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Abstract: Wireless microwave sensors provide a practical alternative where traditional contact-based
measurement techniques are not possible to implement or suffer from performance deterioration.
Resonating elements are commonly used in these sensors as the sensing concept relies on the
resonance properties of the employed structure. This work presents some simple guidelines for
designing displacement sensors based on spiral resonator (SR) tags. The working principle of this
sensor is based on the variation of the coupling strength between the SR tag and a probing microstrip
loop with the distance between them. The performance of the sensor depends on the main design
parameters, such as tag dimensions, filling factor, number of turns, and the size of probing loop. The
guidelines provided herein can be used for the initial phase of the design process by helping to select
a preliminary set of parameters according to the desired application requirements. The provided
conclusions are supported using electromagnetic simulations and analytical expressions. Finally, a
corrected equivalent circuit model that takes into account the phenomenon of the resonant frequency
shift at small distances is provided. The findings are compared against experimental measurements
to verify their validity.

Keywords: spiral resonators; microwave sensors; metamaterials; displacement sensors; distance
sensors

1. Introduction

In recent years, the use of metamaterials in sensing applications is becoming more
popular, as evidenced by the increasing number of published works employing these
engineered structures in sensor design [1–3]. Contrarily to classical sensors, which rely on
physical contact between the reading instrument and the sensing structure, these sensors
can be interrogated wirelessly. Moreover, these new sensors may help to improve the perfor-
mance by adding more degrees of freedom, which leads to novel and practical advantages,
such as higher sensitivity or operation in harsh environments. The operating principle
of these sensors based on resonating elements relies on linking a change in the physical
property to be measured (measurand) with a change in the resonant behavior of the com-
ponents. This could either be a change in the resonant frequency (frequency-modulation)
or a change in the amplitude at resonance (amplitude-modulation) [4]. An interesting
review of the use of metamaterial unit-cell-based components in sensing provided in [1],
with a special focus on the well-known split ring resonator (SRR) geometry first proposed
by Pendry [5], provides a good understanding of the working principle as well as some
considerations in the design of this kind of sensors. In frequency-modulated sensors the
working principle relies on the simple fact that the resonant frequency is changed due
to a change in the measurand; however, the measurement is carried out by means of a
wide-band frequency sweep which increases the complexity and cost of the electronics
required for signal generation and detection. Frequency-modulated sensors have been
used in a variety of applications, such as strain sensors [6], motion detection [7], liquid
detection [8], rotation sensors [9,10], methanol concentration [11], and metal detection [12].
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These sensors, based on metamaterial unit cell geometries, are capable of providing real-
time monitoring of various physical properties and they can operate without any wired
connection between the reader and the sensor. Another commonly used geometry in wire-
less sensors is the spiral resonator (SR) geometry. Spiral resonators have found applications
in many fields, such as wearables [13,14], biomedical [13,15], strain [14], eddy current [16],
and displacement [17–19] sensing.

Equivalent circuit models for the microwave sensor geometries have been presented in
numerous works in the literature regarding the evaluation of the equivalent lumped circuit
parameters [20–26]. However, the focus of these works is often the unique implementation
itself, that is designed and developed for a specific application with a strict set of limita-
tions and constraints regarding the operating frequency or sensor reading range. This is a
drawback and hinders the possibility for reproducing or readapting the implementation
for a different set of operating conditions or application requirements. When approaching
the design problem, the designer must make trade-offs and compromises according to the
requirements and constraints of the application in hand. In SR-based distance sensors,
examples of such design targets could be related to the maximum sensor range, the op-
erating frequency, or the robustness to lateral displacements. Therefore, the main aim of
this article is to provide the designer with sufficient understanding of the sensor working
principle and the effects of varying the design parameters and how to optimize them for
the required application. The distance sensor proposed in this paper is based on an SR tag
etched on a dielectric substrate. The tag is interrogated by a microstrip probing loop that
acts as the antenna of the reader. The sensor is capable of providing real-time estimates
of the distance between the probe and the tag by means of a measurement of the real part
of the input impedance at the loop terminals. The approach adopted in this work is to
investigate the effect of the proposed sensor’s parameters using numerical simulations that
are supported by approximated analytical expressions. The sensor design and the theory of
the working principle are introduced in Section 2 along with a model for the sensor using
equivalent circuits. Section 3 treats the relation between the sensor performance and the
geometric parameters of the SR and the probing loop. A corrected equivalent circuit model
is proposed in Section 4 that accurately models the phenomenon of the resonant frequency
shift at small distances. This circuit model is verified using experimental measurements in
Section 5. Finally, the concluding remarks are discussed in Section 6.

2. Sensor Design and Theory

The working principle of the proposed distance sensor based on a planar SR relies
on the near-field inductive coupling between the SR and the microstrip probing loop that
acts as the antenna of the reader. The strength of this coupling was shown to be inversely
proportional to the distance between them. This concept was exploited to retrieve an
accurate estimate of the distance by simply measuring the input impedance, whose value
depends on the strength of the mutual coupling between the two components, at the probe
terminals. The SR-based sensor is shown in Figure 1a where the SR and the probing loop
are separated by a normal distance dz. Figure 1b shows a generic 2-turn square-shaped SR
having side length Ltag, trace width w, and trace separation s. The sensor can be modeled
using the equivalent circuit shown in Figure 1c where the SR is represented by a series RLC
circuit that is coupled to the probing loop through the mutual inductance term, M [27].

The aforementioned coupling between the probe and the SR occurs at the resonant
frequency of the SR, which can be expressed in terms of the equivalent circuit lumped
parameters shown in Figure 1c : inductance, LSR, and capacitance, CSR, as in (1), which in
turn depend on the geometrical parameters (Ltag, w, and s, N) for the case of the SR shown
in Figure 1b.

f0 =
1

2π
√

LSRCSR
. (1)

One important consideration in the design of the SR already outlined in is that the
SR parameters must be chosen so that the resonant frequency is far from the self-resonant
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frequency of the probe. This consideration can be shown by analyzing the results from the
electromagnetic (EM) model of the system created in CST Microwave Studio. A summary
of the results of this preliminary simulation is shown in Figure 2a, where the spectrum of
the real value of the input impedance of the standalone probing loop with different side
lengths, Lp, is plotted in black solid lines and the resonant frequency is marked by the
vertical red dashed lines for each value of Lp. The blue line plotted in the same figure shows
the resonance due to the presence of the square-shaped SR with side length Ltag = 50 mm
and Lp = 30, 40, and 50 mm. Figure 2a shows that the resonance due to the spiral resonator
occurs at a frequency that is significantly lower than that due to the self-resonance of
the probing loop. It is worth nothing that the blue line is plotted for dz = 1 mm and it
follows that the amplitude at resonance depends on the value of dz, as shown in the plot in
Figure 2b, where the amplitude at resonance for a square SR coupled with a square probing
loop both having side length equal to 50 mm decreases as the normal distance, dz, between
them increases.

dz

Lp
x
yz

(a)

s

w

Ltag
(b)

RLoop

Vs Z1 LLoop

RSR

LSR CSR

M

Zs

(c)

Figure 1. SR-based distance sensor presented in [27]. (a) 3D view of the sensor setup. (b) Top view
of the SR. (c) Equivalent circuit model of the sensor; the SR is modeled using the series RLC circuit
(right side) coupled to the probing loop by the mutual inductance, M.
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Figure 2. (a) Real input impedance vs. frequency for the standalone square probing loop with
side length 30 mm, 40 mm, and 50 mm (black lines), and the case with an SR in close proximity
having Ltag = 50 mm shown for dz = 1 mm. (b) Real input impedance vs. frequency for sensor with
w = s = 2 mm, N = 2 turns, and Lp = Ltag = 50 mm plotted at various values of dz, showing the
dependence on the normal distance.



Sensors 2022, 22, 2071 4 of 16

3. Maximizing the Sensing Range

The sensing range can be defined as the maximum distance (between the SR and the
loop) at which there is an appreciable change in the measured real input impedance at
the probe terminals for a change in this distance. The aim of this section is to provide
useful guidelines for designing SR-based distance sensors optimized for maximum normal
distance sensing range. The input impedance can be calculated using the expression in (2)
in terms of the lumped equivalent circuit parameters [22]:

Z1 = RLoop + jωLLoop +
ω2M2

jωLSR + 1
jωCSR

+ RSR
. (2)

where ω is the operating frequency in radians per second, and LLoop and RLoop are the
lumped inductance and resistance, respectively, of the probing loop. The lumped param-
eters LSR, CSR, and RSR model the inductance, capacitance, and the resistance of the SR,
whereas M represents the mutual inductance between the SR and the probe. The lumped
circuit parameters’ equivalent model is valid as long as the size of the components is much
smaller than the wavelength at the operating frequency [21]. By looking at the expression
in (2), it is straightforward to observe how a change in the mutual inductance, which is
inversely proportional to the normal distance (dz) between the SR and the probe, causes a
change in the measured input impedance at the probing loop terminals.

At this point, the sensitivity, S, in (3) is defined as the change in the input impedance
divided by the change in the normal distance.

S =

∣∣∣∣Re(Zi)− Re(Zi+1)

dzi − dzi+1

∣∣∣∣ (3)

where Zi is the input impedance at resonance measured at the loop terminals for a certain
value of the tag-reader distance dzi .

3.1. Scaling SR and Probe Dimensions

A design consideration regarding the range of the sensor was presented in [27], where
it was shown that increasing the size of the SR and the probing loop increases the sensing
range of this device. This concept can be better explained again by considering the scenario
with square-shaped SR and probing loop, both having the same side length. An EM
simulation was carried out for the distance sensor of different sizes, and as observed from
Figure 3a where S is plotted against the normal distance at different values of the side
length of the SR and the probe. It can be observed that the sensitivity at the same value of
dz is larger as the size of the sensor becomes bigger. The minimum change in impedance
depends on the characteristics of the measurement instrument used. For a supposed
threshold instrument measurement sensitivity of 2 Ω/mm, shown by the dashed red line
in Figure 3a, one can observe that the maximum sensing range of the sensor is more or less
comparable to the side length of the SR.

Even though it is evident that scaling up the size of both the SR and the probe
increases the sensitivity at large values of dz, and consequently increases the range of the
sensor, further analyses have shown that this is not the optimal method for increasing
the range. This is explained in detail using data obtained from numerical simulations in
Sections 3.2 and 3.3.
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Figure 3. (a) Sensitivity vs. normal distance for different sizes of the sensor while keeping the side
length of the probe and the SR equal. (b) Sensitivity vs. normal distance while varying the probe
dimensions for a constant side length of the SR, Ltag = 30 mm. The dashed red lines represent a
threshold sensitivity of 2 Ω/mm.

3.2. Optimizing Probe Dimensions

In some applications the available space for the SR tag might be limited and imposed
as a constraint. This case with a fixed tag size is analyzed thoroughly in this subsection with
the aim of providing the reader with an understanding of the process and consequently
guidance for optimizing the probe design. Firstly, a parametric simulation was performed
for a square-shaped probing loop (Lp = 30 mm) and an SR with side length Ltag = 30 mm
while varying the value dz from 1 mm to 50 mm. The substrates for both the tag and the
SR are also square-shaped with a side length of 10 cm and are made of FR-4. The same
simulation was performed for different values of Lp to study the effect of the relative size
between the SR and the probing loop on the strength of the coupling at small and large
values of dz. The sensitivity of the sensor is plotted versus the normal distance in Figure 3b
and it can be observed that at large values of dz, for a constant Ltag, increasing the size
of the probing loop increases the sensitivity. This is advantageous for applications where
maximizing the sensing range is of interest.

The increase in the input impedance at large distances when increasing the size of
the probing loop is owed to the increase in the strength of the mutual inductive coupling
between the probe and the SR. This follows from the analytical expressions for calculating
the mutual inductance between coaxial spiral coils based on the Biot–Savart law for calcu-
lating the axial magnetic field component of the coil. A pair of coaxial square single-turn
filament coils separated by a normal distance dz are considered. For a unit current, the
mutual inductance, M, depends on the side lengths of the square coils and the distance
between them. R is defined as the ratio between the side lengths of the probe and the tag.

R =
Lp

Ltag
. (4)

The mutual inductance between the two coils can then be expressed in terms of the
ratio R [26].
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M = 2µ
π

[
rp + rm − 2rr+

+
Ltag(R+1)

2

[
atanh Ltag(R+1)

2rr
− atanh Ltag(R+1)

2rp

]
+

+
Ltag(R−1)

2

[
atanh Ltag(R−1)

2rr
− atanh Ltag(R−1)

2rp

]]
.

(5)

where

rp =

√
L2

tag

2
(R + 1)2 + d2

z (6)

rm =

√
L2

tag

2
(R− 1)2 + d2

z (7)

rr =

√
L2

tag

2
(R2 + 1) + d2

z (8)

For the same tag size (constant Ltag), increasing the size of the loop (Lp) increases
the mutual inductance at large values of dz. To demonstrate this concept, the mutual
inductance, M, between two coaxial single-turn square coils calculated from (5) is plotted
against the normal distance for different values of R in Figure 4 for Ltag = 30 mm. As
evident from the figure, at small dz the coupling is strongest for Lp = Ltag (R = 1), while
for large values of dz increasing the size of the probe increases the strength of the coupling
which explains the trend in Figure 3b.
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Figure 4. Mutual inductance between two coaxial single-turn square-shaped filament coils against the
normal distance between them, dz, for values of r for a constant value of Ltag = 30 mm, w = s = 2 mm.

It is concluded that for applications where the size of the SR is a constraint, the sensing
range (sensitivity at large normal distances) can be maximized by increasing the size of the
probe compared to the size of the tag. The opposite is true for a scenario with restrictions
on the size of the probe; in this case, the size of the SR must be decreased to increase
the sensing range, whereas for applications requiring high sensitivity at small normal
distances, the probing loop must be designed to have a side length close to that of the tag,
which is consistent with previous works in the literature regarding the coupling coefficient
optimization in wireless power transfer [28,29].
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3.3. Robustness to Lateral Displacements

Another key aspect to consider in the design of SR-based normal distance sensors,
especially in applications where the axial alignment between the SR and the probe cannot
be guaranteed, is the robustness to a potential lateral misalignment. It follows from the
definition of the working principle of this sensor in Section 2 that any change in the lateral
displacement from the coaxial condition causes a decrease in the magnetic flux intercepted
by the tag, and therefore decreases the coupling strength between the probe and the SR,
which is translated into a decrease in the input impedance at the probing loop terminals.

For a given value of normal distance, for instance dz = 20 mm, the maximum real input
impedance is observed in the aligned case (δx = 0 mm), where δx represents the lateral
distance between the axis of the probing loop and the SR. As the SR tag is laterally displaced
over the probe (|δx| 6= 0 mm), the measured impedance decreases accordingly. This is
shown in Figure 5, where the y-axis represents the real input impedance as a percentage
of the maximum value (observed at δx = 0 mm) and the x-axis represents the lateral
misalignment in the x-direction. The plot is shown for a constant value of Ltag = 30 mm
and varying the side length of the probe from 30 to 50 mm. It is apparent that increasing
the size of the probe increases the coupling strength at the same degree of misalignment. In
other words, probing the SR tag using a bigger loop increases its stability to misalignment
in the lateral directions. This is a logical conclusion that follows from the discussion made
in Section 3.2 that maximizing the coupling strength increases the range of displacements
for which this coupling maintains its strength. From a qualitative point of view, the SR
tag placed in the vicinity of a more uniform magnetic field is produced by a loop with a
significantly bigger side length (high value of R). For the same normal distance separation,
the SR experiences a more homogeneous magnetic field as R increases. As a result, the
coupling strength is more resistant to lateral displacements. Another observation from
Figure 5 is that for the same degree of misalignment the input impedance is higher for the
negative δx than its positive counterpart, and this is due to the asymmetric shape of the SR.
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Figure 5. Input impedance variation, expressed as percentage of maximum real input impedance, as
the degree of lateral misalignment changes for an SR with Ltag = 30 mm interrogated by a probe of
varying side length.

In this section, only lateral displacements in the x-direction (δx) are considered; how-
ever, since the probe and the SR are both square-shaped, the response to displacements in
the y-direction (δx) follows the same trend. This is an important consideration for practical
scenarios where the sensor is susceptible to lateral misalignment in only one of the two
directions. In this case, for decreasing the space occupied by the loop, it is possible to
redesign the probing loop to be rectangular-shaped by increasing the length of the side
along the direction of the expected misalignment.
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The significance of the robustness to misalignment is entirely dependent on the nature
of the application. In some applications it may be possible to accurately control the axial
alignment, and therefore this factor is not relevant, whereas in other applications, where
the axial alignment varies regularly and significantly, the design may favor the robustness
to lateral displacements over other parameters such as the sensor range. One example
of such a scenario is the implementation of this sensor in wearable applications, where
guaranteeing the axial alignment is not possible.

3.4. Analysis of the Effect of Other Design Parameters

The focus of this subsection is to provide the reader with an understanding of the
effect of varying the trace width (w), trace separation (s), and the number of turns (N) in the
SR tag. It has been shown that increasing N leads to an increase in the inductance of the SR
(LSR) [25], and therefore its resonant frequency decreases according to (1). For this study, it
is assumed that increasing the value of N by 1 means adding another turn inside the SR
(i.e., the external perimeter of the SR remains unchanged). As a result of this decrease in the
resonant frequency, the input impedance, Z1, at the probe terminals decreases according
to (2). On the other hand, adding more turns inside the SR increases the mutual inductance,
M, between the SR and the probe, which in turn increases the value of Z1.

The results obtained from the EM simulations for varying the number of turns of the
SR from 1.5 turns (shown in the top right corner of the plot) to 5 turns are illustrated in
Figure 6. The simulations were carried out for the same square-shaped SR and probing loop
with side lengths (Lp = Ltag = 50 mm). For the purpose of simplicity, the plot in Figure 6
is shown for a fixed normal distance dz = 20 mm; however, the behavior is the same at
other values of dz, just shifted upwards or downwards depending on the value. It can be
observed from the figure that the resonant frequency, f0 (right y-axis—plotted with a red
solid line), decreases as the number of turns increase. However, each additional turn causes
a decrease in the resonant frequency smaller than the previous turn (the length of the added
turn decreases as N increases) until it reaches a saturation point where adding a new turn
does not cause a significant change in the resonant frequency. The real input impedance
decreases as well the resonant frequency. Therefore, increasing the number of turns for the
sensor with the presented parameters does not improve its sensitivity or range.
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Figure 6. Effect of the number of turns N on the input impedance at the probe terminals and the
resonant frequency of the SR. Results are plotted for Lp = Ltag = 50 mm, w = s = 2 mm, and
dz = 20 mm.

The effect of varying the trace width (w) and separation (s) is studied while keeping all
the other parameters constant (Lp = Ltag = 50 mm and N = 2 turns). The results are shown
in Figure 7a,b, where it is evident that increasing those parameters increases the impedance
at the probing loop terminals (plotted in black solid lines—left y-axis) as a result of a growth
of the resonant frequency which is also plotted on the same figures (red solid lines—right
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y-axis). The increase in the resonant frequency can be explained by a decrease in the overall
inductance of the SR for larger strip width and/or separation while keeping the external
side length and the number of turns constant. The decrease in the inductance is due to
a larger filling factor (i.e., the spiral resonator becomes less hollow [25,30]). Moreover,
increasing the trace spacing, s, decreases the turn capacitance of the SR and therefore it
adds another contribution to the increase in the resonant frequency. These parameters can
be optimized to fine-tune the sensor for the specific application operating in the desired
frequency range.
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Figure 7. (a) Effect of the trace width w on the input impedance at the probe terminals and the
resonant frequency of the SR. Results are plotted for Lp = Ltag = 50 mm, s = 2 mm, N = 2 turns, and
dz = 20 mm. (b) Effect of the trace separation s on the input impedance at the probe terminals and
the resonant frequency of the SR. Results are plotted for Lp = Ltag = 50 mm, w = 2 mm, N = 2 turns,
and dz = 20 mm.

4. Coupling between the SR and the Loop at Short Separation Distances

The equivalent circuit model presented in Figure 1c has limitations in describing the
physical coupling between the spiral resonator and the probing loop at short distances.
Indeed, according to the circuit model, the input impedance of the loop should be modu-
lated by the increase of the separation distance, but numerical simulations reveal a drastic
frequency shift when the spiral resonator is very close to the loop. An EM simulation
was carried out for a sensor with the following design parameters: Lp = Ltag = 30 mm,
w = s = 2 mm, and N = 2 turns. The SR and the probing loop are modeled as perfect
electric conductor (PEC) strips etched on FR-4 substrates of the same dimensions, as re-
ported in Section 2. The real part of the input impedance was analyzed in this case starting
from small values of normal distance dz, and the results from the simulation are plotted in
Figure 8a for dz from 5 to 10 mm. A significant decrease in the resonant frequency of the
SR can be observed when the tag is in close proximity to the probe. The relation between
the resonant frequency and dz is shown by the plot in Figure 8b for different values of Lp
at a constant SR size (Ltag = 30 mm). The shift in the resonant frequency could also be
observed in Figure 2b, as there is a slight increase in the resonant frequency of the SR as
dz increases from 15 to 20 mm. However, as dz increases, the change in the frequency at
which the SR resonates becomes less significant. This phenomenon can be attributed to an
additional capacitance formed between the loop and the spiral resonator at short separation
distances. The presence of this additional capacitance may be numerically evaluated by a
thorough analysis of numerical simulations. This model may help in compensating this
undesired effect especially if a single-frequency reader is employed. Clearly, the use of
readers operating at a single frequency is preferable since it requires significantly simpler
electronics compared to that of a reader that performs a frequency sweep.



Sensors 2022, 22, 2071 10 of 16

The phenomenon of the frequency shift at small distances was reported in a few works
in the literature; for example, the results published in [19] show that decreasing the normal
distance causes a decrease in the first resonant frequency, whereas in [31], the range of the
sensor is smaller when using a single-frequency reader due to the shift in the resonant
frequency with the displacement. On the other hand, the rotation sensor in [9] suffered for
perturbations in the normal distance due to the shift in the resonant frequency. Despite
the frequent occurrence of this phenomenon, to the best of the authors’ knowledge, it has
not been treated in the literature from a modeling point of view. Therefore, the resonant
frequency dependence on the normal distance at close proximity is investigated in this
section with the aim of providing the reader with an understanding of the process, and
finally the equivalent circuit model previously presented in Section 3 is improved to account
for this resonant frequency shift at small dz.
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Figure 8. (a) Real input impedance vs. frequency as dz varies from 5 to 10 mm for the sensor with
Lp = Ltag = 30 mm, w = s = 2 mm, N = 2 turns. (b) Resonant frequency vs. dz for varying Lp at
Ltag = 30 mm, w = s = 2 mm, N = 2 turns.

4.1. Near-Field Capacitive Coupling

The resonant frequency of the SR depends on its equivalent capacitance and inductance
as demonstrated previously in (1). Therefore, any change in these equivalent parameters
causes a change in the resonant frequency. The distance-dependent capacitive coupling
was addressed in [32] for the design of integrated circuits where the capacitance between a
conductor strip and a ground plane varies with the distance between them. Moreover, in a
more recent work [33], the capacitance between two pads in high-density communication
was modeled as a function of the distance between them. The expressions developed in
these two models include a term that represents the parallel plate capacitance effect as
in (9) for two parallel conducting plates with surface area A and separated by a normal
distance d

Cppc = ε0
A
d

(9)

where ε0 is the permittivity of free space.
Firstly, the EM simulation tool was used to plot the electric field distribution for the

case where Lp = Ltag = 30 mm at various values of dz. The plots in Figure 9b–d show the
average electric field distribution over a section plane P (shown by the orange rectangle
in Figure 9a where the FR-4 substrates are hidden for better visibility). It is evident from
the figures that the strength of the electric field between the loop and the SR is strongest
at dz = 2 mm, and becomes weaker as the SR and the loop grow farther apart. It is worth
noting that the electric field in each level of dz is plotted at the corresponding resonant
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frequency (379 MHz, 406 MHz, and 416 MHz, respectively). This suggests that at small
distances, there is a capacitive coupling between the SR and the probe that has not been
accounted for in the equivalent circuit model shown in Figure 1c . In particular, there is a
missing capacitance that should be added to the model whose value is not fixed (for a set of
geometric parameters) but dependent on the normal distance dz, analogous to the parallel
plate capacitor model in (9). This model is further supported by the observation that the
maximum shift in the resonant frequency of the SR occurs when it has the same size as the
probing loop (yellow curve in Figure 8b), i.e., maximum conductor strip overlap area.

P

(a) (b) (c) (d)

Figure 9. (a) 3D view of the sensor (dielectric substrates are hidden for better visibility) showing
the section plane P where the electric field distribution is plotted for (b) dz = 2 mm (at 379 MHz),
(c) dz = 5 mm (at 406 MHz), (d) dz = 10 mm (at 416 MHz).

4.2. Modeling of the Additional Capacitance

The capacitive coupling between the SR and the probing loop at small distances can
be accounted for by adding a distance-dependent term to the expression of the capacitance
of the SR as in (10), where C f is the native capacitance of the SR (estimated at a dz beyond
which there is no change in the resonant frequency) according to (11) where the native
SR resonant frequency, f∞, is obtained from numerical simulations at large dz = 30 mm,
where this capacitive coupling effect is insignificant. The inductance is calculated in (12)
according to [25] for an SR of N turns. The constants in (12) depend on the layout and
are obtained for a square planar spiral, µ0 is the free space permeability, and ρ represents
the filling factor and is calculated as the ratio between the difference of the external and
internal diameter of the SR to their sum. The additional capacitance Cppc is calculated
from (13) in terms of the effective dielectric permittivity of the medium ε0 between the loop
and the SR (modeled here as vacuum which is a valid first approximation since the space
between the conductors is occupied as air), the equivalent conductor strip area Ã, and the
normal distance dz.

CSR(dz) = C f + Cppc(dz). (10)

C f =
1

(2π f∞)2LSR
(11)

LSR = 2.34µ0
N2davg

1 + 2.75ρ
(12)

Cppc(dz) = ε0
Ã
dz

. (13)

The terms in expressions (11) and (12) depend on the geometrical parameters with the
exception of f0 that is obtained from a numerical simulation. To calculate the additional
capacitance Cppc, an algorithm based on least square fitting was developed to estimate the
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best fit parameters. The block diagram of the implemented algorithm is shown graphically
in Figure 10, to correctly account for this distance-dependent capacitance. The fitting
algorithm was run on Matlab and the results are summarized in Figure 11 and Table 1 for
the values of the equivalent areas Ã having the unit [m2] from dimensional analysis of (13).

Calculate
SR Inductance

eq (12)

f0 (dz) 

EM
Simulation

LSR 

dz 

ε0 A

Ai+1=Ai+Δ

Cf 
+ 

_

CSR(dz) 

CSR(dz) 

e

No

Model

Sim

Yes
end

Cppc(dz)
~

~ ~

is |e| < θ?

Calculate
Capacitance

C(dz)

Figure 10. Flowchart for the proposed additional capacitance model where f0(dz) is the resonant
frequency and CSR(dz) is the SR total capacitance, both expressed as a function of dz, and e is the
error between the model and simulation results. ∆ is the step increment of the fitted variable Ã, and
θ is the desired max error.
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Figure 11. Fitted equivalent strip area (Ã) vs. the size of the probing loop Lp for a constant tag size
Ltag = 30 mm.

Table 1. Fitted equivalent conductor strip area for the additional capacitance for the sensor with
Ltag = 30 mm.

Parameter Lp = 15 mm Lp = 20 mm Lp = 25 mm Lp = 30 mm Lp = 35 mm Lp = 40 mm Lp = 50 mm

Ã [m2] 9× 10−6 16.8× 10−6 30.3× 10−6 39.6× 10−6 33.2× 10−6 26.7× 10−6 21.7× 10−6

The trend of the fitted values of the equivalent area, Ã, is consistent with the parallel
plate capacitor model since Ã reaches its maximum value when the SR and the loop have
the same side length (Ltag = Lp = 30 mm) where the overlap area is maximum, as shown
in Figure 11, which is consistent with the physical model.

The resonant frequency can be calculated from the model by substituting the result
obtained from (13) in (10), and then evaluating the resonant frequency using (1). The
accuracy of the fit can be evaluated by comparing the model resonant frequency with the
resonant frequency obtained from the EM simulations at different values of dz. The results
obtained from the model well match those obtained from the EM simulations, as shown
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in Figure 12 for the case where Ltag = Lp = 30 mm, showing a mean error less than 1%
over the range of distances analyzed. The percentage error is calculated as per (14) and the
results are summarized in Table 2.

e =
| f0sim − f0model |

f0sim
× 100. (14)

1 5 10 15 20 25 30
dz [mm]

350

400

450

f 0 [
M

H
z]

f
sim

f
model

f
C

SR
= const.

Figure 12. Comparison between the resonant frequency of the SR obtained from numerical simu-
lations and those from the corrected equivalent model. The resonant frequency from the original
model is shown by the yellow line for reference. Results are plotted for Lp = Ltag = 30 mm and
w = s = 2 mm, while varying dz.

Table 2. Mean and maximum percentage error for the resonant frequency estimation using the
corrected circuit model for Ltag = 30 mm and different Lp sizes.

Lp 15 mm 20 mm 25 mm 30 mm 35 mm 40 mm 50 mm

emean 0.2% 0.4% 0.7% 0.9% 0.6% 0.5% 0.5%

emax 0.5% 0.7% 1.1% 1.1% 1.2% 1.3% 1.4%

It can be deduced from Figure 12 and Table 2 that the model well matches the results
from the simulations. The resonant frequency obtained from the original model, which
assumes that the equivalent capacitance of the SR is constant, is plotted (yellow line) in
the same figure showing the significant error at small values of dz compared to the results
from the proposed model, whereas the maximum error in the estimation of the resonant
frequency using the original model is equal to 19.9%, compared to 1.1% using the corrected
model. The proposed model, shown in Figure 13 by its equivalent circuit, provides a
method to predict the decrease in the resonant frequency as the tag moves closer to the loop
due to the increased capacitance introduced by the parallel plate capacitor effect which
depends on the value of dz.

RLoop

Vs Z1 LLoop

RSR C
SR
(dz)

LSR Cf

M

Zs

Cppc

Figure 13. Proposed improved equivalent circuit model, taking into account the additional capacitive
coupling (Cppc).
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5. Experimental Validation

This section is dedicated to experimentally verifying the results previously obtained
using simulations and validating the conclusions inferred from the novel fitting model for the
additional capacitance presented in the previous section. For this purpose, an experimental
prototype of the sensor was realized on an FR-4 substrate (εr = 4.3 tan δ = 0.03) with the
following parameters: Lp = 22 mm, Ltag = 18 mm, w = 1.5 mm, s = 2 mm, and N = 2 turns.
It is worth remembering at this point that the shift in the resonant frequency of the tag at
small distances is maximized for Lp ≈ Ltag. Therefore, the loop antenna and the SR tag are
designed such that the dz-dependent shift in resonant frequency of the tag at small values of
dz is significant so that the proposed additional capacitance model can be verified.

Firstly, an EM simulation was carried out to numerically obtain the resonant frequen-
cies (frequency of maximum real input impedance) and the amplitude at resonance, similar
to what was performed in Section 4. Then, the fitting procedure described in Figure 10
was followed to retrieve the effective equivalent area for the sensor with these parameters
so that the additional distance-dependent capacitive coupling can be accounted for, as
described in (10). The experimental setup for measurements was designed such that the
loop antenna is connected through a soldered SMA connector to the Anritsu Shockline
MS46524B vector network analyzer (VNA) for signal generation and measurement. The
experimental setup for measurement is shown in Figure 14a, where the normal distance dz
between the loop and the SR was varied from 7 mm to 16 mm with a step of 1 mm. The
minimum value of dz that can be measured using this setup without risk of contact between
the tag and the SMA connector is 7 mm, as shown by the dashed lines in Figure 14a.

dz

7 mm

VNA

(a)

0 2 4 6 8 10 12 14 16

d
z
[mm]

700

750

800

850

900

f 0
[M
H
z]

Simulation
Model
Measurement

7 10 13 16

840

850

860

Δf = 14 MHz

Δf = 14 MHz

(b)

Figure 14. (a) Experimental setup showing the minimum value of dz that can be measured due to
the size of the soldered SMA connector. (b) Comparison between the resonant frequency of the
SR obtained from numerical simulations, equivalent circuit model, and experimentally. Results
are plotted for a sensor prototype with Lp = 22 mm, Ltag = 18 mm, w = 1.5 mm, s = 2 mm, and
N = 2 turns while varying dz.

The results are summarized in Figure 14b, where the resonant frequency of the SR
tag ( f0) is plotted against the dz. The resonant frequency obtained from the proposed
additional capacitance model (dashed orange line) is compared to those from numerical
simulations (solid blue line). It can be observed from the plot that the model well matches
the simulation results for a sensor with different parameters than the ones in Figure 12.
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Furthermore, the good match between the experimentally obtained resonant frequency
(black solid line) and the one retrieved from numerical simulations verifies the accuracy
and validity of the developed model for EM simulation. Finally, the zoomed-in portion of
Figure 14b shows more clearly how the measured resonant frequency decreases at small
values of dz and how the fitted model was used to accurately predict the decrease in the
resonant frequency of the SR (∆f = 14 MHz) as dz decreases from 16 to 7 mm.

6. Conclusions

A tutorial for designing distance sensors based on spiral resonators (SRs) is provided
in this paper. The proposed sensor is composed of an SR tag that is interrogated by a
microstrip probing loop that is the reader’s antenna. The distance is obtained simply
by carrying out a one-port measurement of the real part of the input impedance at the
terminals of the probing loop. The real input impedance is inversely proportional to the
distance between the SR tag and the probe. This article provides a thorough analysis of the
effect of the design parameters of the sensors on the performance, namely, the sensing range,
sensitivity, and operating frequency. The results reported herein can be used by designers
to quickly reach a preliminary design according to the specific application constraints and
requirements. The design process starts by defining the required operating frequency, range,
and sensitivity. The designer can optimize the SR geometrical parameters to obtain SR
resonance at the desired frequency; this is followed by the design of the probing loop. Two
factors must be considered when designing the probe; firstly, its self-resonant frequency
must be significantly higher than that of the SR (the desired operating frequency), and,
secondly, the size of the probing loop influences the range and sensitivity for distance
measurement using the single-frequency interrogation technique described in this work.
Finally, the phenomenon of resonant frequency shift occurring when the normal distance
between the SR and the probing loop is small is investigated. It has been shown that
the equivalent circuit models in the literature for SR sensors fail to take this frequency
shift into account. Therefore, a corrected circuit model, based on modeling the capacitive
coupling between the SR and the probing loop at small distance as a parallel plate capacitor,
has been proposed. The results from this model well match the results obtained from
EM simulations and experimental measurements. This model is particularly useful for
applications requiring displacement measurement at small distances.
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