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Abstract: Continuous advancements in computing technology and artificial intelligence in the past
decade have led to improvements in driver monitoring systems. Numerous experimental studies
have collected real driver drowsiness data and applied various artificial intelligence algorithms and
feature combinations with the goal of significantly enhancing the performance of these systems
in real-time. This paper presents an up-to-date review of the driver drowsiness detection systems
implemented over the last decade. The paper illustrates and reviews recent systems using different
measures to track and detect drowsiness. Each system falls under one of four possible categories,
based on the information used. Each system presented in this paper is associated with a detailed
description of the features, classification algorithms, and used datasets. In addition, an evaluation
of these systems is presented, in terms of the final classification accuracy, sensitivity, and precision.
Furthermore, the paper highlights the recent challenges in the area of driver drowsiness detection,
discusses the practicality and reliability of each of the four system types, and presents some of the
future trends in the field.

Keywords: biological-based measures; driver drowsiness detection; hybrid-based measures; image-based
measures; vehicle-based measures

1. Introduction

Based on 2017 police and hospital reports, the National Highway Traffic Safety Ad-
ministration (NHTSA) identified 91,000 car accidents as being caused by drowsy drivers.
These accidents resulted in 50,000 injuries. In 2019, 697 fatalities involved a drowsy driver.
However, NHTSA admits that it is hard to determine the precise number of drowsy-driving
accidents, injuries, or deaths and that the reported numbers are underestimates [1]. For
example, a study by the American Automobile Association’s foundation for traffic safety
estimated that more than 320,000 drowsy driving accidents happen each year, including
6400 fatal crashes [2]. The high numbers indicate that drowsy driving is a serious concern
that needs to be addressed to mitigate its impact.

Drowsiness refers to sleepiness, often in inappropriate situations [3]. Although the
state of drowsiness may only last for a few minutes, its consequences can be disastrous. The
reason for entering such a state is usually attributed to fatigue, which diminishes attention
and alertness levels [4]. Drowsiness may happen either by driving for long distances
without enough sleep or driving at a time when the driver would typically be asleep [5]. In
such cases, the main problem is the drowsy driver’s lack of concentration, resulting in a
delayed response to any event on the road [6].

Fortunately, it is possible to detect driver drowsiness in its early stages and alarm the
driver to avoid any potential accident. Drowsy drivers exhibit various signs, which include
repeated yawning, frequent eye closure, and repeatedly departing street lanes [6]. In fact,

Sensors 2022, 22, 2069. https://doi.org/10.3390/s22052069 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22052069
https://doi.org/10.3390/s22052069
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5785-5566
https://orcid.org/0000-0001-9785-3920
https://doi.org/10.3390/s22052069
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22052069?type=check_update&version=2


Sensors 2022, 22, 2069 2 of 41

driver drowsiness detection (DDD) techniques have been researched intensively in recent
years [7–13]. Researchers have proposed various measures to detect these drowsiness signs
as early as possible, in order to avoid accidents. These measures can be divided into four
main categories: firstly, image-based measures that are obtained using a camera to analyze
the driver’s movements and facial expressions; secondly, biological-based measures that
relate to the driver’s bio-signals and can be recorded by placing special sensors on the
driver’s body; thirdly, vehicle-based measures, which depend on monitoring the behavior
and movement of the vehicle; finally, hybrid-based measures, using two or more mea-
sures. According to the literature, in 2019, Ramzan et al. [9] presented a comprehensive
analysis for the existing DDD methods, as well as a detailed analysis for the commonly
used classification techniques in this sector. Ramzan et al. classified the DDD techniques
into three categories: behavioral, physiological, and vehicular parameter-based techniques.
Then, they reviewed the top supervised learning techniques used in detecting drowsiness.
In the end, they discussed the pros and cons of the three DDD in a comparative study.
On the other hand, Sikander and Anwar [10] presented an in-depth review of the recent
advancements in the field of driver fatigue detection. In this review, the DDD methods
were categorized into five groups, depending on the extracted fatigue features, including
physical features, vehicular features, biological features, subjective reporting, and hybrid
features. Furthermore, the fatigue effect on driving performance was discussed, along
with the existing commercial products for fatigue detection available on the market. Ad-
ditionally, Dong et al. presented a review of driver inattention monitoring technologies.
Inattention consists of distraction and fatigue [12]. Dong et al. summarized the detection
measure into five groups, similar to Sikander and Anwar’s work [10]. In their review,
Dong et al. introduced the concept of driver inattention and its effect on driving perfor-
mance. Additionally, they covered some of the commercial products related to inattention
detection, along with a detailed review of previous research on inattention detection.

This review contributes to the literature by covering the recently implemented DDD
systems, especially those published over the past three years. Our paper classifies these sys-
tems into four categories, based on the measures used to determine the state of drowsiness.
From our perspective, these measures can be image-, biological-, vehicle-, or hybrid-based.

Moreover, the review lists and tabulates the used parameters, sensors, extracted
features, methods and classifiers, and quality metrics (including accuracy, sensitivity, and
precision), in addition to the datasets for each system. Additionally, a comparison between
the practicality and reliability of each of the four DDD categories is presented. Additionally,
the paper covers the recent challenges in the DDD area. Furthermore, we discuss the DDD’s
future trends and research directions that utilize smartphones, edge computing, and the
Internet of Things (IoT).

This paper is organized as follows: Section 2 discusses drowsiness stages and signs.
Section 3 provides a detailed investigation of driver drowsiness measures. These measures
are categorized as image-, biological-, vehicle-, and hybrid-based. Section 4 covers a list of
the challenges facing DDD. Section 5 compares the practicality and reliability of the four
DDD system types and discusses the measures and methods, as presented in Section 3.
Section 6 discusses some of the future trends in drowsiness detection systems. Finally,
Section 7 concludes the paper.

2. Drowsiness Signs and Stages

In the literature concerning the design of drowsiness detection systems, different
terms of reference are used. Although “drowsiness” is the commonly mentioned term,
“fatigue” is also used. Despite their difference, fatigue and drowsiness are interchangeably
utilized [14]. Fatigue refers to “the reluctance to continue a task as a result of physical
or mental exertion or a prolonged period of performing the same task” [15]. However,
sleepiness or drowsiness is defined as the urge to fall asleep. Basically, drowsiness is the
result of a captivating biological need to sleep [15]. Drowsiness can happen due to many
reasons, such as medication, working for long hours, sleep disorders, poor quality (or not
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having enough) sleep, and being awake for long periods [15]. Thus, their relationship
is evident, as fatigue directly contributes to drowsiness. Although they are different
concepts, some researchers considered drowsiness and fatigue alike, due to their similar
consequences, such as [15–18]. In our work, we refer to these systems as drowsiness
detection systems.

A driver does not become drowsy suddenly, without showing some signs. Examples
of such signs include [6,13]:

• Difficulty keeping eyes open;
• Yawning;
• Frequent blinking;
• Difficulty concentrating;
• Swerving out of the lane and delayed reaction to traffic;
• Nodding;
• Unjustifiable variations in speed.

These signs gradually become more apparent as drowsiness deepens and, as such, can
serve as indicators for the level of driver drowsiness.

To systematically evaluate stages of drowsiness and facilitate the development of
automatic early drowsiness detection systems, a precise measurement scale for drowsiness
levels is necessary. Many methods have been proposed in that direction. One of the widely
used scales in the literature is the Karolinska sleepiness scale (KSS) [19–21]. Shahid et al.
define KSS as “a scale that measures the subjective levels of sleepiness at a particular time
during the day” [22] (p. 209). KSS is a nine-point scale that measures drowsiness through
verbal descriptions of drivers [19]. The nine KSS scores are summarized in Table 1.

Table 1. Karolinska sleepiness scale, adapted from [19].

Scale Verbal Description

1 Extremely alert
2 Very alert
3 Alert
4 Fairly alert
5 Neither alert nor sleepy
6 Some signs of sleepiness
7 Sleepy, but no effort to keep alert
8 Sleepy, some effort to keep alert
9 Very sleepy, great effort to keep alert

Wierwille and Ellsworth proposed another drowsiness evaluation scale [23]. They
define drowsiness stages on a five-level scale, as shown in Table 2. According to Saito et al.,
at level one, rapid eye movement and a stable eye blinking period can be observed [24].
At level two, slow eye movement occurs. The driver may touch his face at level three, as
well as yawn and slowly blink. As for level four, the driver’s unnecessary movements
are observed; he frequently yawns, blinks more, and breathes deeply. Finally, the eyes are
almost closed at the fifth level, and the head nods.

Table 2. Wierwille and Ellsworth drowsiness scale.

Levels Verbal Description

1 Not drowsy
2 Slightly drowsy
3 Moderately drowsy
4 Significantly drowsy
5 Extremely drowsy
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This scale is also widely used because these levels are determined based on analyzing
the driver’s facial expressions. When comparing this scale results with the subjective
reports of the drivers, they show a high correlation, which indicates that this evaluation
scale could be an alternative to the KSS scale [24,25].

3. Drowsiness Detection Measures

In order to detect the different stages of drowsiness, researchers have studied driver
responses and vehicle driving patterns. In this section, we provide a review of the four
widely used measures for DDD. The diagram in Figure 1 illustrates all the currently used
measures for classifying driver drowsiness levels. Two of these measures are observed in
the drivers themselves: image- and biological-based. The third measure is extracted from
the car itself and referred to as the vehicle-based measure. The fourth measure considered
is the hybrid measure, which combines at least two of the previously mentioned ones.

Figure 1. Driver drowsiness detection measures.

Figure 2 illustrates a DDD system’s general block diagram and data flow that can
employ any of the four measures mentioned above. Initially, data are captured using a
suitable sensing device; then, the target features are extracted from the captured signals.
This step is essential because it simplifies the system input by discarding irrelevant infor-
mation and extracting useful ones. Next, some systems may employ feature transformation
or dimensionality reduction, in order to project the data in another domain, where it is
easier to analyze or reduce the computational load. The fourth step selects the features that
best correlate to drowsiness, using different feature selection algorithms, such as backward
selection or wrapper feature selection methods. After that, machine learning (ML) or
deep learning is utilized to generate a model in the training phase that is used to classify
the driver’s status. The trained model is used in the testing phase to detect the driver’s
drowsiness level and, if required, take action, such as activating an alarm or alerting the
driver to take a break.

Figure 2. Driver drowsiness detection systems data flow.
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Various metrics have been used to evaluate the ability of the system to detect drowsy
subjects. These include accuracy, precision, and sensitivity. The equations for three metrics
are listed below (1)–(3) [26,27].

Accuracy =
Number of correct predectins

Total number of redections
=

TP + TN
TP + TN + FP + FN

(1)

Precision =
TP

TP + FP
(2)

Sensitivity =
TP

TP + FN
(3)

TP (true positive) is the number of drowsy drivers that the system has correctly
identified as drowsy, and TN (true negative) is the number of alert drivers that the system
has correctly identified as alert. On the other hand, FP (false positive) is the number of alert
drivers that the system has wrongly identified as drowsy, and FN (false negative) is the
number of drowsy drivers that the system has wrongly identified as alert.

Accuracy, which is the most commonly used metric, is a good indicator of how well
the system can identify both TP and TN. However, it is more suitable when the data are
balanced, i.e., when the number of drowsy drivers in an experiment equals the number of
alert drivers in the same experiment. Otherwise, accuracy will be biased towards the class
with more samples or data points. In many cases, it is easier to obtain awake driver data
than it is to get drowsy driver data. In a real-life scenario, more awake drivers are on the
road than drowsy ones. Therefore, to avoid bias, precision and sensitivity, also known as
recall, are better alternatives for unbalanced datasets.

Precision shows a proportion of the correctly identified drowsy drivers to those labeled
as drowsy, while they are, in reality, alert. In contrast, sensitivity shows a proportion of
the correctly identified drowsy drivers to those labeled as alert, while, in reality, they are
drowsy. Low precision indicates that the system may identify alert drivers as drowsy and
take actions to alert them. In contrast, low sensitivity means that the system may not be
able to identify drowsy drivers, which could lead to serious accidents. It is, therefore,
essential to have high sensitivity in DDD systems.

Other factors that are considered in the comparison of the four system types are cost,
invasiveness, intrusiveness, and ease of use. Ease of use refers to the complexity of setting
up the system at the beginning of each trip. All of these factors are covered here, under the
umbrella of practicality. Generally, a trade-off between the system’s performance and cost
must be weighed.

3.1. Image-Based Measures

Some drowsiness signs are visible and can be recorded by cameras or visual sensors.
They include the driver’s facial expressions and movements, especially the head move-
ments. The literature refers to these signs as visual [8] or image-based measures [7]. Our
work refers to them as image-based measures to highlight that these measures usually lead
to features extracted from images or videos. Additionally, it is important to note here that
image-based measures are a subcategory of the physical [10] or behavioral measures [9].
Physical and behavioral measures refer to the body movements captured either from videos
or using motion sensors, such as a gyroscope and accelerometer [28,29].

Image-based DDD systems can be broadly categorized into three techniques, based
on whether movements of the mouth, head, or eyes are observed. Table 3 lists some of the
image-based measures.
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Table 3. Some of the image-based measures.

Features Description

Blink frequency [30] The number of times an eye closes over a specific period of time.

Maximum closure duration of the eyes [30] The maximum time the eye was closed. However, it can be risky to delay detecting an
extended eye closure that indicates a drowsy driver.

Percentage of eyelid closure (PERCLOS) [31] The percentage of time (per minute) in which the eye is 80% closed or more.

Eye aspect ratio (EAR) [32]
EAR reflects the eye’s openness degree. The EAR value drops down to zero when the
eyes are closed. On the other hand, it remains approximately constant when the eye is

open. Thus, the EAR detects the eye closure at that time.

Yawning frequency [33] The number of times the mouth opens over a specific period of time.

Head pose [34]
Is a figure that describes the driver’s head movements. It is determined by counting the

video segments that show a large deviation of three Euler angles of head poses from
their regular positions. These three angles are nodding, shaking, and tilting.

One widely used dataset among the Image-based DDD systems is the National Tsing
Hua University Drowsy Driver Detection (NTHUDDD) public dataset by the Computer
Vision Lab of National Tsing Hua University [35]. This dataset gained popularity due to
the various scenarios and drowsiness features it covers. The dataset includes training, eval-
uation, and testing datasets and contains recorded videos for 36 subjects from different eth-
nicities. Additionally, it considers the cases when the driver is wearing sunglasses/glasses,
day and night illumination conditions, and a variety of simulation scenarios, including:

• Normal driving;
• Yawning;
• Slow blink rate;
• Falling asleep;
• Burst out laughing.

The training dataset includes videos for 18 subjects in five different scenarios, including
subjects with (1) bare face, (2) glasses, (3) bare face at night, (4) glasses at night, and
(5) sunglasses. The videos include the two most important scenarios. Firstly, a combination
of drowsiness symptoms, such as slow blink rate, yawning, and nodding. Secondly, a
variety of non-drowsiness actions, such as talking, looking at both sides, and laughing. On
the other hand, the testing and evaluation datasets contain videos from the remaining 18
subjects. These videos include drowsy and non-drowsy features, mixed under multiple
scenarios.

Below, we discuss some image-based detection systems that have been introduced
over the past decade. Table 4 provides a summary of those systems.

1. Fatigue detection, based on awning in thermal images

In their paper, Knapik and Cyganek presented a novel approach for driver fatigue
detection, based on yawning detection, using long-range infrared thermal imaging [16].
A special dataset was created for this research [36]. The system works as follows. First,
images are acquired from a thermal video. Then, three cascaded detection modules are
applied for the face area, eye corners, and yawn. Since the mouth area is sometimes hard
to detect in thermal images, due to the temperature difference in that area, information
about other face regions’ relative temperatures is used to detect the yawn reflex. Thus, the
authors used the eye corners as an indicator for yawning. Cold and hot thermal voxel sum
methods were used to detect yawning [37]. Finally, based on the proposed algorithm’s
results and assumed constraints, an alarm is initiated when fatigue is detected. The system
showed accuracies of 71% for cold voxels detection and 87% for hot voxels detection.

2. Drowsiness detection using respiration in thermal imaging

Kiashari et al. [38] introduced a non-intrusive system that detects drowsiness using
facial thermal imaging to analyze the driver’s respiration signal. Thirty subjects participated
in their study, which was conducted in a car simulator. A thermal camera was used to
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capture the driver’s thermal images. From the obtained thermal signals, the standard
deviation and mean of both the respiration rate and inspiration-to-expiration time ratio
were calculated and used as input features, in order to train two machine learning classifiers,
namely, support vector machine (SVM) and k-nearest neighbor (KNN). Both classifiers
were able to detect drowsiness. However, SVM outperformed the KNN, with 90% accuracy,
85% specificity, 92% sensitivity, and 91% precision.

3. Drowsiness detection using eye features

• Eyelid closure analysis

Khan et al. [39] proposed a real-time DDD system based on eyelid closure. The
system was implemented on hardware that used surveillance videos to detect whether
the drivers’ eyes were open or closed. The system started by detecting the face of the
driver. Then, using an extended Sobel operator, the eyes were localized and filtered to
detect the eyelids’ curvature. After that, the curvature’s concavity was measured. Based
on the measured concavity value, the eyelid was classified as open (concave up) or closed
(concave down). If the eyes were deemed closed for a certain period, a sound alarm is
initiated. The system used three datasets. The authors generated two of them, and the
third was acquired from [40]. The first dataset, which contained simple images, with a
homogenous background, showed an accuracy of 95%. The second set, which included a
complex benchmark image dataset, achieved an accuracy of 70%; the third one, which used
two real-time surveillance videos, showed an accuracy that exceeded 95%.

• Optical correlator based DDD algorithm

Ouabida et al. [41] proposed a fast method for DDD that depends on an optical
correlator to detect the eye and then estimates its state using optical correlation with a
deformed filter. This method was the first to use a numerical simulation of the optical
Vander Lugt correlator [42,43] to detect the eye center automatically. The proposed DDD
method precisely estimates the eye’s location and state (open or closed), using a specific
filter in the Fourier plane of the optical Vander Lugt correlator. In this method, the eyes
are initially detected in non-zoomed facial images. Using the simulated optical correlator,
the eye state is estimated under different lighting, head orientations, and with or without
eyeglasses. The researchers evaluated the proposed method on five international databases:
FEI [44], ICPR [45], BioID [46], GI4E [47], and the second Strategic Highway Research
Program results (SHRP2) [48]. Additionally, a group of correlation filters was proposed
and designed to recognize eyes’ states in noisy and cluttering environments. The proposed
optical correlation, with a deformed eye filter, showed the best performance.

• Real-time DDD using eye aspect ratio

In this work, Maior et al. [49] developed a drowsiness detection method based on
eye patterns monitored by video streams using a simple web camera. The method tracks
the blinking duration using the EAR metric. The proportion between the eye’s height and
width is calculated to evaluate the EAR value. A high EAR value indicates that the eye
is open, while a low value indicates that it is closed. The proposed method consists of
three main parts: eye detection, EAR calculation and blink classification, and real-time
drowsiness detection. An experiment was conducted to generate a training database. After
obtaining the images from the web camera, the EAR values were calculated and stored
for each frame. Then, a specific number of consecutive values were used as input for
the machine learning algorithms. Drowsiness is detected if the blink duration is longer,
compared to a standard blink. Three classification methods were employed: multilayer
perceptron, random forest (RF), and SVM. Overall, SVM showed the best performance,
with an average test accuracy of 94.9%.

• DDD using face and eye features

In [30], Bamidele et al. presented a nonintrusive DDD system, based on face and
eye state tracking. The research utilized the NTHUDDD Computer Vision Lab’s video
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dataset [35]. The proposed system starts by acquiring and pre-processing the required
data. Then, it extracts the targeted features, including the PERCLOS, maximum closure
duration of the eyes, and blink frequency. The extracted features are then fed to various
classifiers to decide whether they belong to a drowsy or awake person. These classifiers
include KNN, SVM, logistic regression, and artificial neural networks (ANN). The final
results revealed that the best models were the KNN and ANN, with accuracies of 72.25%
and 71.61%, respectively.

• Detection of driver drowsiness with CNN

Hashemi et al. proposed a real-time DDD system based on the area of eye closure
and use of the convolutional neural network (CNN) [50]. Three networks were introduced
for eye closure classification: fully designed neural network (FD-NN), transfer learning
in VGG16 (TL-VGG16), and transfer learning in VGG19 (TL-VGG19), with extra designed
layers. The authors used the ZJU gallery dataset, in addition to 4157 new images. The exper-
iment resulted in the following network accuracies: 98.15%, 95.45%, and 95%, respectively.

• Eye signal analysis

Zandi et al. [51] proposed a non-intrusive drowsiness detection ML system based on
eye-tracking data. The experiments were conducted in a simulated driving environment,
with 53 participants. The authors collected data for eye-tracking signals and multichannel
electroencephalography signals. The electroencephalography signal was only used as a
reliable baseline for comparison and to label the eye-tracking signals epochs as drowsy
or alert. The proposed ML system extracted 34 eye-tracking signals’ features, obtained
from overlapping eye signals’ epochs with different lengths. The system performance,
subject to various combinations of different features and epoch lengths, was also studied.
Two binary classifiers were used: the RF classifier with 200 trees and non-linear SVM with a
Gaussian kernel classifier. The experiment results revealed that the RF classifiers resulted in
an accuracy range of 88.37% to 91.18% across all epochs, as well as a sensitivity–specificity
of 88.1% to 88.8% for a 10-s epoch. In contrast, the non-linear SVM classifier showed an
accuracy range of 77.12% to 82.62%. Additionally, it resulted in a sensitivity–specificity
of 79.1% to 80.8% for a 10-s epoch. Using eye-tracking data and a proper classification
framework, such results confirmed that drowsiness could be reliably detected with high
accuracy, specificity, and sensitivity.

4. Drowsiness detection using multiple features

• Eye and mouth analysis

Celecia et al. [52] proposed a low-cost, portable, robust, and accurate DDD device that
used an infrared illuminator and camera to record images. The device’s processing model,
which was performed over a Raspberry Pi 3 Model B, combines features obtained from the
eyes and mouths of the subjects under consideration. The features include PERCLOS [31],
eye closing duration, and average mouth opening time. The 300-W dataset [53] was used
in the training process. The authors determined the state of each feature through a cascade
of regression tree algorithms. A Mamdani fuzzy inference system then estimated the driver
state by combing the three features’ states as an input. The device generates a final output
that represents the drowsiness level by giving a label of either “Low-Normal”, “Medium-
Drowsy”, or “High-Severe state.” According to Celecia et al., using various drowsiness
measures overcomes the issues of partly losing some of them in the image. Thus, the
study resulted in a DDD device, robust to different ambient lighting conditions, with
95.5% accuracy.

• Eye state analysis and yawning

Alioua et al. [54] proposed a non-intrusive and robust system that detects drowsiness
in real-time to reduce traffic accidents. The system detects drowsiness based on a closed-
eyes and open-mouth detection algorithm. In this work, a group of images was collected
using a webcam. According to the authors, the system starts with an SVM face detector to
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extract the face region from the video frames. Then, the eye and mouth regions localization
within the face is performed. Finally, the circular Hough transform is applied to the
extracted eye to find the iris, a colored muscular curtain close to the front of the eye, as an
indication of eye openness. Additionally, it is used over the mouth region to determine the
degree of mouth openness. Based on the fusion of the state of the eye and the mouth, the
system decides whether the driver is drowsy or not. The results showed that this system is
robust, with 94% accuracy and 86% kappa statistic value.

• Eye Closeness

In order to detect the levels of drowsiness, Khunpisuth et al. [55] conducted a study
with ten volunteers. During the study, the frequency of eyes blinking and head tilting was
monitored and related to the drivers’ drowsiness state. The authors built an embedded
device for drowsiness detection that used a Raspberry Pi Camera and Raspberry Pi 3 Model
B to collect image data, detect the drowsiness level, and alert the driver. Initially, the
proposed device applied the Haar cascade classifier to detect an upright face, head level,
and eye blinking. Moreover, if the head position is not upright, geometric rotation is used to
calculate the angle and rotate the image to an upright position, in order to detect accurately.
Secondly, template matching is used to detect whether the eyes are open or closed. Thirdly,
the drowsiness level is calculated via the frequency of head tilting and eye blinking. The
system uses a scale of 0–100 to describe the severity of the drowsiness. If the drowsiness
level reaches 100, the system triggers a loud, audible warning to alert the driver. Finally, the
accuracy system gave an accuracy of 99.59%. However, this system had some limitations,
as it is affected by the subject’s skin tone and background light.

• Facial features

Deng and Wu [56] proposed DriCare, a real-time DDD system. This system detects the
drowsiness status using images from video streams. The authors introduced an enhanced in-
video face-tracking algorithm, called multiple CNNs-kernelized correlation filters. Further,
they used 68 key points in the driver’s face to locate key regions, including the eyes and
mouth. The authors then calculated the number of closed-eye frames to the total number
of frames, continuous-time of eye closure, blinking frequency, and number of yawns in
a minute to detect the driver’s drowsiness. Finally, the DriCare system alerts the driver,
using some warning, if found drowsy. The system was tested on CelebA [57], YawDD [58]
datasets, and other videos obtained by the authors. Overall, the system showed an accuracy
of around 92%.

• Deep CNN models-based ensemble approach

Dua et al. [59] utilized the NTHUDDD public dataset [35] to propose an architecture
that detects driver drowsiness. This architecture comprises of four deep learning models:
AlexNet, VGG-FaceNet, FlowImageNet, and ResNet. These models are used to extract
four different types of features: facial expression, head gestures, hand gestures, and be-
havioral features, such as head, eyes, or mouth movements. While the AlexNet model
accounts for different environmental and background conditions, the VGG-FaceNet model
detects and extracts facial traits. In contrast, FlowImageNet is used to extract head gestures
and behavioral features, while ResNet is used for hand gestures. Using RGB videos of
the drivers as an input, the four models generate four outputs that are fed to an ensemble
algorithm, called simple averaging [60], followed by a SoftMax classifier [61]. Dua et al.
proposed system resulted in an overall accuracy of 85%.

• Fatigue detection using convolutional two-stream network

Liu et al. [17] presented a fatigue detection algorithm that feeds multi-facial features,
such as eye closure duration, head nodding, and yawning, to a convolutional two-stream
network, referred to as a gamma fatigue detection network. Initially, the algorithm locates
the eyes and mouth of the driver using multi-task cascaded CNNs. The static features are
then extracted from a partial facial image. After that, the dynamic features are extracted
from a partial facial optical flow. Once obtained, both static and dynamic features are
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combined using a two-stream neural network to classify the image data. In addition, the
paper showed that applying gamma correction [62] to enhance image contrast increased
the accuracy by 2% for night shoots. The algorithm was verified using the NTHUDDD
public dataset [35], with an accuracy of 97.06%.

• Condition-adaptive representation learning

Yu et al. [63] presented a condition-adaptive representation learning framework for
DDD, based on a 3D-deep CNN using the NTHUDDD public dataset. The framework
contained four models: spatio-temporal representation learning, scene condition under-
standing, feature fusion model, and the drowsiness detection model.

First, spatio-temporal representation learning was used to simultaneously extract
features that describe movements and appearances in the video. Then, scene condition
understanding was used to represent different driving conditions and classify the drivers.
Such conditions include facial changes in the eye, mouth, and head, in addition to others.
Then, the feature fusion model generates an adaptive representation for driving conditions
by fusing two features. Finally, the drowsiness detection model recognizes the drivers’
alertness status, using the condition-adaptive representation from the previous model. The
framework’s accuracy was 76.2%.

• Face descriptors

Moujahid et al. introduced a face monitoring DDD system that can capture the most
discriminant drowsiness features [33]. It is based on a hand-crafted, compact face texture
descriptor. After extracting the raw features, the compactness is achieved by employ-
ing pyramid multi-level face representation and feature selection. This work used the
NTHUDDD [35] public dataset. The authors have focused on extracting the tiredness
features from the eyes, head, and mouth, such as blinking rate, head nodding, and yawn-
ing frequency. This process led to three descriptors, namely covariance descriptor [64],
a histogram of oriented gradients features [65], and classical texture local binary pattern
features [66]. The framework consists of five phases: first, face detection and alignment;
second, pyramid multi-level face representation; third, pyramid multi-level feature extrac-
tion; fourth, dimensionality reduction principal component analysis and subset feature
selection, using the Fisher score [67]; finally, non-linear SVM-based classification. After
testing the data with several DDD methods, the experimental results showed that the
proposed method achieved an accuracy of 79.84%. Furthermore, these results proved that
this method is similar or superior to other approaches that rely on deep CNN.

• Facial motion information entropy

In [18], You et al. proposed a real-time algorithm for driver fatigue detection using
facial motion information entropy. The algorithm contains four modules. First, a face
positioning module, where the authors presented an improved YOLOv3-tiny CNN to
capture the facial regions, under various complex conditions, within the captured video
frames. The second module is dedicated to feature vector extraction. In this module, a face
feature triangle geometry area was constructed using the Dlib toolkit, face’s landmarks, and
facial regions’ coordinates. The third module involves extracting face feature vectors that
contain information about each face feature triangle area, as well as the centroid extracted
for each frame. This vector is used as an indicator to determine the driver’s state. In the
fourth module, the fatigue judgment module, a sliding window is designed to acquire
the facial motion information entropy. This information is then compared to a judgment
threshold, specified by the SVM classifier, to evaluate the driver’s fatigue state. The authors
verified their proposed algorithm using an open-source dataset (YawDD [58]). You et al.
reported accuracy of 94.32%.

• Monitoring drowsiness on a mobile platform

Wijnands et al. [68] described a new DDD method, based on activity prediction,
through depth-wise separable 3D CNN using real-time video. Similar to others, their
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method used the academic NTHUDDD dataset [35]. An advantage of this method is that
it implicitly decides on the essential features, rather than pre-specifying a set of features
beforehand. Some features include eyelid closure, mouth position, frowning, outer brow
raises, nose wrinkles, and chin raises. Thus, if a sufficient amount of data labels are
provided, it will capture these features. The experiments were conducted under different
lighting and face wear conditions, including driving at night and daytime. Additionally,
subjects drove while wearing glasses, sunglasses, and without any. The results presented
different accuracies, based on the different scenarios and selected features, but the method
showed a final accuracy of 73.9%.

• DDD with hybrid CNN and LSTM

Guo and Markoni [69] proposed a new method that applies real-time DDD, based on a
combination of CNN and long short-term memory (LSTM). The proposed method consists
of two parts: spatial and temporal. In the spatial part, the method extracts facial features,
such as eyes and mouth, in one frame. CNN was used for face detection, face landmark
detection, and eyes and mouth classification. As for the temporal part, an LSTM analyzer
used the concatenated spatial features that indicate drowsiness or alertness for analysis
and final classification.

Overall, the DDD method follows three steps. First, face detection using multi-task
cascaded CNN and landmark extraction, along with spatial feature extraction, which is
done by utilizing CNN. Then, temporal features are formed by concatenating spatial fea-
tures through frame vector concatenation using sliding windows. Finally, the concatenated
features are fed to an LSTM, where a decision of drowsiness (or not) is made. This method
employed the NTHUDDD public dataset from the ACCV 2016 competition [35]. Various
accuracies for the different applied scenarios and experiments were presented. However,
the proposed method gave a final accuracy of 84.85%.

• Fatigue detecrion using new CNN method

Ed-Doughmi et al.’s research [70] presented an approach to analyze and predict fatigue
based on a recursive neural network (RNN), using a sequence of frames from videos. The
authors implemented a repetitive neural network architecture, based on an RNN model,
called multi-layer, model-based 3D convolutional networks [71], to detect fatigue. They
detected fatigue by extracting the subjects’ drowsy behaviors, such as yawning, eye closure,
and head nodding, from the NTHUDDD dataset videos. An accuracy of 97.3% was
obtained [35].

• Fatigue detection using eye and mouth CNN

Zhao et al. proposed a fully automated driver fatigue detection algorithm [72]. This
study uses the driving images dataset provided by Biteda, an information technology com-
pany. This algorithm applies face detection and feature points location, using a multitask
cascaded CNN architecture, where the region of interest (ROI) can be extracted using the
feature points. Moreover, a new CNN algorithm, called eye and mouth CNN (EM-CNN),
was proposed. The EM-CNN algorithm detects the mouth and eye state from the ROI. Both
the PERCLOS and mouth opening degree were used as parameters for detection. The final
results showed an accuracy of 93.62% and sensitivity of 93.64%.

Table 4 reveals that image-based systems have reported accuracies between 72.25%
and 99.59%, with [55] showing the highest accuracy. Most of them rely on eye state features.
Generally, such systems are non-intrusive, non-invasive, and cost-effective, as they require
only a camera to collect the needed data. However, the system’s performance is severely
affected in cases where it is difficult to track facial data due to obstacles. Further details are
discussed later in the challenges section.
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Table 4. Image-based drowsiness detection systems.

Ref. Image-Based
Parameters Extracted Features Classification Method Description Quality Metric Dataset

[16] Mouth Yawning Cold and hot voxels [37]
A fatigue detection method based on yawning detection using

thermal imaging. The cold and hot voxels were used to
detect yawning.

Accuracy:
Cold voxels: 71%,
Hot voxels: 87%

Prepared their own dataset [36]

[38] Respiration (using
thermal camera)

Standard deviation and the
mean of respiration rate, as well
as the inspiration-to-expiration

time ratio

SVM and KNN Used facial thermal imaging to study the driver’s respiration and
relate it to drowsiness.

Accuracy:
SVM: 90%,
KNN: 83%
Sensitivity:

SVM: 92%, KNN: 82%
Precision: SVM: 91%, KNN: 90%

New thermal image dataset
was prepared

[39] Eye Eyelids’ curvature Classification based on the
period of eye closure

Based on the eyelid’s curvature’s concavity, the system determined
if the eye is opened or closed. Then, it detected drowsiness based

on the eye closure period.

Accuracy:
Dataset 1: 95%,
Dataset 2: 70%,
Dataset 3: >95%

Dataset1: Prepared their own
image dataset

Dataset2: Benchmark
dataset [40]

Dataset3: Prepared their own
video dataset

[41] Eye Eye state (open/closed)
Proposed optical
correlation with
deformed filter

Used optical Vander Lugt correlator to precisely estimate the eye’s
location in the Fourier plane of the Vander Lugt correlator.

Different accuracies for different
datasets

FEI [44], ICPR [45], BioID [46],
GI4E [47], and SHRP2 [48]

[49] Eye The eyes’ EAR value Multilayer perceptron, RF,
and SVM

Tracked eye blinking duration in video streams, as an indicator of
drowsiness using the EAR. Overall, the SVM showed the

best performance.

Accuracy:
SVM: 94.9% Prepared their own dataset

[30] Face and eye
PERCLOS, blink frequency, and
maximum closure duration of

the eyes.

KNN, SVM, logistic
regression, and ANN

A nonintrusive system based on face and eye state tracking. The
final results revealed that the best models were the KNN

and ANN.

Accuracy:
KNN: 72.25%
ANN: 71.61%

Sensitivity:
KNN: 83.33%
ANN: 85.56%

NTHUDDD public dataset [35]

[50] Eye Eye closure FD-NN, TL-VGG16, and
TL-VGG19

Applied real-time system based on the area of eye closure using
CNN. For eye closure classification, three networks were

introduced: FD-NN, TL-VGG16, and TL-VGG19.

Accuracy:
FD-NN: 98.15%,

TL-VGG16: 95.45%, TL-VGG19:
95%

ZJU gallery and prepared their
own dataset

[51] Eye 34 eye–eye tracking features RF and non-linear SVM
Used 34 eye-tracking signals’ features to detect drowsiness. These
features were extracted from overlapping eye signals’ epochs of
different lengths. The labels were extracted from EEG signals.

Accuracy:
RF: 88.37% to 91.18%
SVM: 77.1% to 82.62%

Sensitivity for 10s epoch:
RF: 88.1%

SVM: 79.1%

Prepared their own dataset

[52] Eye and Mouth
PERCLOS, eye closing

duration, and average mouth
opening time

Mamdani fuzzy
inference system

The state of the extracted parameters is determined through a
cascade of regression tree algorithms. A Mamdani fuzzy inference

system then estimates the driver state.

Accuracy: 95.5%
Precision: 93.3% 300-W dataset [53]
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Table 4. Cont.

Ref. Image-Based
Parameters Extracted Features Classification Method Description Quality Metric Dataset

[54] Eye and Mouth Eye closure and mouth
openness for a duration of time Circular Hough transform

The circular Hough transform method is applied to check whether
the mouth is open or iris is detected. Based on these two measures,

the driver’s state is determined.
Accuracy: 94% Prepared their own dataset

[55] Eye and Head Frequency of eyes blinking and
frequency of head tilting

Templet matching to detect
the eyes and calculating
the frequency of head

tilting and eye blinking to
detect the drowsiness level

By calculating the frequency of head tilting and eye blinking, the
drowsiness level is determined, on a scale of 0-100. If drowsiness

reached 100, a loud audible warning would be triggered.

Accuracy: 99.59%
Precision: 97.86% Prepared their own dataset

[56] Mouth and Eye

Proportion of the number of
closed-eye frames to the total

number of frames in 1min,
continuous-time of eye closure,

blinking frequency, and
number of yawns in 1-min

For face tracking: multiple
CNNs-kernelized

correlation filters method
For drowsiness detection:

newly proposed algorithm

The multiple CNNs-kernelized correlation filters method is used
for face tracking and to extract the image-based parameters. If

found drowsy, the driver is alerted.
Accuracy: 92%

CelebA dataset [57], YawDD
dataset [58], and new video

data were prepared

[59]

Facial, hand,
Behavioral (head,

eyes, or mouth
movements)

Facial expression, behavioral
features, head gestures, and

hand gestures
SoftMax classifier This system introduced an architecture that uses four deep

learning models to extract four different types of features.

Accuracy: 85%
Sensitivity: 82%
Precision: 86.3%

NTHUDDD public dataset [35]

[17] Eye, head, and mouth Eye closure duration, head
nodding, and yawning A two-stream CNN

Used multi-task cascaded CNNs to find the positions of the mouth
and eyes. Then, it extracted the static and dynamic features from a

partial facial image and partial facial optical flow, respectively.
Lastly, it combined the features to classify the image data.

Accuracy: 97.06%
Sensitivity: 96.74%
Precision: 97.03%

NTHUDDD public dataset [35]

[63] Eye, mouth, head, and
scene conditions

Facial changes in eye, mouth,
and head, illumination

condition of driving, and
wearing glasses

3D-deep CNN The framework contained four models to recognize the drivers’
alertness status, using the condition-adaptive representation. Accuracy: 76.2% NTHUDDD public dataset [35]

[33] Eye, head, and mouth Blinking rate, head-nodding,
and yawning frequency

Fisher score for feature
selection and non-linear
SVM for classification

The system is based on a hand-crafted compact face texture
descriptor that can capture the most discriminant drowsy features. Accuracy: 79.84% NTHUDDD public dataset [35]

[18] Facial features Face feature vectors SVM Used facial motion information entropy, extracted from real-time
videos. The algorithm contained four modules. Accuracy: 94.32% YawDD dataset [58]

[68] Facial features, head
movements

Implicitly decides the
important features like eye

closure, mouth position, chin or
brow raises, frowning, and

nose wrinkles

3D CNN

DDD was performed, based on activity prediction, through a
depth-wise separable 3D CNN, using real-time face video. An

advantage of this method was that it implicitly decided the
important features, rather than pre-specifying a set of features

beforehand.

Accuracy: 73.9% NTHUDDD public dataset [35]

[69] Eye and mouth Temporal facial feature vectors
formed from spatial features LSTM A method that applied real-time DDD, based on a combination of

CNN and LSTM. It consisted of two parts: spatial and temporal. Accuracy: 84.85% NTHUDDD public dataset [35]

[70] Eye, head, and mouth Yawning, eye closure, and
head nodding

Multi-layer model-based
3D convolutional networks

Used a repetitive neural network architecture, based on an RNN
model, called multi-layer model-based 3D convolutional networks,

to detect fatigue.

Accuracy: 97.3%
Sensitivity: 92%
Precision: 72%

NTHUDDD public dataset [35]

[72] Eye and mouth PERCLOS and mouth
opening degree Eye and mouth CNN

Applied face detection and feature points location, using
multi-task cascaded CNNs architecture and EM-CNN to detect the

mouth and eye state from the ROI.

Accuracy: 93.62%
Sensitivity: 93.64%

Driving images dataset from
Biteda company
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3.2. Biological-Based Measures

Many biological signals have been used to detect the driver’s drowsiness, such as brain
activity, heart rate, breathing rate, pulse rate, and body temperature signals [10]. These
biological signals, also known as physiological measures [9], are proven to be more accurate
and reliable for detecting drowsiness. This accuracy is due to their ability to capture early
biological changes that may appear, in the case of drowsiness, thus alerting the driver
before any physical drowsiness signs appear. The most commonly used biological measures
in literature are listed in Table 5.

Table 5. Some biological-based measures.

Biological Signals Description

Electroencephalography (EEG) [73]

An EEG signal is a monitoring method that records the brain’s electrical activity from the
scalp. It represents the microscopic activity of the brain’s surface layer underneath the scalp.

Based on the frequency ranges (0.1–100 Hz), these signals are categorized as delta, theta,
alpha, beta, and gamma.

Electrocardiography (ECG) [74] ECG signals represent the electrical activity of the heart, which are acquired using electrodes
placed on the skin. ECG monitors heart functionality, including heart rhythm and rate.

Photoplethysmography (PPG) [75] PPG signals are used to detect blood volume changes. These signals are measured at the
skin’s surface using a pulse oximeter. It is often used for heart rate monitoring.

Heart rate variability (HRV) [76] HRV signals are used to monitor the changes in the cardiac cycle, including the heartbeats.

Electrooculography (EOG) [77] EOG signals are used to measure the corneo-retinal standing potential between the front
and back of the human eye and record the eye movements.

Electromyography (EMG) [78] EMG signals are the collective electric signals produced from muscles movement.

This section will cover some of the systems that detect drowsiness using the driver’s
biological changes. A summary of these systems is shown in Table 6.

1. Drowsiness detection using EEG signals

The EEG signals reveal brain activities. They provide valuable information about
brain physiology. Such an approach has gained extra attention in the past years because
EEG signals can show the changes in the brain activity of a drowsy driver, allowing for
early detection of drowsiness.

• Smartwatch-based wearable EEG system

Li et al. [79] proposed a driver drowsiness detection system based on EEG signals.
The proposed system employs an SVM-based posterior probabilistic model for drowsiness
detection, in order to classify the drowsiness states into three categories (alert, drowsy, and
early warning). This method is slightly different from other EEG-based detection systems,
which generate discrete drowsiness labels, identifying the driver’s state as drowsy or alert.
Thus, instead of using discrete labels to identify the driver’s drowsiness level, the SVM-
based posterior probabilistic model transforms the drowsiness level to a value between
0 and 1, providing a continuous measure for drowsiness. This work’s fully wearable
EEG system included a commercial smartwatch and a Bluetooth-enabled EEG, enabling
real-time data evaluation. This system showed different accuracies for each detected state.
It obtained a 91.92% accuracy for the drowsy case, 91.25% for the alert case, and 83.78% for
the early warning case.
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• EEG signal analysis using EMD and trained neural network

Kaur and Singh [80] presented a method to detect driver drowsiness, based on EEG
signal analysis, using empirical mode decomposition (EMD) and trained ANN. Kaur and
Singh placed silver surface electrodes on the subject’s scalp to extract the EEG signals.
In addition, they have used a video camera to provide a drowsiness label, alongside the
EEG features. Thus, they produced their own dataset. Then, drowsiness positions in
the EEG signals were labeled as drowsy or awake using a utility designed in MATLAB.
Afterward, using the EMD method, the intrinsic mode functions (IMFs) were obtained
from the labeled EEG data. Finally, the IMFs were used as an input to train the ANN. A
total of 70% of samples were used for training, 15% for testing, and 15% for validation. The
final classification results showed an accuracy of 88.22%.

• EEG features with LTSM

Budak et al. [81] proposed an EEG-based drowsiness detection method that consists of
three essential building blocks. The instantaneous frequency and spectral entropy features
are extracted from the EEG spectrogram images in the first block. The raw EEG signals
are analyzed, as well, to calculate the energy distribution and zero-crossing distribution
features. In the second block, using pre-trained AlexNet and VGG16 models, in-depth
features are directly extracted from the EEG spectrogram images. As for the third block, the
EEG signals are decomposed into related sub-bands, through a tunable Q-factor wavelet
transform. The authors then calculate the obtained sub-bands spectrogram images and
statistical features, such as the sub-bands instantaneous frequencies’ mean and standard
deviation. After processing the three blocks, the extracted feature groups are fed to an LSTM
network classifier. The method was trained and evaluated on MIT/BIH polysomnographic
EEG dataset [82]. Specifically, a subset was collected from 16 subjects, with ages and
weights of around 43 years and 119 kg, respectively. Finally, the proposed method was
evaluated using a 10-fold cross-validation test, obtaining a final average accuracy of 94.31%.

• Adaptive Hermite decomposition and ELM

Taran and Bajaj [83] presented a DDD method, based on an adaptive Hermite decom-
position for EEG signals. In general, Hermite functions help find applications for analyzing
nonstationary and complex signals. In this decomposition, the Hermite functions were
employed as basic functions, which were selected adaptively using evolutionary optimiza-
tion algorithms for each EEG signal. The authors used the MIT/BIH polysomnographic
database [82] in their research. The extracted features were taken from the statistical mea-
sures of Hermite coefficients, which were first quartile, median, range, and energy. These
features were then tested and classified using the extreme learning machine (ELM) [84],
KNN, decision tree, least-squares SVM, naive Bayes, and ANN classifiers. The ELM
classifier obtained the highest accuracy, which was 92.28%.

• Wired- and wireless-based EEG system

Choi et al. [85] presented a framework for detecting instantaneous drowsiness, with
only 2-s EEG signal segments. Multi-taper power spectral density [86] was employed for
feature extraction, and an extreme gradient boosting classifier was used for classification.
This research defined a novel phenotype labeling method for detecting instantaneous
drowsiness. Thus, the labeling was done by combining the psychomotor vigilance task’s
advantages as a standard reference and EOG as a task-independent alertness measure.
The framework was implemented on a wireless and wired EEG, in order to show the
applicability of this mobile environment. The final results showed that the wired EEG gave
an accuracy of 78.51%. At the same time, the wireless EEG gave an accuracy of 77.22%. This
degradation in the performance is due to the instability of the wireless EEG dry sensors
and small amount of EEG data used for training.
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• Wavelet packet transform employed on EEG

In [87], Phanikrishna and Chinara proposed a new drowsiness detection model that
employs wavelet packet transform [88] to extract the time domain features from a single-
channel EEG signal. The data used for this work was obtained from the Fpz-Cz channel
dataset, a pre-recorded data available on the National Institute of Health [89,90]. Ad-
ditionally, the simulated virtual driving driver (SVDD) dataset from [91] was utilized.
Five sub-bands were extracted from the EEG signal: delta, theta, alpha, beta, and gamma.
In the feature extraction stage, the Higuchi fractal dimension [92], mobility [93], and com-
plexity characteristics of the EEG signal, in addition to the EEG sub-bands, extracted in
the previous stage, were utilized to compute the values of nine features labeled from F1
to F9. Then, by applying the Mann–Whitney U test [94], followed by Wilkinson’s meta-
analysis [95] method, the PComb values were computed for each feature. The features
with the lower PComb values were selected for the last stage. Eleven classifiers were tested
in this work. Out of the eleven classifiers, extra trees exhibited the best results, with an
accuracy of 94.45% for the Fpz-Cz channel and 85.3% for the SVDD dataset.

• Entropy-based detection using AVMD

In [96], Khare and Bajaj presented a drowsiness detection method that used adaptive
variational mode decomposition (AVMD) to analyze and synthesize the EEG signals. This
method utilized the MIT/BIH polysomnographic dataset [82]. Through the AVMD, the
signal is decomposed into several modes. From the adaptively decomposed modes, the
features were extracted. By applying statistical analysis, five entropy-based features were
selected [97–99]: Tsallis entropy, Renyi entropy, permutation entropy, log energy entropy,
and Shannon entropy. Then, ten classifiers were used to evaluate the classification accuracy.
Among them, the ensemble boosted tree classifier achieved the highest results, with an
accuracy of 97.19%.

2. Drowsiness detection using ECG, PPG, and HRV signals

ECG is a sensor that senses the heart’s electrical signals, indicating different heart
conditions. In contrast, PPG is plethysmography used to detect the blood volume changes
in the tissue’s microvascular bed. As for HRV, it refers to the variation in time between
consecutive heartbeats.

• Wearable ECG/PPG sensors

In 2019, Lee et al. [100] investigated driver’s drowsiness by tracking the distinguishable
patterns of HRV signals. Such signals are obtained using wearable ECG or PPG sensors.
According to the authors, wearable sensors tend to produce more noise in signals because
they are vulnerable to slight movements. Thus, in order to classify the noisy HRV signals
as drowsy or not, the authors explored three types of recurrence plots (RPs), obtained
from the heartbeats’ R–R intervals (RRI). These RPs are the binary recurrence plot (Bin-RP),
continuous recurrence plot (Cont-RP), and thresholded recurrence plot (ReLU-RP), which
is acquired by using a modified rectified linear unit (ReLU) function to filter Cont-RP.
Each recurrence plot is utilized as an input feature to a CNN. Then, the usefulness of
each classification is examined. The study, conducted in a simulation environment, showed
that DDD’s most reliable and distinct pattern was the ReLU-RP (using either the ECG sensor
or the PPG sensor). ReLU-RP CNN could distinguish between awake and drowsy states
better than the other alternatives. PPG signals gave 64% accuracy, 71% precision, 78% recall,
and 71% F-score. On the other hand, ECG signals gave 70% accuracy, 71% precision,
85% recall, and 77% F-score. Overall, the ReLU-RP CNN showed an approximately 4 to
14% better accuracy for PPG and 6 to 17% for ECG in classification results, compared to the
Bin-RP and Cont-RP results, respectively.
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• PPG biosignals and multimodal head support

Koh et al. [101] proposed a method for DDD by employing the high frequency (HF),
low frequency (LF), and low to high frequency (LF/HF) values of the PPG signals measured
from sensors mounted on fingers and earlobes. The experiments included 20 subjects aged,
between the early twenties and late forties. The authors used a driving simulator equipped
with two PPG sensors. A sensor was placed to touch the user’s earlobe, and the other was
placed on the finger. The collected PPG signals were analyzed using Telescan and KITECH
programs to design an algorithm to classify the driver’s drowsiness state. The classification
relied on the changes in the extracted LF and HF values. The standard drowsy state criteria
were specified by a decrease in LF and LF/HF values and increase in HF value. In contrast,
other cases will indicate an awake driver. The results showed a significant difference in
PPG signals in the two states.

• DDD using wrist-worn wearable sensor

Kundinger et al. [102] proposed a non-intrusive retrofittable system that detects drowsi-
ness, based solely on physiological data extracted from a wrist-worn wearable sensor. The
study was conducted using a simulator, with over 30 subjects. First, the heart rate signals,
including the ECG and PPG/ blood volume pulse, were collected and analyzed to get the
HRV. Then, the HRV was used to obtain the autonomic nervous systems activity, which
gave a more in-depth insight into the drowsiness status. Videos of the driver’s face were
recorded to be used for labeling purposes. Multiple ML algorithms for binary classification
were used, including random tree, RF, SVM, and decision stump, amongst others. KNN
algorithm achieved the highest accuracy, around 92.13%.

• HRV anomaly analysis

Fujiwara et al. [103] proposed an algorithm that uses HRV anomaly analysis to detect
drowsiness, based on the fact that changes in alertness levels affect the autonomic nervous
system and HRV. The HRV reflects this effect through the RRI fluctuation on the ECG
trace. The R wave is the height peak on the ECG, and the RRI is the interval between two
consecutive R waves. Using an anomaly detection method, referred to as the multivariate
statistical process control method, Fujiwara et al. monitored changes in eight HRV features.
These features include the mean of RRI (MeanNN), standard deviation of RRI (SDNN),
root means square of the difference of adjacent RRI (RMSSD), total power (which is the
variance of RRI) (TP), number of pairs of adjacent RRI spaced by 50 ms or more (NN50), LF,
HF, and LF/HF. The proposed algorithm performance was evaluated experimentally in a
simulator, with 34 participants. This algorithm was validated by comparing its results with
EEG-based sleep scoring. The algorithm showed an accuracy of 92%.

3. Drowsiness detection using respiratory signals analysis

Respiratory signals can be used to provide information related to drowsiness. In fact,
by tracking the diaphragm, abdomen, and rib cage changes during the respiratory process,
the obtained signals can be linked to the driver’s drowsiness state.

Guede-Fernández et al. proposed a novel algorithm for DDD utilizing respiratory
signal variations [104]. In their study, three respiratory inductive plethysmography band
sensors were used to guarantee the best tracking quality of the respiratory signals. The
study was conducted in a simulator cabin, with twenty volunteers, where 36 tests were
done to collect the data. The proposed algorithm depends on analyzing the respiratory
rate variability (RRV) to detect the driver’s alertness status changes. Furthermore, another
method was used to ensure a quality level of the respiratory signals. Those two methods
were combined to reduce the detection errors and formed the thoracic effort-derived
drowsiness index algorithm. The system achieved a 90.3% sensitivity and 96.6% specificity.
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4. Drowsiness detection using EMG signals

EMG is an electrodiagnostic medicine technique that is utilized to record and evaluate
the electrical activities produced by the skeletal muscles [105]. EMG can be used for clinical
or biomedical applications, modern human-computer interaction, and evolvable hardware
chips [106]. The EMG signals can be analyzed and used to detect medical abnormalities
and alertness levels, as well as to analyze the animal or human biomechanics movement.

• Hypovigilance detection using higher-order spectra

Sahayadhas et al. [107] developed a system that detects hypovigilance, caused by
drowsiness and inattention, using ECG and EMG signals. Inattention was controlled
through a series of questions asked to the driver, through messaging or phone calls. On the
other hand, drowsiness was controlled by allowing the subjects to drive continuously for
2 h using a simulator game in a controlled laboratory environment. The ECG and EMG data
were recorded through disposable Ag–AgCl electrodes. The gathered physiological signals
from the experiments were first pre-processed, in order to remove the artifacts and noise.
Then, multiple higher-order spectral features were extracted, including the bispectrum,
which is the Fourier transform of the second-order moment. From the bispectrum, other
features were extracted, such as the (1) sum of the logarithmic amplitudes of the bispectrum
(H1), (2) sum of the logarithmic amplitudes of the diagonal elements in the bispectrum
(H2), and (3) first-order spectral moment of the amplitudes of diagonal elements in the bis-
pectrum (H3). Furthermore, to enhance the accuracy of the results, the data collected from
the two signals were fused using principal component analysis. Next, the extracted features
were trained and classified, using linear discriminant analysis, quadratic discriminant
analysis, and KNN classifiers. Finally, the bispectral features showed an overall accuracy
of 96.75% for the H3 feature from the ECG signal with the KNN classifier. Moreover, an
accuracy of 92.31% for the H2 feature from the EMG signal with the linear discriminant
analysis classifier was achieved. As for the fused features, the results showed a maximum
accuracy of 97.06% using the KNN classifier.

• Fatigue detection using noncontact EMG and ECG system

Fu and Wang [108] proposed a noncontact onboard fatigue detection system that
analyzes the changes in the EMG and ECG signals during driving. Fast independent
component analysis and digital filters are used to process these signals. Eight volunteers
participated in this study, in order to collect data and train the system. The data were
gathered using the noncontact data acquisition system, without direct contact with the
driver’s skin. The system consisted of two conductive knit fabrics, sewn on the car cushion,
that collected the data while the subject was sitting on them. The acquired data were
pre-processed to extract the homogeneous signal parts. Then, feature selection was applied
using the Kolmogorov–Smirnov Z test, which yields that the EMG peak factor (p < 0.001)
and maximum cross-relation curve of ECG and EMG features showed an evident change
when the drowsiness state started. To train this model, Mahalanobis distance, a measure of
distance based on correlations between variables, was used to obtain discriminant criterion.
The system’s final results showed an accuracy of 86%.

5. Drowsiness detection with a combination of various biological signals

• An approach using EEG and ECG signals

Awais et a. [109] proposed a DDD method that combines ECG and EEG features
to increase the detection performance. The authors measured the difference between
drowsy and alert states, using a dataset from 22 participants in a simulator-based driving
environment. During this study, a collection of features was extracted from both EEG and
ECG signals. The features extracted from EEG signals included frequency domain absolute
and relative powers, as well as time-domain statistical and complexity measures. On the
other hand, the features extracted from the ECG signals included the HR and HRV features.
After the feature extraction, a paired t-test was used to select significant features only. All
features are then combined and fed to an SVM classifier. The results proved that combining
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the features obtained from both signals outperformed the features obtained from a single
type of signal. It also showed that the use of combined EEG/ECG features allowed for
reducing the number of electrodes needed. An accuracy of 80.90% was achieved when
using a single EEG and ECG electrodes.

• DDD using EEG, EOG, and ECG signals with fuzzy wavelet packet-based feature-
extraction algorithm

Khushaba et al. [110] presented a feature extraction method for extracting the most
relevant features to identify the driver drowsiness state. The proposed fuzzy mutual
information-based wavelet packet transforms the feature extraction method, and it is aimed
to optimize the amount of data, in relation to drowsiness, extracted from EEG, EOG, and
ECG signals. These data were used to classify the driver state to one of the predefined
drowsiness levels, which are alert (class-1), slightly drowsy (class-2), moderately drowsy
(class-3), significantly drowsy (class-4), and extremely drowsy (class-5). The dataset came
from 31 volunteers, who used a simulated driving test environment. The video data
were rated and labeled using majority voting. Then, the new fuzzy mutual information-
based wavelet packet transform method was used to extract the features, including EEG
features from the temporal, frontal, and occipital channels, as well as the eyeblink rate,
blood pressure, and heart rate. Next, these features were dimensionally reduced using
spectral regression-based linear discriminant analysis [111] and kernel-based spectral
regression [112] methods. After that, training was applied using four classifiers: linear
discriminant analysis, linear SVM, kernel SVM, and KNN. The final results showed that
the proposed method achieved an accuracy of 95% with spectral regression and 97% for
kernel spectral regression across different classifiers.
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Table 6. Biological-based drowsiness detection systems.

Ref. Biological Parameters Sensors Extracted Features Classification Method Description Quality Metric Dataset

[79] Brain activity
Bluetooth-enabled EEG

headband and a
commercial smartwatch

Relative EEG
power ratio

(power percentages)

SVM-based posterior
probabilistic model

A real-time system used an SVM-based
posterior probabilistic model to detect and

classify drowsiness into three levels.

Accuracy:
Drowsy case: 91.92%

Alert case: 91.25%
Warning case: 83.78%

Prepared their own dataset

[80] Brain activity EEG
(silver surface electrode) IMF of the EEG signal ANN

Detection was based on the extraction of the
IMFs from the EEG signal by applying the

EMD method.
Accuracy: 88.2% Prepared their own dataset

[81] EEG signals and EEG
spectrogram images EEG Sensors

Energy distribution and
zero-crossing distribution

of the raw EEG signals,
in-depth features of the
EEG spectrogram, etc.

LSTM network

EEG-based drowsiness detection method. It
used pre-trained AlexNet and VGG16 models

to extract in-depth features from the EEG
spectrogram images.

Accuracy: 94.31%
MIT/BIH

polysomnographic EEG
database [82]

[83] EEG EEG Sensors
The first quartile, median,
range, and energy of the

Hermite coefficients

ELM decision tree, KNN,
least

squares SVM, ANN, and
naive Bayes

Detection was based on an adaptive Hermite
decomposition for EEG signals. The Hermite
functions were employed as basic functions.

Accuracy:
ELM: 92.28%
Sensitivity:

ELM: 95.45%

MIT/BIH
polysomnographic

database [82]

[85] EEG
Standard wet-electrode

EEG and a cap-type
dry-electrodeEEG

Multi-taper power
spectral density

Extreme gradient
boosting classifier

A framework for detecting instantaneous
drowsiness with a 2-s length of EEG signal. It

was implemented on a wireless and wired
EEG to show its applicability in a

mobile environment.

Accuracy:
Wired EEG: 78.51%

Wireless EEG: 77.22%.
Sensitivity:

Wired EEG: 78.5%,
Wireless EEG: 68.3%

Prepared their own dataset

[87] EEG EEG sensors

F1–F9, extracted from
Higuchi fractal dimension,
complexity, and mobility

characteristics of the
original EEG signal, as well

as all the EEG sub-bands

Extra trees classifier

Employed wavelet packet transform to
extract the time domain features from a

single-channel EEG signal. Eleven classifiers
were tested in this work. The extra trees

classifier had the best results.

Accuracy, sensitivity, and
precision:

Dataset1: 94.45%, 95.82%,
and 96.14%

Dataset2: 85.3%, 79.55%,
and 90.02%

Dataset1: Fpz-Cz channel
dataset [89,90]

Dataset2:SVDD dataset
[91]

[96] EEG EEG Sensors

Tsallis entropy, Renyi
entropy, permutation
entropy, log energy

entropy, and
Shannon entropy

Ensemble boosted
tree classifier

Used AVMD to analyze and synthesize the
EEG signals. By applying statistical analysis,

five entropy-based features were selected. Ten
classifiers were used, and the ensemble

boosted tree classifier achieved the
highest accuracy.

Accuracy:
97.19%

Sensitivity:
97.01%

Precision:
98.18%

MIT/BIH
polysomnographic dataset

[82]

[100] Heart rate and blood
volume changes ECG and PPG

Features obtained from
Bin-RP, Cont-RP, and

ReLU-RP patterns
CNN

Used wearable ECG/PPG sensors to track the
different patterns in HRV signals in a

simulation environment and used CNN.

Best accuracy, sensitivity,
and precision:

ECG: 70%, 85%, and 71%
PPG: 64%, 78%, and 71%

Prepared their own dataset

[101] Heart rate PPG
Frequency measurements

(HF, LF, and HF/LF)
extracted from PPG signals

Differentiating between
two (HF, LF, and HF/LF)

patterns

Detection is done by analyzing the changes in
PPG signals frequency measurements (HF, LF,

and HF/LF) that are obtained from
measurements on fingers and earlobes

Accuracy: 8/9 = 88.8% Prepared their own dataset
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Table 6. Cont.

Ref. Biological Parameters Sensors Extracted Features Classification Method Description Quality Metric Dataset

[102] Heart rate
Wrist-worn wearable

sensor
and ECG sensor

HRV and activity of the
autonomic

nervous systems

Random Tree, RF, KNN,
SVM, Decision Stump, etc.

Detection was based on the physiological
data extracted from a wrist-worn wearable

sensor and ECG sensor. Multiple ML
algorithms for binary classification were used

The highest accuracy was
more than 92% for the

KNN algorithm
Prepared their own dataset

[103] HRV ECG electrodes
MeanNN, SDNN, RMSSD,

TP, NN50, LF, HF, and
LF/HF

Multivariate statistical
process control

Detection was based on HRV analysis. Eight
HRV features were monitored to detect the

changes in HRV using the multivariate
statistical process control anomaly detection

method. The algorithm was validated by
comparing its results with EEG-based

sleep scoring.

Accuracy: 92% Prepared their own dataset

[104] Respiration Three respiratory inductive
plethysmography sensors

RRV and quality of the
respiratory signals

Thoracic effort-derived
drowsiness

An algorithm for DDD, based on the
respiratory signal variations. It combined the
analysis of the RRV and the quality level of
the respiratory signals to detect the changes

in the driver’s alertness status.

Sensitivity: 90.3% Prepared their own dataset

[107] ECG and EMG Disposable
Ag–AgCl electrodes

Features extracted from the
bispectrum of the signals

H1, H2, and H3

Linear discriminant
analysis, quadratic

discriminant analysis, and
KNN classifiers

Detects hypovigilance caused by drowsiness
and inattention using ECG and EMG signals.
The gathered physiological signals from the
experiments were first pre-processed. Then,
multiple higher-order spectral features were

extracted to be classified.

Accuracy and Sensitivity:
ECG with KNN: 96.75%

and 98%
EMG with linear

discriminant analysis:
92.31% and 96%

Fused features with KNN:
97.06%

Prepared their own dataset

[108] ECG and EMG Two pieces of conductive
knit fabric

EMG peak factor and
maximum of the

cross-relation curve of
ECG and EMG

Discriminant criterion
using

Mahalanobis distance

A noncontact onboard DDD system studied
the EMG and ECG signals changes during

driving. Feature selection was applied using
the Kolmogorov–Smirnov Z test.

Accuracy: 86%.
Sensitivity: 91.38%
Precision: 83.45%

Prepared their own dataset

[109] ECG and
EEG Enobio-20 channel device

EEG signals time-domain
statistical descriptors,
complexity measures,

power spectral measures,
ECG signals HR and
HRV’s LF, HF, and

LF/HF ratio

SVM

Combined ECG and EEG features to detect
drowsiness. After the feature extraction, a

paired t-test was only used to select the
significant features.

Accuracy: 80.9% Prepared their own dataset

[110] EEG, EOG, ECG EEG, ECG, and
EOG electrodes

EEG features from the
temporal, frontal, and

occipital channels
EOG features: eyeblink

rate
ECG feature: blood

pressure and heart rate

Linear discriminant
analysis, linear SVM,

kernel SVM, and KNN

The fuzzy mutual information-based wavelet
packet transform method extracted the

features. The features were dimensionally
reduced, using spectral regression and

kernel-based spectral regression methods.
After that, four classifiers were applied.

Accuracy:
Spectral regression: 95%

Kernel spectral
regression: 97%

Prepared their own dataset
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Table 6 reveals that biological-based systems have reported accuracies between 70%
and 97.19%, with [96] showing the highest accuracy. Most of them rely on brain activity
signals for detection. These systems may be intrusive or invasive, depending on the utilized
sensors. Further details are discussed later in Section 4. As mentioned earlier, these systems
can detect drowsiness at an early stage.

3.3. Vehicle-Based Measures

This method depends on tracing and analyzing driving patterns. Every driver forms
a unique driving pattern. Thus, the driving patterns of a drowsy driver can be easily
distinguished from those of an alert driver. According to Pratama et al. [8], vehicular-based
measures are the least investigated methods, due to the difficulty of precisely determining
drowsy driving state features. Thus, many researchers combine this measure with image-
based or biological measures [24,113,114]. The two most common detected vehicle-based
measures, used to identify driver drowsiness, are steering wheel angle (SWA) and lane
departure. Table 7 provides a list of DDD systems based on vehicle measures.

As for the SWA, it can be measured using angle sensors that are connected to the
steering wheel. However, the way the data are collected may differ from one method to
another. Lane departure feature can be acquired by tracking lane curvature, position, or
curvature derivative. Below, we present some examples of vehicle-based DDD systems
that use these measures.

1. Tracking drowsiness using SWA

McDonald et al. [113] proposed analyzing lane departure using SWA data and the
RF algorithm. The authors compared their approach to another image-based drowsiness
measure that used PERCLOS. The comparison showed that the SWA measure had higher
accuracy, which reached 79% and could detect drowsiness 6 s in advance. At the same
time, the PERCLOS method achieved 55% accuracy only. The algorithm was tested using
a dataset (72 participants) from a study at the University of Iowa’s National Advanced
Driving Simulator [115]. The modified observer rating of drowsiness scale extracted the
drowsiness related to lane departure from raw simulator data. The readings were taken
every one minute after departing out of the lane. As for the PERCLOS measure, the
features were extracted from a video and captured using an eye detecting FaceLab software.
Furthermore, the RF algorithm was trained by a series of decision trees, with a randomly
selected feature.

2. Lateral distance using wavelet transform and neural network

Ma et al. [114] proposed a model that detects driver drowsiness based on lateral
distance. The lateral distance can be acquired from fusing lane curvature, position, and
curvature derivative. Those three raw features were obtained using the transportable
instrumentation package system [116], with a video camera placed on the car’s front
bumper. Moreover, this system uses real-time video recording to collect the driver’s facial
and head movements data. The driver’s visual data were used as ground truth for the car’s
data. The recorded car data was fed to TRW’s simulator, in order to extract lane-related
signals in the frequency and time domain. After that, the signals were analyzed, along
with the acquired footage of the driver’s face. Then, the data were fed to SVM and neural
network algorithms for classification. As for the experimental results, all classification
methods showed a detection accuracy higher than 90%.

3. Entropy features from SWA time series

This system uses SWA data to apply online fatigue detection. The data were collected
from a sensor settled on the steering lever for 14.68 h and under real driving conditions. Li
et al. [117] proposed a system that uses a fixed sliding window to extract the approximate
entropy features from a SWAs time series data. Then, the approximate entropy features
series are linearized, using an adaptive piecewise linear fitting, with a specific deviation.
Then, the system calculates the warping distance between the linear features series to
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determine the driver’s alertness state. Finally, the alertness state, either “drowsy” or
“awake,” is determined using a specially designed binary decision classifier. The system’s
experimental results showed an accuracy of 84.85% for true detections of the “drowsy state”
and 78.01% for the “awake” state’s true detections.

4. ANFIS based steering wheel feature selection

Arefnezhad et al. [118] presented a non-invasive DDD system based on steering wheel
data. The system aimed to increase classification accuracy using feature selection strategies.
The proposed selection method used adaptive neuro-fuzzy inference systems (ANFIS), a
combination of filters and wrapper feature selection algorithms. The study was conducted
in a simulated driving environment involving 39 bus drivers, resulting in a new dataset.
Thirty-six features were extracted from the steering wheel data. These features were applied
to four different filter indices. The output of each filter was fed to the fuzzy system to
select the most important features. Then, an SVM classifier is used to classify the selected
features and specify the drivers’ state. Finally, using a particle swarm optimization method,
the classifier’s accuracy is used to optimize the parameters of the ANFIS. The final results
showed an accuracy of 98.12%.

5. DDD based on steering wheel status

Chai et al. [119] presented a study on drowsiness monitoring, using data relating to
steering wheel status. They used a driving simulator to collect 11 parameters for the steering
wheel. Based on the correlation level with driver’s status, four parameters were selected:

• SW_Range_2: steering wheel angular velocity percentage in the range of 2.5–5◦/s.
• Amp_D2_Theta: the area between the SWA, θ; the mean of θ is multiplied by the time

the SWA is on the same side of the mean of θ.
• PNS: proportion of the time that the steering wheel remains stationary (±0.1◦).
• NMRHOLD: number of times the steering wheel is held steady (within a certain

threshold angle) for longer than 0.04 s. Steady means that the change in angle is lower
than ±0.5◦.

Three models were then built for drowsiness detection based on these parameters: a
multilevel ordered logit (MOL) [120], SVM, and back propagation neural network (BPNN)
model. Under the same classification conditions, the results showed that the MOL model
had achieved an accuracy of 72.92%, much higher than the others. Thus, the authors con-
cluded that using these four parameters, while considering the differences of individuals,
the MOL model has outperformed the other two models.
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Table 7. Vehicle-based drowsiness detection systems.

Ref. Vehicle
Parameters Extracted Features Classification Method Description Quality Metric Dataset

[113] Steering wheel SWA RF

Used SWA as input data and compared it
with PERCLOS. The RF algorithm was

trained by a series of decision trees, with a
randomly selected feature.

Accuracy: RF- steering
model:

79%
PERCLOS: 55%

Prepared their own dataset

[114] Lateral distance

Statistical features, derived
from the time and wavelet
domains, relevant to the

lateral distance and
lane trajectory

SVM and neural network

Detection was based on lateral distance.
Additionally, it collects data of the driver’s
facial and head movements to be used as

ground truth for the vehicle data.

Accuracy:
Over 90% Prepared their own dataset

[117] Steering wheel SWA Specially designed binary
decision classifier

Used SWA data to apply online fatigue
detection. The alertness state is determined

using a specially designed classifier.

Accuracy: Drowsy: 84.85%
Awake: 78.01% Prepared their own dataset

[118] Steering wheel SWA, steering wheel
velocity

ANFIS for feature selection,
PSO for optimizing the
ANFIS parameters, and
SVM for classification

Detection was based on steering wheel data.
The system used a selection method that

utilized ANFIS.
Accuracy: 98.12% Prepared their own dataset

[119] Steering wheel
SW_Range_2,

Amp_D2_Theta, PNS,
and NMRHOLD

MOL, SVM, and BPNN

Used steering wheel status data. Using
variance analysis, four parameters were

selected, based on the correlation level with
the driver’s status. MOL model

performed best.

Accuracy:
MOL: 72.92%
SVM: 63.86%

BPNN: 62.10%

Prepared their own dataset
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Table 7 reveals that vehicle-based systems have reported accuracies between 62.1%
and 98.12%, with [118] showing the highest accuracy. Most of them rely on the SWA feature.
Generally, these systems are non-intrusive and -invasive.

3.4. Hybrid-Based Measures

A hybrid DDD system employs a combination of image-, biological-, and vehicle-
based measures to extract drowsiness features, with the aim of producing a more robust,
accurate, and reliable DDD system. This subsection presents some of the recently proposed
hybrid DDD systems. Table 8 shows a list of those systems.

1. Driver assistance system, based on image- and vehicle-based features

Saito et al. [24] presented a driver assistance system with a dual control scheme. This
system effectively identifies driver drowsiness based on eyelid’s state, steering wheel, and
lane departure and takes control of the car, if needed. The assistance system initiates a
partial control of the vehicle, in the case of a lane departure. The system gives the driver a
chance to control the car and center it in the lane. If the driver does not take control of the
vehicle within a specific time duration, the system assumes that the driver is unable to drive
or is asleep. Thus, the system will take control and park the car. Twenty participants took
part in this study. The data were mainly collected when the proposed assistance system
was active. The driver status was determined through a series of mathematical operations
and specified schemes from the study hypothesis. The study results showed accuracies of
up to 100% in taking control of the car when the specified driving conditions were met.

2. Biomedical and motion sensors

Leng et al. [28] proposed a wearable device that uses motion and biomedical sensors to
detect drowsiness using a mobile application. The system combines both drivers’ biosignals
and vehicle measures to get an accurate result. It uses a self-designed wristband to detect
biosignals and motion sensors to detect steering wheel movement. The wristband contains
two main components: galvanic skin response and photoplethysmogram sensors that
detect PPG signals. Additionally, a smartwatch’s built-in accelerometer and gyroscope
sensors are used to detect the steering wheel’s linear acceleration and radian speed. Thus,
the system starts by collecting data from the sensors. Then, the collected data are passed
to the smartwatch, where they are processed and analyzed. After that, five features are
extracted from the received biological raw data: heart rate, stress level, respiratory rate,
adjustment counter, and pulse rate variability. Next, these five features, along with the
steering wheel data, are fed to an SVM algorithm to detect the driver’s drowsiness state.
After getting the classification result, the smartwatch alerts the driver, through a visual and
vibration alarm. The system resulted in an accuracy of 98.3%.

3. Yawning, blinking, and blood volume pulse-based method

Yawning, blinking, and heart rate change can provide clues about the driver’s mental
state. Based on that fact, Zhang et al. [121] proposed a DDD system that uses a smartphone’s
camera as a non-contact optical sensor. The system captures image sequences and uses
them as raw data to extract blink and yawn signals. Additionally, the extended-PPG signals,
obtained from the image sequence, enable extracting blood volume pulse, without direct
contact with the person under consideration. Using a multichannel second-order blind
identification, the blood volume pulse, yawning, and blinking signals are simultaneously
extracted from smartphone videos. The combined signals are then analyzed to estimate
the blinking duration and frequency, HRV, and yawning frequency. Should any of the
estimated parameters show a specific value, then drowsiness will be declared, and an alarm
will sound from the phone. The system showed different sensitivity values, ranging up
to 94%.

4. EEG signals’ spectral, head movement, and blink analysis

Mehreen et al. [29] extracted the drivers’ behavioral and biological features, using a
lightweight, non-invasive, wearable headband to replace cameras and intrusive sensors in
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DDD systems. The proposed DDD system uses a combination of signals, acquired from a
headband equipped with an accelerometer, gyroscope, and EEG electrodes. The dataset
was collected in both drowsy and fresh state conditions, with the help of 50 volunteers,
using a driving simulator. To increase the robustness and acquire better accuracy results, the
authors combined the features extracted from the head movement analysis, eye blinking,
and spectral signals to make a feature vector. The backward feature selection method
was then applied on the feature vector over various classifiers. When fed with the whole
feature vector, the linear SVM performed the best, with an accuracy of 86.5% before feature
selection and 92% after feature selection was applied.

5. DDD using image-, biological-, and vehicle-based features fusion

De Naurois et al. [122] investigated the possibility of predicting when a drowsiness
level is reached by utilizing the same information used to determine drowsiness. Further-
more, they explored whether including additional data, such as the participant information
and driving time, would improve the detection and prediction accuracy. Using a car simu-
lator, 21 participants drove for 110 min, under special conditions that induced drowsiness.
The researchers measured biological, behavioral, and vehicle drowsiness features. Such
features include heart rate and variability, respiration rate, blink duration, frequency, PER-
CLOS, head and eyelid movements, time-to-lane-crossing, position on the lane, speed, and
SWA. Two models that use ANN were developed, one for detecting the drowsiness degree,
and the other is for predicting the time needed to reach a specific drowsiness level. Both
models ran every minute. Different combinations of the features were tested during this
study. Finally, the models showed that it could detect drowsiness levels (with a mean
square error of 0.22) and predict the time to reach a specified drowsiness level (with a mean
square error of 4.18 min).

6. Combined EEG/NIRS DDD system

In their study, Nguyen et al. [123] introduced an approach that combines EEG and near-
infrared spectroscopy (NIRS) to detect driver drowsiness. NIRS is a spectroscopic method
that utilizes the electromagnetic spectrum near-infrared region. Multiple biological signals
were recorded during a simulated driving task over nine subjects. These measurements
included the neuronal electrical activity (using EEG signals), tissue oxygenation (using
NIRS), eye movement (using EOG signals), and heart rate using (ECG signals). The features
studied to determine the drowsiness state included heart rate, alpha and beta bands power,
blinking rate, and eye closure duration. Statistical tests showed that the frontal beta band
and oxygenation change showed the most significant difference between the alert and
drowsy states and thus were chosen as the most relevant parameters from the EEG and
NIRS signals for the study. Fisher’s linear discriminant analysis method was used for
driver’s state classification. In addition, the time series analysis was employed to predict
drowsiness. Although multimodal data were collected, only EEG and NIRS were used for
further analysis because the other data did not clearly correspond to the drivers’ alertness
state changes. The proposed system resulted in an accuracy of 79.2%.

7. DDD using EEG, EOG, and contextual information

In this study, Barua et al. [124] proposed an automatic sleepiness detection scheme
using EOG, EEG, and contextual information. The features extracted from the EEG signal
power spectra included five frequency characteristics and four power ratios. Blinking
duration and PERCLOS were calculated from the EOG signal. The contextual information
features used in the proposed system included driving conditions, such as the lighting
condition and driving environment, along with the sleep/wake predictor value. Three
feature selection algorithms were employed to select the most suitable feature combination
from the abovementioned features pools. These algorithms were the univariate feature
selection method, sequential forward floating selection wrapper method, and minimum
redundancy maximum relevance method. KNN, SVM, case-based reasoning, and RF
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were used for classification. The authors considered two classification cases: multiclass
classification (alert, somewhat sleepy, or sleepy) and binary classification (alert or sleepy).

The study used data from 30 drivers, who used a driving simulator. Overall, the SVM
classifier showed the best performance, with 79% accuracy for the multiclass classification
and 93% for binary classification. The study clearly showed that adding contextual infor-
mation to the signals data boosted the classification accuracy by 4% and 5% for multiclass
and binary classification, respectively.

8. DDD with a smartphone

Dasgupta et al. [125] proposed a DDD and warning system using a smartphone. This
proposed system was one of the first attempts to combine voice cues with PERCLOS to
detect drowsiness. Thus, they have prepared their own dataset, called the Invedrifac
dataset [126]. The presented work uses three verification stages in the process of detection.
The first stage computes the PERCLOS feature, obtained from a smartphone’s front camera
images. If the PERCLOS value crosses a certain threshold, the system initiates the second
stage by requesting the driver say his full name. Having been labeled a drowsy driver in
the first two stages, the system asks the driver to tap the smartphone screen within 10 s. If
the condition is not met, drowsiness is verified, and an alarm is initiated. The proposed
framework used a linear SVM classifier and resulted in a final accuracy of 93.33%.

9. DDD using ensemble ML and hybrid sensing

In [127], Gwak et al. investigated the feasibility of detecting early drowsiness based on
hybrid measures, namely vehicle-based, physiological, and behavioral signs, to implement
a detection system. Sixteen participants were involved in this study. A total of 80 features
were extracted from the measured data and videos. The study consisted of three main parts.
In the first part, the drivers’ physiological signals, driving performance, and behavioral
drowsiness signs were recorded, using a driving simulator and monitoring system. Then,
classification was performed using two different classification methods: RF classifier
and majority voting, using logistic regression, SVM, and KNN. In the case of majority
voting, sequential backward feature selection was performed, and then classification was
applied. On the other hand, in the case of RF, the number of estimators and features used
was optimized to get better classification performance. Finally, the performance of the
algorithms was evaluated. This study, which followed Zilberg’s criteria [128] in labeling
the drowsiness levels, has focused on differentiating between alert and slightly drowsy and
alert and moderately drowsy states. The results showed that the RF classifier gave the best
results, with 82.4% accuracy of alert vs slightly drowsy case. In contrast, majority voting
performed the best for alert vs moderately drowsy case, at an accuracy of 95.4%.
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Table 8. Hybrid-based drowsiness detection systems.

Ref. Sensors Hybrid
Parameters Extracted Features Classification Method Description Quality Metric Dataset

[24]

Automatic gearbox,
image-generating
computers, and
control-loaded
steering system

Image- and
vehicle-based features

Latera position, yaw angle,
speed, steering angle, driver’s
input torque, eyelid opening

degree, etc.

A series of
mathematical

operations, specified
schemes from the
study hypothesis

A system that assists the driver in case
drowsiness is detected to prevent lane
departure. It gives the driver a specific

duration of time to control the car. If not,
the system controls the vehicle and

parks it.

Accuracies up to 100% in taking
control of the car when the specified

driving conditions were met
Prepared their own dataset

[28] PPG, sensor, accelerometer,
and gyroscope

Biological- and
vehicle-based features

Heart rate, stress level,
respiratory rate, adjustment

counter, and pulse rate
variability, steering wheel’s

linear acceleration, and
radian speed

SVM

It collected data from the sensors. Then,
the features were extracted and fed to the

SVM algorithm. If determined drowsy,
the driver is alerted via the

watch’s alarm.

Accuracy: 98.3% Prepared their own dataset

[121] Smartphone camera Biological- and
image-based features

Blood volume pulse, blinking
duration and frequency, HRV,

and yawning frequency

If any of the detected
parameters showed a
specific change/value

Used a multichannel second-order blind
identification based on the extended-PPG
in a smartphone to extract blood volume

pulse, yawning, and blinking signals.

Sensitivity: Up to 94% Prepared their own dataset

[29]

Headband, equipped with
EEG electrodes,

accelerometer, and
gyroscope

Biological- and
behavioral-based

features

Eyeblink patterns analysis,
head movement angle, and

magnitude, and spectral
power analysis

Backward feature
selection method

applied followed by
various classifiers

Used a non-invasive and wearable
headband that contains three sensors.

This system combines the features
extracted from the head movement
analysis, eye blinking, and spectral

signals. The features are then fed to a
feature selection block followed by

various classification methods. Linear
SVM performed the best.

Accuracy, sensitivity, and precision:
Linear SVM: 86.5%, 88%, and 84.6%
Linear SVM after feature selection:

92%, 88%, and 95.6%

Prepared their own dataset

[122]

SCANeR Studio, faceLAB,
electrocardiogram, PPG

sensor,
electro-dermal activity,

Biopac MP150 system, and
AcqKnowledge software

Biological-, image-,
and vehicle-based

features

Heart rate and variability,
respiration rate, blink duration,

frequency,
PERCLOS, head and eyelid

movements,
time-to-lane-crossing, position
on the lane, speed, and SWA

ANN

Included two models that used ANN.
One is for detecting the drowsiness

degree, and the other is for predicting the
time needed to reach a specific

drowsiness level. Different combinations
of the features were tested.

Overall mean square error of 0.22 for
predicting various drowsiness levels

Overall mean square error of 4.18
min for predicting when a specific
drowsiness level will be reached

Prepared their own dataset

[123] EEG, EOG, ECG
electrodes, and channels

Biological-based
features and NIRS

Heart rate, alpha and beta
bands power, blinking rate, and

eye closure duration

Fisher’s linear
discriminant analysis

method

A new approach that combined EEG and
NIRS to detect driver drowsiness. The
most informative parameters were the
frontal beta band and the oxygenation.

As for classification, Fisher’s linear
discriminant analysis method was used.
Additionally, time series analysis was

employed to predict drowsiness.

Accuracy: 79.2%
MIT/BIH

polysomnographic
database [82]
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Table 8. Cont.

Ref. Sensors Hybrid
Parameters Extracted Features Classification Method Description Quality Metric Dataset

[124]

Multi-channel amplifier
with active electrodes,
projection screen, and

touch screen

Biological-based
features and
contextual

information

EEG signal: power spectra, five
frequency characteristics, along

with four power ratiosEOG
signal: blinking duration and

PERCLOS contextual
information: the driving

conditions (lighting condition
and driving environment) and
sleep/wake predictor value.

KNN, SVM,
case-based reasoning,

and RF

Used EOG, EEG, and contextual
information. The scheme contained five
sub-modules. Overall, the SVM classifier

showed the best performance.

Accuracy:
SVM multiclass classification: 79%

SVM binary classification: 93%
Sensitivity:

SVM multiclass classification: 74%
SVM binary classification: 94%.

Prepared their own data

[125] Smartphone
Image-based features,
as well as voice and
touch information

PERCLOS, vocal data, touch
response data Linear SVM

Utilized a smartphone for DDD. The
system used three verification stages in

the process of detection. If drowsiness is
verified, an alarm will be initiated.

Accuracy: 93.33% Prepared their own dataset
called ‘Invedrifac’ [126]

[127] Driving simulator and
monitoring system

Biological-, image-,
and

vehicle-based features

80 features were extracted:
PERCLOS, SWA, LF/HF, etc.

RF and majority
voting (logistic

regression, SVM,
KNN) classifiers

Vehicle-based, physiological, and
behavioral signs were used in this
system. Two ways for labeling the

driver’s drowsiness state were used,
slightly drowsy and moderately drowsy.

Accuracy, sensitivity, and precision:
RF classifier:

Slightly drowsy labeling: 82.4%,
84.1%, and 81.6%
Majority voting:

Moderately drowsy labeling: 95.4%,
92.9%, and 97.1%

Prepared their own dataset
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Table 8 reveals that hybrid-based systems have reported accuracies between 79% and
99%, with [24] showing the highest accuracy. Most of them rely on at least one biological
feature for detection. This type of system may be intrusive or invasive, depending on
the features they use. Hybrid-based systems’ advantages and challenges rely on the
combination of features they utilize to detect drowsiness. Further details are discussed in
the following section.

4. Challenges

Since the launching of Volvo’s first DDD system in 2007 [129], the technology has
evolved tremendously. However, there are still many challenges and issues that face
researchers. In this section, we discuss the challenges in detecting drivers’ drowsiness.

Most researchers generally apply their studies in a virtual or simulated environment
and build their final system results based on the simulation output. However, those results
do not necessarily represent real-life driving situations. Moreover, in such simulated
environments, the study is narrowed by specific drowsiness scenarios, eliminating the
vast range of possibilities and conditions a driver faces in real-life scenarios, which, in
return, affects the system reported accuracy [17,33,59,63,68,121,123,127]. Such issues may
be overcome by validating the system’s results through equivalent testing in real-life
driving sessions.

The major challenge of image-based DDD systems is the struggle to track and recog-
nize high-quality head and facial data. This challenge is due to the dependence on the
efficiency and quality of the used equipment, as well as the driver and environmental
conditions. Other issues associated with such systems are the presence of additional fea-
tures on the face, such as sunglasses, a beard, or a mustache, that may cover the eye or
mouth and lead to a system failure. Additional challenges include the random head move-
ment [38,41,52], different skin colors, various lighting conditions [55,130], face’s distance
from the camera, different face structure based on race, and real-time video analysis that
require powerful computing resources [103]. All of that may reduce the accuracy or even
lead to false detection.

As for the biological-based systems, the studies show that such systems are the most
accurate in detecting early drowsiness signs. However, the main issue with such systems
is the equipment and sensors associated with them. Such equipment types are not com-
fortable, in some cases, as they must be attached to the driver’s body during the journey.
Additionally, the used biological sensors are vulnerable to slight movement, which may
produce some noise in the extracted signals, reducing the accuracy [100].

Another challenge that may specifically affect biological- and hybrid-based systems is
the hardware complexity and limitations. For example, in [85], the system faced technical
challenges, including hardware and compatibility issues. The wireless EEG hardware
could not collect as much data as the wired EEG did, partly because of the instability of the
used dry electrodes. Additionally, the EOG sensor R100 that was used in the experiment
had compatibility issues with the used wireless EEG system. They could not be used
simultaneously because of interference. Moreover, in [124], Barua et al. pointed out that
measuring EEG signals alone in a real driving scenario could lead to features that are not
reliable enough to produce high accuracy. They added that more complex sensors need to
be employed for better system performance, in order to provide multimodal information,
i.e., additional features that can enhance accurate sleepiness detection.

In comparison, three significant challenges face vehicle-based DDD systems. First,
weather conditions. If a driver is driving in harsh weather, with strong wind or rain, the car
will naturally deviate out of the lane, leading the system to generate false results. Another
challenge is the geometric conditions of roads. In some cases, the driver may drive on a
steep and bumpy road, causing the car to vibrate, divert, and the steering wheel to shake,
causing the collected data to become unreliable. Furthermore, some vehicle-based systems
do not extract drowsiness signs precisely, leading to inaccurate detection results. Thus,
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many systems use an additional measure with vehicle measures, in oder to increase the
system’s accuracy.

Nevertheless, many future research directions address these issues to enhance the
accuracy of these systems. For example, recent research [121] uses some lightweight sensors
or analyzes biological signals based on video data, which does not require direct contact
with the driver and maintains a high accuracy rate at the same time. Such an approach
eases the detection process and shows a promising future for such systems. Besides, more
and more systems are designed with hybrid measures that give not only higher accuracy
but also each separate measure in such systems complement each other, which increases
the system’s efficiency.

Inspired by [131], we attempt in this work to quantitatively describe the challenges
facing DDD systems. The challenges are summarized and listed in Table 9, against the
three principal DDD systems. Each challenge in the table is labeled as low, medium, high,
or not applicable (N/A), in order to describe the significance level of that challenge on the
performance of each DDD system type. Hybrid DDD systems are a combination of the
other three systems. Thus, they were not included in the table, since the listed challenges
may impact them in various degrees.

Table 9. DDD systems challenges.

Challenges
System Type Imaged-Based Biological-Based Vehicle-Based

Difficulty in extracting drowsiness signs, due to
facial characteristics/skin color High N/A N/A

Difficulty in extracting drowsiness signs, due to
objects that cover the face High N/A N/A

Driver’s posture and distance from the dashboard High Low N/A

Real-time video analysis Medium N/A N/A

Driver movement High High N/A

Noisy sensor measurements Low High Low

Monitoring equipment and sensors inconvenience Low Medium Low

Influence of environmental conditions
(weather/illumination) High Low Medium

Influence of the road conditions and geometry Low Low High

Hardware complexity and limitations Low High Low

Drowsiness signs extraction precision Low Low High

Testing under real (not simulated)
driving conditions Medium Medium Medium

Table 9 shows that the challenges facing the image-based systems are mainly related
to the face region, which is the region of interest, where most features are extracted. On
the other hand, the biological-based system’s challenges relate to the used equipment and
hardware setup. In contrast, vehicle-based systems have fewer challenges, with the main
one being the inability to extract drowsiness signs precisely. Therefore, using vehicle-based
techniques with other measures would result in a more reliable hybrid system.

5. Discussion

A thorough literature review showed that various methods implement drowsiness
detection and terminate possible hazards while driving. Moreover, the technological
development and continuous advancement in the artificial intelligence domain solved many
challenges faced by such systems and enhanced their performance. This section compares
the DDD systems, in terms of their practicality and reliability, as reported in the literature,
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and discusses the four drowsiness detection measures mentioned previously. System
practicality describes the system’s effectiveness, in terms of invasiveness, intrusiveness,
cost, ease of use, and accuracy, in detecting true drowsiness states. Intrusive systems stand
for systems that use sensors with probes that are attached to the surface of the human body.
In contrast, invasive systems refer to systems that use invasive sensors, where the probe
must enter the human body and come into contact with bodily fluid. Table 10 summarizes
the practical characteristics of each of the four types of DDD systems.

Table 10. DDD systems comparison, based on practicality.

DDD SystemsTypes

PracticalityFeatures
Intrusiveness Invasiveness

Reported
Accuracies in DDD

Literature
Cost Ease of Use

Image-based systems Non-intrusive Non-invasive
High accuracy,

between
72.25–99.59%

Generally low-cost
Automatic—no

required set up or user
intervention

Biological-based systems
Depends on the
hardware and
method used

Depends on the
hardware and
method used

High accuracy,
between 70–97.19%

Expensive when
high-quality sensors

are used

May require set up,
user intervention, or

wearing sensors

Vehicle-based systems Non-intrusive Non-invasive Low accuracy, as
low as 62.1%

Mostly comes as an
expensive car

accessory

Automatic—no
required set up or user

intervention

Hybrid-based systems
Depends on the
hardware and
method used

Depends on the
hardware and
method used

High accuracy,
between 79–99%

Cost depends on the
used hardware

May require set up,
user intervention, or

wearing sensors

The first type, image-based systems, are generally considered practical because they
are non-intrusive, non-invasive systems, as well as cost-efficient and automatic, in the sense
that there is no need to set up any sensor each time the system is used. Such systems use
various types of cameras, such as webcams [39,49,54], smartphone cameras [121,125], or
thermal cameras [16,38]. The cameras are set at a specific distance from the driver to collect
data without obstructing the driver’s view. In terms of detection accuracy, the DDD image-
based systems differ in their results. Since they monitor features that are highly correlated
to drowsiness, such as yawning, blinking, head movement, and eye closure, most of them
have achieved high accuracy, between 85% to 99%, as shown in systems [17,52,54,55,59].
However, it should be noted that such systems are affected by multiple factors, as mentioned
previously in the challenges section, and are often implemented and tested in a controlled
environment or using existing DDD video datasets [30,33,49,59,63,68]. Thus, the drowsiness
signs are mostly simulated, where the driver is asked to mimic specific signs during the data
collection part. Hence, all of these factors reduce the reliability of the image-based systems.

The second type is biological-based DDD systems. The practicality characteristics
of such systems are based on the sensors used to detect the targeted biological feature.
Such sensors are usually required to be set up every time they are used, and if they were
high-quality, they would be costly. In terms of intrusiveness and invasiveness, various
types of sensors are used in such systems, and these characteristics differ, based on the used
one. Take, for example, systems [85,103], where they require the driver to put electrodes on
the scalp before driving. In this case, these systems are considered invasive and intrusive,
making them impractical because it is burdensome for drivers to keep them attached while
driving. In comparison, systems [79,100] have used devices like a headband with sensors
or a smartwatch, which are biological devices that can easily be worn and attached to the
driver’s head and arm for data collection. Those devices are non-invasive and intrusive
and do not disturb or obstruct the driver. Nonetheless, other biological-based systems were
designed more comfortably and did not require the driver to put them on before driving.
Such systems use sensors attached to the seat or steering wheel, making them comfortable
for long rides. Examples include systems [101,108].

In [101], a head support that contains PPG sensors to measure the pulse was connected
to the simulator chair. While in [108], Fu and Wang used two pieces of conductive knit
fabric that was sewed to the seat cushion. The fabric collected data, while the driver was
seated. Regardless of the hardware or method implemented for drowsiness detection, the
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accuracy of the biological-based systems tends to be high. These systems trace the human
body’s biological signals that reflect the very initial changes in the human alertness state,
which allows them to make an accurate detection when the drowsiness signs appear. The
accuracies of the reviewed biological-based systems were between 77–97%. Thus, unlike
image-based systems, biological-based systems are considered highly reliable, when it
comes to detecting real-time drowsiness.

In the third type, vehicle-based systems, these systems take their readings from vehicle-
related parameters, as the name implies. Thus, they are also non-intrusive and -invasive
systems. Furthermore, like image-based systems, they automatically start the detection
process, without the need for initial preparations, but their cost differs, depending on
the sensor used. In terms of the final accuracy, vehicle-based systems have scored the
lowest accuracy, compared to other types of systems. For example, systems [117,119],
in Table 7, have shown an accuracy of 78% and 62.1%, respectively. Nevertheless, such
systems did not obstruct the driver in any way. However, this type of system is the least
reliable for detecting drowsiness, due to the type of features they track, such as SWA and
lane departure. Such features cannot solely detect drowsiness accurately.

In some studies, researchers used additional measures to enhance the effectiveness
of vehicle-based systems. Such systems have resulted in the fourth type of DDD systems,
which we referred to as hybrid-based systems. As mentioned before, hybrid systems
have many combinations using vehicle-, image-, biological-, image-based measures, etc.
These systems may be intrusive or invasive, easy to use, or costly, depending on the
measures combined and hardware used. For example, in [29], the authors have used a
non-invasive and wearable headband that contains three sensors to detect the EEG signals,
head movement, and blinking. Thus, this system has reduced the detection surface, where
the sensors can be placed into one headband. However, the head band must be worn at all
the time during the ride, which may be uncomfortable for the driver. As shown in Table 10,
most of the hybrid-based DDD systems have achieved accuracy exceeding 85%, which
indicates the effectiveness and practicality of such systems.

Overall, according to the literature, image-based systems gave more than 90% accuracy
within a simulated testing environment or using an existing dataset. This measure has
proven reliable in detecting drowsiness, once visual signs start appearing. However, being
implemented in a controlled environment is a major drawback, which argues the need to
be tested in real-life driving scenarios, under highly safe measures, for it to be considered
reliable. On the other hand, biological systems detect drowsiness early because they depend
on internal drowsiness signs, which usually appear before visual signs [9]. Thus, they can
give an early alarm that alerts the driver, significantly reducing the chances of falling asleep.

In contrast, vehicle-based systems resulted in the least accuracy. Additionally, as this
measure’s results are unreliable alone, such systems are usually accompanied by another to
validate the results of the vehicle-based measures. The hybrid-based systems showed a
high performance; however, their multiple drowsiness measures distinguished this type
of system. Notably, the various combinations of the hybrid systems have increased their
performance and accuracy; additionally, they overcame some of the limitations that each
measure has individually. In conclusion, using an accurate drowsiness detection system
is one of the essential factors in reducing drowsiness-related car accidents. Furthermore,
as the hybrid systems showed that they are highly reliable, they are the best option for
drowsiness detection.

Our paper classifies and reviews the latest DDD systems. Each system presented in
this paper is accompanied by a detailed exposition of the involved features, classification
algorithms, and datasets used. Our review also compares the systems, in terms of cost,
invasiveness, intrusiveness, ease of use, and classification quality metrics (accuracy, sen-
sitivity, and precision). Furthermore, the paper discusses the current challenges in DDD
literature and sheds light on future research directions.
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6. Future Trends in Drowsiness Detection Systems

Mobile phones have been introduced in literature [68,132] as an inexpensive alternative
to collect driving data. Nowadays, mobile phones are equipped with at least two cameras
and multiple sensors. Additionally, they can connect with a wide range of sensors through
Bluetooth or other wireless technologies. When attached to the driver’s dashboard, a
mobile phone’s front camera can collect various visual parameters, including eye features,
mouth features, and head movements. Furthermore, the rear camera is capable of detecting
vehicle-based features, such as lane departure and change in orientation, among others.
Most mobile phones are also equipped with GPS sensors, an accelerometer, a gyroscope,
and a magnetometer, which also could describe the car’s direction and orientation, leading
to a better understanding of the driving experience. The phone’s microphone can also be
used to collect data about the driver.

The possibility of connecting sensors to a mobile phone using various wireless tech-
nologies allows the use of various biological sensors to collect the driver’s data seamlessly.
For example, ECG, EEG, EMG, or PPG sensors can be attached to the driver’s body or
embedded within the seat or steering wheel for more convenience.

The data collected by the phone are analyzed using pre-trained machine learning
models to infer the driver’s drowsiness status. While the use of machine learning algorithms
on a mobile phone is possible, the use of deep learning is challenging and could lead to
delayed inference times. Therefore, it is proposed to equip new mobile phones with chips,
optimized for artificial intelligence [68], that facilitate the use of deep learning [133] for
drowsiness detection on mobile platforms in real-time.

Cloud system architecture has also been used to collect multi-sensor data from smart-
phones about drivers to analyze their driving behaviors and study their drowsiness pat-
terns [132]. Developers use the gathered data to produce applications that consider con-
textual driving situations and personalized driver traits. Despite their advantages, the
inherent latency in cloud systems makes cloud-based applications not favorable for driver
drowsiness detection systems, where real-time decisions must be made [134]. An alterna-
tive method, with low latency, is multi-access edge computing (MEC). The MEC technology
brings computing power and storage resources to the edge of the mobile network, instead
of the central cloud server approach. MEC has been used in various mobile applications,
where it showed fewer delays than cloud systems. The use of MEC-based DDD systems
over 5G networks would lead to real-time decisions, which, in turn, provides safety to the
driver [134].

DDD systems not only assure the safety of the driver and companions but also other
passengers on the road. When the DDD system detects that the driver is drowsy, it signals
an alarm (such as a flickering light) to other vehicles on the road, warning them that the
driver is drowsy and to take caution [135]. The car could also be a member of an Internet
of vehicle network, an IoT network involving vehicles. In such a setting, vehicles send live
data that includes the driver’s vital signals over a wireless medium, such as 5G [136]. The
data are collected and analyzed in a traffic management platform, which, in the case of
detected drowsiness, sends an alert signal to the driver to reduce the speed or park the car.
It could also run an autopilot to take over the vehicle and park it safely. On the other hand,
the platform can also contact neighboring vehicles in the networks to warn them about the
drowsy driver.

A significant limitation in most proposed DDD systems is their dependence on limited
datasets that were produced in simulated environments [4]. The accuracy of these systems
could be increased by obtaining more data from various drivers in actual vehicles, where
factors such as the ambient light, road surface vibrations, and individual differences among
drivers are considered. This requires the use of deep learning, which can be done locally by
equipping the vehicles with AI-enabled processors and GPUs [4].
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7. Conclusions

Over the past decade, the drowsiness detection field has experienced significant
enhancements, due to technological advancements in IoT, sensor miniaturization, and
artificial intelligence. This paper has presented a detailed and up-to-date review of the
driver drowsiness detection systems that have been implemented in the last ten years. It
has described the four main approaches followed in designing DDD systems and cate-
gorized them based on the type of drowsiness indicative parameters employed. These
four categories are image-, biological-, vehicle-, and hybrid-based systems. The paper has
provided a detailed description of all the presented systems, in terms of the used features,
implemented AI algorithms, and datasets used, as well as the resulting system accuracy,
sensitivity, and precision.

Furthermore, the review has highlighted the current challenges in the DDD field,
discussed the practicality of each DDD system, and discussed the current trends and future
directions that aim to utilize affordable, easy-to-use, and practical methods to improve
accuracy and reliability.

We expect 5G networks to play a prominent role in enhancing DDD systems. With
5G connectivity, future DDD systems will be based on real driving scenarios. The data
will be obtained from various drivers in actual vehicles, where factors such as ambient
light, road surface vibrations, and individual differences among drivers are considered.
The use of 5G connectivity will also enable the use of multi-access edge computing power
for deep learning, resulting in highly accurate real-time decisions. Vehicles are expected
to operate as members of Internet of vehicle networks, enabling the network to warn the
drowsy driver, take control of the car (if needed), and contact neighboring vehicles in the
network to alert them about the weary driver. These technologies will lead to safer roads
and pave the way towards realizing smart cities.

We conclude by emphasizing that DDD technology has enormous market potential.
Many car manufacturers, such as Toyota and Nissan, have recently installed or upgraded
driver assistance devices in their products. The artificial intelligence and deep learning
fields are developing tremendously. Soon, the DDD systems will most likely evolve,
enabling the formation of smart cities.
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Abbreviations

The nomenclature abbreviations, shown in Nomenclature, were used in this manuscript.

Nomenclature
NHTSA National highway traffic safety administration
DDD Driver drowsiness detection
IoT Internet of things
KSS Karolinska sleepiness scale
ML Machine learning
TP True positive
TN True negative
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FP False positive
FN False negative
NTHUDDD National Tsuing Hua university drowsy driver detection
PERCLOS Percentage of eyelid closure
EAR Eye aspect ratio
SVM Support vector machine
KNN K-nearest neighbor
SHRP2 Strategic highway research program results
RF Random forest
ANN Artificial neural networks
CNN Convolutional neural network
FD-NN Fully designed neural network
TL-VGG16 Transfer learning in VGG16—VG16 is a 16-layers deep CNN architecture,

named after the Visual Geometry Group from Oxford
TL-VGG19 Transfer learning in VGG19—VG19 is a 19-layers deep CNN architecture
LSTM Long short-term memory
RNN Recursive neural network
ROI Region of interest
EM-CNN Eye and mouth CNN
EMD Empirical mode decomposition
IMF Intrinsic mode functions
EEG Electroencephalography
ECG Electrocardiography
PPG Photoplethysmography
HRV Heart rate variability
EOG Electrooculography
EMG Electromyography
ELM Extreme learning machine
SVDD Simulated virtual driving driver
AVMD Adaptive variational mode decomposition
RPs Recurrence plots
RRIs R–R intervals
Bin-RP Binary recurrence plot
Cont-RP Continuous recurrence plot
ReLU-RP Thresholded recurrence plot
ReLU Rectified linear unit
HF High frequency
LF Low frequency
LF/HF Low to high frequency
MeanNN Mean of RRI
SDNN Standard deviation of RRI
RMSSD Root means square of the difference of adjacent RRI
TP Total power which is the variance of RRI
NN50 Number of pairs of adjacent RRI spaced by 50 ms or more
RRV Respiratory rate variability.
H1 Sum of the logarithmic amplitudes of the bispectrum
H2 Sum of the logarithmic amplitudes of the diagonal elements in the bispectrum
H3 First-order spectral moment of the amplitudes of diagonal elements in the

bispectrum
SWA Steering wheel angle
ANFIS Adaptive neuro-fuzzy inference systems
MOL Multilevel ordered logit
BPNN Back propagation neural network
NIRS Near-infrared spectroscopy
MEC Multi-access edge computing
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