and the PPG signal. As 
explained in [43], breathing rate that is out of the normal range for healthy adults (12–20 
bpm) might affect the breathing rate information encoded in the PPG signal. Figure 9c 
presents the results achieved when data from both datasets combined was used for eval-
uation. The inclusion of new subjects’ data did not bring any significant improvement in 
terms of MAE per subject. Again, for the three subjects from Dataset 2.a, we get similarly 
high MAE, even though, with the inclusion of data from Dataset 1, we include more ex-
treme values of the breathing rate in the training process. This suggests that PPG data 
during these breathing scenarios is noisy. 

6.2. Influence of Window Size 
Based on the analysis presented in [33], most related studies used a window size be-

tween 30 and 90 s for estimation of breathing rate from PPG signals. A multitude of studies 
have investigated the impact of window size on performance [22,23,44,45]; however, there 
is not yet a generally accepted window size that is known to be optimal for the topic at 
hand. We explored how our method is influenced by the employed window size and the 
experimental results are presented in this section. 

Figure 9. Average mean absolute error (MAE) per subject, interpretable in breaths per minute,
achieved with the proposed method using leave-one-subject-out (LOSO) cross-validation on:
(a) Dataset 1; (b) Dataset 2; (c) Dataset 1 + Dataset 2.

In Dataset 2, there is a significant difference between the scores achieved for the first
three subjects (Dataset 2.a) and the remaining subjects (Dataset 2.b), as seen in Figure 9b.
The main reason for this outcome is that these three subjects completed five 1-min breathing
sessions with a constant rate of 8, 12, 18, 12, and 8 breaths per minute, in that specified
order. This scenario is different from the scenario the remaining 10 subjects were following
during the data collection procedure (five 2-min breathing sessions with a constant rate
of 12, 14, 16, 14, 12 bpm, in that specified order). Consequently, the model did not have
enough data to learn the edge cases—the extremely low breathing rates of 8 bpm, as well
as the higher breathing rate of 18 bpm. Another explanation for the higher MAE relates to
the physiological relationship between the breathing rate and the PPG signal. As explained
in [43], breathing rate that is out of the normal range for healthy adults (12–20 bpm) might
affect the breathing rate information encoded in the PPG signal. Figure 9c presents the
results achieved when data from both datasets combined was used for evaluation. The
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inclusion of new subjects’ data did not bring any significant improvement in terms of MAE
per subject. Again, for the three subjects from Dataset 2.a, we get similarly high MAE, even
though, with the inclusion of data from Dataset 1, we include more extreme values of the
breathing rate in the training process. This suggests that PPG data during these breathing
scenarios is noisy.

6.2. Influence of Window Size

Based on the analysis presented in [33], most related studies used a window size
between 30 and 90 s for estimation of breathing rate from PPG signals. A multitude of
studies have investigated the impact of window size on performance [22,23,44,45]; however,
there is not yet a generally accepted window size that is known to be optimal for the topic
at hand. We explored how our method is influenced by the employed window size and the
experimental results are presented in this section.

Previous studies have shown that using a longer window leads to higher accuracy
of the algorithms, which is useful since it allows for a sufficient number of breaths to be
taken before the breathing rate can be reliably calculated. Moreover, it is shown that longer
windows increase the range of detectable breathing rates [22]. However, there are also
numerous advantages to using shorter windows, especially from a practical point of view.
Namely, shorter windows reduce both the time required to measure breathing rate and
the computational requirements of the breathing rate algorithms. Additionally, the use of
shorter windows increases the likelihood that the breathing rate is stable throughout the
window. This is especially important when the breathing rate is estimated during physical
activities with high-intensity motion, since the PPG signal can be easily affected by physical
movement [27].

In this experiment, we analyzed shorter windows since the added value of the breath-
ing rate algorithm that works with such windows is higher. We tested four different
window sizes, namely, 15, 20, 25, and 30 s, and the obtained results are shown in Table 2.
The results show that, in contrast to the results provided in the related literature, our
method does not benefit from longer windows. In fact, it performs worst in terms of both
MAE and PCC when using the longest of the tested window sizes, 30 s, on all three dataset
combinations. Our method performs best with the proposed window size of 20 s and these
results are consistent on all three dataset combinations.

The only method that benefits from the larger window size on both datasets is the
method that is based on P-P intervals data (HeartPy), especially in terms of MAE. It achieves
an MAE of 2.24 bpm when using a window size of 30 s, while it achieves the lowest MAE
of 2.82 when using the shortest of the tested window sizes, 15 s. These results suggest that
methods that rely only on P-P intervals data for breathing rate estimation are not suitable
for conditions when faster response to physiological changes is required. The optimal
window size for the method that is based on raw PPG data (dominant frequency in the
PPG signal) is also 20 s. It provides the lowest MAE and the highest PCC when using a
20-s window, on all three dataset combinations. Based on the results obtained with the DL
approach, it can be clearly seen that, when working with Dataset 1, the MAE improves as
the window size increases. However, for Dataset 2, we can see that window size of 20 s
results in the best performance. An interesting observation when working with Dataset 2 is
the fact that three out of four algorithms perform best with a window size of 20 s.

6.3. Feature Importance

In this section, we provide insight into the features that were identified as being most
important for breathing rate estimation. Firstly, we investigated the performance of the
method using features from each feature group described in Section 4.2, individually, to
explore which category of features is the most informative. This information is also valuable
for a real-time implementation of the algorithm. For instance, if better or comparable results
can be achieved with only one group of features, this can reduce the computational time,
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as well as the computational resources required by the algorithm. The experimental results
are presented in Table 3.

Table 2. Average mean absolute error (MAE), interpretable in breaths per minute, and Pearson’s
correlation coefficient (PCC) achieved with the proposed ML-method and two baseline methods,
using different window sizes. The results are achieved using leave-one-subject-out (LOSO) cross-
validation, on three dataset combinations.

Dataset Method
15 s 20 s 25 s 30 s

PCC MAE PCC MAE PCC MAE PCC MAE

Dataset 1

Our method 0.84 1.59 0.88 1.37 0.87 1.5 0.85 1.64

HeartPy 0.53 2.68 0.57 2.18 0.52 2.45 0.52 2.44

Dominant Frequency 0.45 2.9 0.51 2.5 0.2 3.02 −0.33 3.46

DL approach 0.42 2.8 0.54 2.45 0.54 2.42 0.55 2.39

Dataset 2

Our method 0.73 1.19 0.81 1.04 0.68 1.25 0.61 1.29

HeartPy 0.35 2.91 0.45 2.38 0.44 2.13 0.44 2.11

Dominant Frequency 0.41 1.69 0.44 1.45 0.15 2.33 0.01 3.81

DL approach 0.39 1.54 0.55 1.15 0.58 1.21 0.47 1.47

Dataset 1 + Dataset 2

Our method 0.82 1.58 0.86 1.4 0.84 1.46 0.81 1.59

HeartPy 0.43 2.82 0.5 2.3 0.47 2.25 0.48 2.24

Dominant Frequency 0.43 2.06 0.47 1.78 0.2 2.55 −0.16 3.7

DL approach 0.41 2.47 0.54 2.17 0.55 2.15 0.53 2.21

Table 3. Average mean absolute error (MAE), interpretable in breaths per minute, and Pearson’s
correlation coefficient (PCC) achieved with the proposed ML-method trained with different feature
sets, using a window size of 20 s. The results are achieved using leave-one-subject-out (LOSO)
cross-validation, on three dataset combinations.

Dataset
PRV PP-PSD Peak–Valley PPG-PSD ALL

PCC MAE PCC MAE PCC MAE PCC MAE PCC MAE

Dataset 1 0.31 3.34 0.78 1.76 0.38 3.08 0.82 1.73 0.88 1.37

Dataset 2 0.14 2.26 0.50 1.65 0.33 2.19 0.72 1.35 0.81 1.04

Dataset 1 + Dataset 2 0.22 3.13 0.71 2.03 0.42 2.82 0.79 1.69 0.86 1.4

The results suggest that from the four groups of features that we extracted, the PPG-
PSD features are the most informative for breathing rate estimation, when used indepen-
dently. In fact, the ML-model trained with only this group of features achieved the lowest
MAE, as well as the highest PCC for all three dataset combinations. However, if we com-
pare these results with the results achieved when all four groups of features are used for
training the ML model, it can be seen that their fusion significantly improves the results, in
terms of both MAE and PCC. Namely, the MAE score is decreased for 0.29–0.36 bpm, and
the PCC is increased for 0.6–0.9, for all three dataset combinations. This comparison further
proved the usefulness of the proposed method that fuses various aspects of PPG-derived
data streams, represented by the different feature groups.

Furthermore, we tried to interpret our ML model for breathing rate estimation and
to explore which features have the highest impact on the model’s output. Usually, when
using a XGBoost model, the obvious choice is to use the built-in function that offers
three different options for measuring the feature importance (weight, cover, and gain).
However, when they are compared, the results show a relatively high difference [46]. As
a result, it is difficult to choose which feature importance technique to rely on. Therefore,
we decided to use the SHAP method [47], which provides advantages such as global and
local interpretability, consistency, and accuracy. In addition, the SHAP values can show
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in which direction a particular feature is contributing to the target variable. To achieve
this, the SHAP method calculates the importance of a feature by comparing what a model
predicts with and without the feature. However, since the order in which a model sees
features can affect its predictions, this is done in every possible order, so that the features
are fairly compared. The results obtained with the SHAP method are shown in Figure 10.
This plot is designed to display an information-dense summary of how the top features
provided to the model impact its output. In Figure 10, we have the top 20 most informative
features sorted in descending order. Each instance in the dataset is shown as one dot on
each row. Furthermore, the position of the dot on the x-axis shows the impact of the feature
on the model’s prediction. In fact, the horizontal location shows whether the effect of that
value is associated with a higher or lower prediction. Additionally, the color (from blue
to red) provides information about the original value of the features. Finally, we added
four colors in the legend on the right of the plot to show in which of our defined feature
categories each of the presented features belongs.
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Figure 10 shows that the two most informative features for the ML model are RR
bin 2 and PPG bin 2. These features are based on the binned distribution of the FFT
magnitudes of the oversampled P-P intervals stream (Section 4.1.3) and the filtered PPG
stream (provided by the second filtering procedure, as explained in Section 4.1.1). These
two features are negatively correlated with the breathing rate. This is expected because
the second bin corresponds to low frequencies in the range from 0.1 to 0.2 Hz. Higher FFT
magnitude in this bin corresponds to lower breathing rate, while lower values correspond
to higher breathing rate. The third most informative feature is the PPG bin 4, showing the
FFT magnitude in the fourth bin of the filtered PPG signal. This bin is associated with
frequencies in the range from 0.3 to 0.4 Hz, which explains the positive correlation with a
higher breathing rate. Other features that are related to higher breathing rate are the PRV
increase time and PRV mean P-P. The PRV increase time feature confirms one of the effects of
breathing activity on the PPG signal that it is known as amplitude modulation (AM) [23].

In the top-20 most informative features, there are features from all feature groups
(PRV features, RR-PSD features, peak–valley features, and PPG-PSD features), yet the peak–
valley features have a relatively small impact on the model’s output. Another interesting
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observation is that the dominant frequency feature extracted from the filtered PPG signal
is not part of the 20 most informative features. Even though the dominant frequency is
estimated from the largest magnitude in the FFT spectrum, it is not as informative as the
binned distribution of the FFT magnitudes.

6.4. Influence of Motion Artifact Removal

The results presented in the previous sections are achieved using all data from the
datasets, excluding the removal of the motion artifacts in the PPG data and the signal quality
assessment procedure. The results presented in this section show the performance of our
method when all proposed steps from the processing pipeline are employed—including
the motion artifact filtering step and the assessment of the quality of the PPG signals.

Table 4 shows the percentage of rejected 20-s windows on both datasets, which, after
the filtering step and the motion artifact removal, were found unfit for reliable breathing
rate estimation, according to Rule 1, Rule 2, or both combined (see Section 4.1.2). The
numbers are similar for both datasets—only 5–6% of the windows in both datasets were
found unfit for reliable extraction of P-P intervals (Rule 1) or frequency-domain analysis
(Rule 2). When both rules were considered, a total of 3% and 4.5% of the windows were
rejected for the first and second dataset, respectively.

Table 4. The percentage of rejected 20-s windows on both datasets, according to Rule 1, Rule 2, and
both rules combined.

Dataset Rule 1 Rule 2 Rule 1 and Rule 2

Dataset 1 5% 6% 3%
Dataset 2 6% 5% 4.5%

We estimate the breathing rate using three alternative models based on the output
generated after the motion artifacts removal and the quality assessment procedure. Namely,
when the quality of the PPG signal is considered good by both rules, we utilize the general
model for estimation of the breathing rate that is trained on all feature groups. In case
a particular window’s quality is confirmed only by one of the rules, we proceed with
extraction of a subset of features—PRV-, PP-PSD-, and peak–valley-based features if the
signal is considered reliable from rule 1, and PPG-PSD-based features if the signal is
considered reliable from rule 2. Consequently, we use models trained with the particular
subsets of features for the estimation of the breathing rate for those windows. Finally, if
both procedures for assessing the quality of the PPG signal show that the specific segment
is corrupted, breathing rate estimation for that window is not generated (this happens in
3% and 4.5% of the data in Dataset 1 and Dataset 2, respectively). The results obtained
utilizing the full processing pipeline, including the motion artifacts removal and the signal
quality assessment procedure, are shown in Table 5.

Table 5. Average mean absolute error (MAE), interpretable in breaths per minute, and Pearson’s
correlation coefficient (PCC) achieved with and without motion artifact removal and signal quality
assessment procedure (Section 4.1.2). The results are achieved using leave-one-subject-out (LOSO)
cross-validation, on three dataset combinations.

Dataset
Without Filtering With Filtering

PCC MAE PCC MAE

Dataset 1 0.88 1.37 0.88 1.35

Dataset 2 0.81 1.04 0.82 1.01

Dataset 1 + Dataset 2 0.86 1.4 0.86 1.38

The achieved results demonstrate that the proposed method for removal of motion
artifacts in the PPG signal and the procedure for assessing the quality of the motion-
removed signals are effective in reducing the errors in breathing rate estimation from PPG
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signals. In fact, when utilizing these two additional steps in the processing pipeline, we ob-
tained 0.02–0.03 bpm lower MAE for the three dataset combinations. Even though the data
acquired in our datasets does not contain intensive motion, these results imply that the pro-
posed method is more robust to noise (compared to the model used in Section 6.1) and can
contribute to more accurate breathing rate estimation, especially in high-motion situations.

7. Conclusions

In this study, we presented a novel method for breathing rate estimation using data
acquired from a head-worn VR mask equipped with a PPG sensor placed on the forehead
of a subject. The data was collected from a total of 37 subjects during controlled breathing
protocols. From the biometric sensors incorporated in the emteqPRO system, we used the
data provided from the PPG sensor and the accelerometer sensor. We provide public access
to a subset of the data used in this study (13 subjects); we hope that it will serve researchers
for evaluation of the performance of breathing rate estimation algorithms in future studies.
Furthermore, we believe that this dataset can be used as a benchmark for testing various
approaches to estimate breathing rate in VR environments.

The proposed method is based on advanced signal processing and machine learning
techniques. Since the PPG signal is affected by the breathing rate in multiple ways, we
extracted and combined several features from multiple PPG-derived data streams. The fea-
tures were designed to best describe the various aspects of each data stream that represent
the different modulations of the PPG signal caused by breathing activity. The evaluation
showed that the proposed method outperformed the existing approaches from the related
work, achieving a mean absolute error of 1.4 breaths per minute and a Pearson’s correlation
coefficient of 0.86. These results indicate that reliable estimation of breathing rate is possible
based on PPG data acquired from a head-worn device.

Moreover, our method introduces a novel step for removal of motion artifacts from
the PPG signals and assessing the quality of the PPG data. It utilizes accelerometer data
to quantify movement and avoid motion-artifacts-corrupted segments in the PPG signals.
This step showed effective in reducing the errors in breathing rate estimation from PPG
signals—in fact, when it was included in the processing pipeline, we achieved a mean
absolute error of 1.38 breaths per minute. Our method minimizes the number of discarded
windows due to bad signal quality, while still estimating breathing rate only from reliable
PPG signals.

The analysis on the impact of the employed window size on the model’s performance
showed that our method benefits from a shorter window size (20 s), compared to the state-
of-the-art approaches, making our algorithm more responsive to physiological changes.
Furthermore, having a method that relies on shorter window size reduces the time re-
quired to measure breathing rate and the computational requirements of the breathing
rate algorithm.

The feature importance analysis showed that the fusion of multiple feature groups
showed significantly better results. This comparison further proved the usefulness of the
proposed fusion of various aspects of PPG-derived data streams, represented by different
feature groups.

Although the presented work has a few advantages over the existing methods for
breathing rate estimation, it is also a subject to few limitations. First, the used datasets
contain data collected in a relatively stationary position. As a result, an approximate
estimate of the number of rejected windows during in-the-wild scenario cannot be obtained.
Moreover, one of the possible limitations of the proposed method is its inability to detect
out-of-distribution breathing rate. The models in this study were trained with data that
covers the normal range of breathing rate; thus, it is an open question whether they will
perform well for higher breathing rate. However, for our specific application, we do not
see this as a major problem because VR activities are usually not very intensive, and the
breathing rate of the participants is mostly in the expected normal range.
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To avoid the aforementioned limitations, as a part of our future work we plan to
develop and to test models with data recorded in-the-wild. Even though the researchers
have proposed different approaches that consider the signal quality, usually, models de-
veloped with such data generalize better when tested in a real-life scenario. However,
obtaining real-life annotated data can be quite challenging. Therefore, we plan to take
advantage of unlabeled PPG data by using semi-supervised ML approaches. Moreover,
creating synthetic data that include diverse levels of motion activity to mimic more realistic
scenarios can be used to develop more robust ML models for breathing rate estimation.
Finally, we plan to explore self-supervised learning in order to overcome the problems
caused by human motion using unlabeled PPG data.
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