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Abstract: In this paper, we present a first-of-its-kind method to determine clear and repeatable
guidelines for single-shot camera intrinsic calibration using multiple checkerboards. With the help
of a simulator, we found the position and rotation intervals that allow optimal corner detector
performance. With these intervals defined, we generated thousands of multiple checkerboard
poses and evaluated them using ground truth values, in order to obtain configurations that lead to
accurate camera intrinsic parameters. We used these results to define guidelines to create multiple
checkerboard setups. We tested and verified the robustness of the guidelines in the simulator, and
additionally in the real world with cameras with different focal lengths and distortion profiles, which
help generalize our findings. Finally, we used a 3D LiDAR (Light Detection and Ranging) to project
and confirm the quality of the intrinsic parameters projection. We found it possible to obtain accurate
intrinsic parameters for 3D applications, with at least seven checkerboard setups in a single image
that follow our positioning guidelines.
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1. Introduction

Navigation robots, such as autonomous vehicles, require a highly accurate represen-
tation of their surroundings to navigate and reach their target safely. Sensors such as
cameras, radars, and LiDARs (Light Detection and Ranging) are commonly used to provide
rich perception information. Each of these sensors can complement each other to supply
reliable and accurate data. For example, cameras produce a dense representation of the
world, including color, texture, and shape. However, cameras cannot provide reliable
depth information at longer distances. On the other hand, LiDARs capture dense and
highly accurate range information at short, middle, and often at long range regardless of
the lighting conditions.

The simultaneous integration of data from multiple sensors is known as fusion, and it
is used to overcome weaknesses in each individual sensor. State-of-the-art perception algo-
rithms utilize fused data inside deep neural networks to improve detection accuracy. For
example, some of these networks require the image, the point cloud data, and accurate cam-
era intrinsic and camera-lidar extrinsic parameters to enable training and inference [1-4].
Another common application that requires precise calibration is camera-based localization,
also known as visual SLAM (Simultaneous Localization and Mapping) [5,6]. On the other
hand, applications that do not require fusion and only operate on images might not be
significantly affected by small errors in the intrinsic camera parameters. Recent advances
in deep learning [7,8] apply data augmentation techniques to increase resilience to im-
age distortions. Regardless of whether camera data is used independently or as part of
a fusion methodology, any application involving 3D geometry will require accurate and
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careful sensor calibration. Fundamental to this is how a camera is modeled in terms of its
intrinsic parameters.

Cameras have become ubiquitous thanks to their low cost, high quality, and ability
to represent the world with dense and feature-rich images. The images created by these
devices resemble our own vision, depicting objects located at different distances with
different apparent dimensions. The mathematical model commonly used to project the
three-dimensional world is the pin-hole camera model. In addition, the plumb-bob model,
also known as the Brown-Conrady model, represents the distortion caused by the lens
attached to the camera [9]. Model parameters can be estimated using a method known as
camera calibration (also referred to as geometric camera calibration or camera re-sectioning).
This method requires capturing images while moving either the camera itself or a calibration
target, with identifiable features of known dimensions, aiming to cover the entire camera’s
field of view. The targets used in this calibration process depend on the selected algorithm.
Methods such as the one presented by Zhang [10], use one-dimensional targets in the
form of a stick with beads attached to it separated by a known distance. Two-dimensional
target arrays have a low cost, and the methods developed for this modality provide
sub-pixel accuracy. Finally, three-dimensional targets, often used for photogrammetry
applications [11], offer higher accuracy, but are not easily obtainable. For the previous
reasons, computer vision and robotics applications traditionally employ 2D planar grid
targets in the form of large flat boards with identifiable patterns such as checkerboards,
arranged circles, or fiducial markers, among others. Correspondences between feature
points on the planar target among all of the frames are determined in order to calculate the
intrinsic parameters. This process can be tedious, especially on robots or vehicles featuring
large arrays of cameras.

There are instructions on performing the data capture procedure, such as covering the
entire frame, making sure the focus is correct, taking multiple images while keeping the
focus and focal length fixed, or locating the target at the same distance as the measure of the
planned object [12-15]; however, there are no clear instructions on setting the checkerboard
pose to facilitate the process while also obtaining accurate parameters. For this reason,
after finishing the data acquisition and estimating the parameters, their validity is not
apparent until they are applied to project 3D points. The metric commonly used to evaluate
the accuracy of the parameters is the re-projection error. It involves calculating the error
between the detected and the corresponding re-projected feature points. However, this
metric uses the same points that were used to estimate the parameters, which reduces its
reliability. We decided to simplify and automate the calibration process using multiple
checkerboards in a single image for the above reasons. This method could be used to build
calibration stations featuring static arrays of checkerboards arranged in a specific configura-
tion. These could be installed inside factories where vehicles with multiple cameras can be
accurately calibrated using a single shot without the intervention of specialized staff and
simultaneously reducing possible human error while manipulating the calibration targets.
Furthermore, the parameter estimation process takes a few seconds helping to reduce the
calibration time of multiple vehicles with multiple cameras.

Given the importance of accurate camera intrinsic parameters for 3D applications, we
aim to: (1) define clear guidelines to calibrate monocular cameras accurately; and (2) create
a method that allows us to calibrate accurately using a single-shot with a predefined
setting with multiple checkerboards. To accomplish this, we employ a realistic simulator
to generate, calibrate and evaluate hundreds of combinations to obtain the minimum
number of checkerboards, their positions, and rotations that would provide accurate
intrinsic parameters. We additionally evaluate the corner detection accuracy, which is an
integral part of the calibration process, and often overlooked in other work. To overcome the
weakness of the re-projection error metric, we intentionally project virtual 3D points, labeled
as Control Points, on the camera field of view edges. We then use these Control Points to
verify the distortion correction qualitatively and select the best checkerboard arrangements
based on score combinations. Finally, we test the top-performing checkerboard poses to
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calibrate real cameras and project the point cloud generated by a 3D LiDAR sensor using
the estimated intrinsic parameters to validate our calibration guidelines findings. To the
best of our knowledge, this is the first work to carry out an in-depth study using simulations
to provide an optimized set of guidelines for one-shot calibration.

In summary, the main contributions of this work are as follows:

*  The obtention of the minimum practical number of checkerboard poses to calculate
the camera projection parameters for 3D applications accurately.

*  The definition of guidelines for checkerboards’ position and rotation w.r.t. to the
camera to estimate accurate camera intrinsic parameters.

¢  Validation of this single-image calibration setup in the real world with different
cameras, lenses, and focal lengths, thus accelerating the camera calibration process.

*  Release of the source code and the synthetic images to facilitate the practical applica-
tion and reproduction of these guidelines in the real world.

We organize this paper as follows: Section 2 includes a discussion of the related work.
Section 3.1 introduces how we obtained the baseline intrinsic parameters based on a real
camera. We used these parameters to generate the ground truth synthetic datasets and
evaluate the calibration checkerboard poses. Section 3.2 presents the simulator we used
throughout this work, the checkerboard model, the synthetic camera, and their coordinate
systems. Section 3.5 explains in detail the metrics and the experiments we carried out to
understand the practical limitation of the corner detector and draws guidelines to obtain
reliable checkerboard corners. Section 3.6 introduces the metrics and the experiments
we used to investigate the effects of the checkerboard’s poses on the camera’s intrinsic
parameters. This section also obtains multiple checkerboard setups that show reduced error
with respect to the ground truth parameters when using one-shot calibration. Section 4.1
presents the testing and evaluation that we performed to replicate the optimal synthetic
setups to calibrate a camera in a real-world setting, and estimate the actual intrinsic
parameters. Additionally, we present the validation of these parameters by projecting
the point cloud generated by a 3D LiDAR into the rectified image using the estimated
camera intrinsic parameters. Finally, Section 6 presents our findings and summarizes
the guidelines for accurate camera calibration in a single shot that we obtained through
synthetic experiments.

2. Related Work

There exists a considerable amount of work dedicated to developing techniques for es-
timation of camera intrinsic parameters. Notable mentions include the work by Zhang [15],
Kannala and Brandt [16], and Heikkila and Sliven [17]. Despite being published more
than twenty years ago, these methods provide consistent and reliable results. Moreover,
the widely-used open-source computer vision library OpenCV [18] and the proprietary
Matlab [19] platform use these methods in their camera calibration toolboxes due to their
proven accuracy. More recent approaches use deep learning methods to estimate the camera
intrinsic parameters using neural networks trained on large datasets of images with known
intrinsic parameters [20,21]. These methods are convenient since they do not require any
targets or calibration datasets. Nevertheless, these approaches are still far from matching
the accuracy achieved by target-based techniques.

Zhang [15] used synthetic data while testing his calibration method to evaluate re-
silience against noise. He obtained good results with as few as three checkerboards, without
aiming to use the parameters in 3D applications. However, he only used the checkerboard
corners to measure the error, which might result in over-fitted parameters. Moreover, he
did not consider the error introduced by the corner detection phase.

The work dedicated to the extrinsic calibration of LiDARs, radars, and cameras ex-
plicitly states that accurate intrinsic camera parameters are required [2—4,22-27]. These
methods find shared features between the 2D perspective space on the images gener-
ated by the camera and the 3D Euclidean space employed by radars and LiDARs. The
shared features are then input to an optimizer to estimate the extrinsic parameters (rela-
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tive position t, and rotation R), which attempts to reduce the projection error of the 3D
features (p1iqar) While using the given camera intrinsic parameters (Pjjqay cam) in the form
Pcam = Pilidarcam - R - t - plidar- This equation illustrates the importance of having high-
quality camera intrinsic parameters in order to obtain accurate sensor extrinsic parameters.

There are a limited number of published studies about verifying estimated camera
intrinsic parameters for use in 3D applications. Basso et al. [28] stressed the requirement of
accurate intrinsic parameters for 3D applications such as SLAM, and introduced a method
for the intrinsic and extrinsic calibration optimizer for short-range time-of-flight (ToF)
sensors such as the Microsoft Kinect. Geiger et al. [29] presented a single-shot calibration
method for short and long-range LiDARs and cameras. Their approach uses multiple
checkerboards in a single frame to accelerate and simplify the data acquisition. However,
they did not analyze or demonstrate why these positions are optimal. We extend this
research direction to create clear guidelines on how to achieve consistent and accurate
intrinsic parameters and introduce validation metrics to verify them.

3. Methods
3.1. Real-World Camera Baseline

While this paper focuses on the use of a simulator to optimize calibration methodology,
instead of using a pure virtual camera, we decided to use a real camera as our baseline. We
therefore first needed to calibrate it, obtain the intrinsic parameters, and verify that these
are appropriate for 3D applications. To calibrate our camera, we decided to use planar
checkerboards with checkered patterns since they are widely available, are low cost, and
have established corner detection methods that provide high accuracy [29,30]. To make the
simulation closer to reality, we decided to model and simulate the checkerboard used to
calibrate our real camera.

Additionally, to calibrate our real baseline camera and the virtual cameras gener-
ated by the simulator, we re-implemented the corner detection method presented by
Geiger et al. [29], based on Ha’s algorithm [31]. This is due to its simplicity and proven
advantage in noisy and blurry environments when compared to the Harris [32], and
Shi-Tomasi [33] corner detectors included in OpenCV.

3.1.1. Baseline Calibration

We intrinsically calibrated a 5.4 MP Lucid Vision Labs machine vision camera (TRI054S)
paired with an 8 mm focal length Fujinon lens. We used an 800 mm by 600 mm planar
checkerboard printed on 4 mm thick aluminum, with an eight by six pattern, and a 100 mm
square size. A total of 292 checkerboard poses were used to generate a baseline. We
then used the OpenCV [18] camera calibration toolkit based on Zhang’s method [15], and
MATLAB's [34] Adaptive Thresholding to obtain the camera intrinsic parameters (principal
point, focal length, axis skew), three radial distortion coefficients, and two tangential
distortion coefficients. We projected the point cloud generated by a 3D LiDAR sensor, a
Hesai Pandar 64, extrinsically calibrated using the method by Zhou et al. [25] to validate
that these parameters are accurate for 3D applications.

3.2. Simulation

Having a baseline defined by a real camera calibrated with a checkerboard, we created
a 3D model with the help of Blender [35], based on the printed planar checkerboard
mentioned in Section 3.1.1. We then converted the checkerboard model for use within the
LGSVL (LG Silicon Valley) simulator [36] as a controllable object.

The LGSVL Simulator allows the creation of virtual locations, weather scenarios, obsta-
cles, and one ego-vehicle. Any number of sensors can be attached to the ego-vehicle, such
as cameras, LIDARs, and GNSS. With the help of the simulator API, we generated an empty
scene with an ego vehicle, one camera with the parameters introduced in Section 3.1.1. We
then dynamically generated multiple instances of our checkerboard controllable object as
illustrated in Figure 1. The camera simulated by the LGSVL simulator rendered images



Sensors 2022, 22, 2067

50f 28

using the plumb-bob model with the given intrinsic parameters. The simulator API allowed
us to save these renders as image files.

Figure 1. Our modeled checkerboard simulated in the LGSVL.

3.3. Checkerboard Coordinate System

We defined the checkerboard coordinate system to be right-handed. The Z-axis is
normal to the checkerboard plane, the X-axis is parallel to the checkerboard’s short side,
and the Y-axis is parallel to the long side of the checkerboard. The origin is located at the
center of the checkerboard as illustrated in Figure 1.

3.4. Simulator Coordinate System

The simulator coordinate system is left-handed. The X-axis faces to the right, the
Y-axis points upwards, and the Z-axis is normal to the camera plane and faces forward.

3.5. Checkerboard Corner Detector Evaluation

Before starting to simulate multiple checkerboards, we decided to initially evaluate the
limits of our re-implemented version of the corner detector (based on Geiger et al. [29], and
Guiming and Jidong [30]) inside the simulator. We used this information to decide the pose
and distance intervals that will have a higher probability of detecting the checkerboard
corners, and therefore produce more accurate intrinsic parameters. This step is of utmost
importance since the detected checkerboard corners are the inputs for the optimizer. If they
contain significant errors, the estimated parameters will be inaccurate.

3.5.1. Corner Detector Metrics

To experimentally obtain the intervals at which the checkerboard corner detector will
fail, we located the checkerboard at the center of the camera’s field of view in the simulated
world. We rotated the checkerboard with respect to its X (roll, ), Y (pitch, B), and Z
(yaw, ) axes on a [—90°, 90°] interval with one-degree steps for the roll and pitch and five
degrees steps for the yaw; to obtain the maximum distance at which the detector would
fail, we moved the checkerboard away from the camera in 1 m steps, until the detector
failed. Additionally, to evaluate the corner detector, we defined the following variables
and statistics:

*  Ground Truth 3D corners Cspg are the N three-dimensional points in camera space,
where N = u X v, and u and v are the number of inner rows and columns of the
checkerboard, respectively.
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*  Corner RMSE is calculated between the true 2D corners Cyp; in distorted images
generated by the simulator, and the corners computed when running the corner
detection C,, and calculated as:

N 2
N (Cops. — Co.
Cornergpmsg = \/le( 2Di; )

N

The true 2D corners are obtained by projecting the true 3D corners as: Copt = P - C3py,

where P is the optimized projection matrix from 3D camera space to 2D image space
cx 0 f X

after applying distortion correction, and defined as: P = ( 0 ¢, f, ). Translation and
000

rotation are not required in this case because the corners points in C3p¢ are already in

camera space.

e Inner Checkerboard Area is calculated by obtaining the area of the two triangles formed
by the corners in the checkerboard. Area calculation would be exact in an undistorted
image, but is not precise in a distorted one. For this reason, we use two triangles
to estimate the area, since we propose that this produces better results than using a
parallelogram.

¢ Checkerboard-Image Plane Angle is defined as the angle between the checkerboard plane
normal (as defined by the corners) and the image plane normal (camera z-axis).

3.5.2. Experiments

Rolling Experiment. For this experiment, we positioned the origin of the checkerboard at
the same height as the camera origin, and set the checkerboard 4 m away along the Z-axis,
then varied the roll angle between 0 and 90 degrees in one-degree steps.

Pitching Experiment. In this experiment, we aligned the checkerboard and camera origins,
placed the checkerboard 4m away from the camera, and varied the pitch rotation in
the [0°, 90°] interval with one-degree steps.

Yaw Experiment. For this experiment, we aligned the checkerboard and camera origins and
positioned the checkerboard to be 4 m away from the camera on the Z-axis. We then rotated
the checkerboard w.r.t the checkerboard’s Z-axis between [-90°, 90°] in five degrees steps.
Simultaneous Rolling and Pitching Experiment. In this experiment, we examined the
effects of simultaneously varying the pitch and roll on the corner detector. We set the
checkerboard origin height to match the camera’s and placed the checkerboard 4 m away
from the camera along the Z-axis. Additionally, we fixed the yaw rotation to 53.14 degrees.
This angle allowed us to align the checkerboard longer diagonal to the vertical axis; this
condition helped us simulate the same circumstances that we would use in an actual
camera-3D sensor extrinsic calibration [25]. We then simultaneously varied the roll («) and
pitch (B) over the intervals of [-80°, 80°] and [-60°, 60°], respectively.

Range Experiment. In this experiment, we set the camera origin and the checkerboard
origin to have the same height and initially separated them by 4 m along the Z-axis. To
verify the maximum detection distance of the checkerboard corner detector, we moved the
checkerboard away from the camera in 1 m steps until it failed. Additionally, once we ob-
tained the checkerboard corner detector failure range, we repeated the experiment focusing
on the working area with 0.5m steps to understand better the detector’s performance.

3.5.3. Results

Figures 2 and 3 show the results of the corner detector experiments in the simulator.
From these, we can draw the following guidelines regarding the corner detector:

*  We found that the corner detector peak performance with respect to roll rotation
between the camera plane normal and the checkerboard normal is between 0 and
60 degrees, as we present in Figure 2a. Rotations below 70 degrees can obtain re-
liable corner detections, but we can see that the performance quickly decreases at
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angles larger than 70 degrees, and the detector completely fails for angles larger than
78 degrees.

We observed in Figure 2b that the corner detector performs best between 20 and
60 degrees when varying the pitch angle between the camera plane normal and the
checkerboard normal. The performance degrades at angles larger than 60 degrees,
until it cannot detect any corners at all after 78 degrees.

From Figure 2¢, we can appreciate that the corner detector performs best between 20
and 60 degrees when simultaneously varying the pitch and roll between the camera
plane normal and the checkerboard normal. Similarly, we see a reduction in accuracy
when the rotations surpass 78 degrees.

From Figure 3a we can see that the corner detector can detect corners reliably up to
35m, and trivially confirm that corner detector RMSE increases with distance; however,
Figure 3b only shows a pronounced drop after 10 m. With the intention of including
multiple checkerboards per frame, we can suggest placing the checkerboards within
10 m from the camera or ensure that the checkerboard’s visible inner area should be at
least 20,000 px?. This value for the area is resolution independent, so we propose it as
a guideline for perspective cameras and lenses that produce a different field of view.
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Figure 2. Effects of roll («), pitch (B) and yaw () rotations on the checkerboard corner detector.
(a) Effects of Roll () Angle, (b) Effects of Pitch (8) Angle, (c) Effects of Simultaneous Roll («) and
Pitch (B), and (d) Effects of Yaw () Angle .
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Figure 3. Effects of distance between the checkerboard and the camera on the checkerboard corner
detector. (a) Effects of Distance, 4 to 51 m interval, (b) Effects of Pitch () Angle.

3.6. Simulated Calibration Experiments

With the knowledge obtained about the impacts of distance and rotation on the corner
detector, we investigated the checkerboard positions in the image frame and their influence
on the camera intrinsic parameters. To achieve this, we needed to define the metrics to
assist evaluation for each set of checkerboard poses and positions.

3.6.1. Checkerboard Pose Metrics

To verify if a set of checkerboard poses provides a better estimation of the camera’s
intrinsic parameters, we calculated the root mean square error (RMSE) between the ground
truth parameters and the those estimated from the corners of the checkerboards detected
on the image using OpenCV [18]. We measured the following parameters:

*  Focal length (fy,fy).
*  Center point (cx,cy).
*  Distortion coefficients: three radial (k,k2,k3), and two tangential (p1,p2).

In addition to the intrinsic parameters, we also obtained:

*  The RMSE between the ground truth corner positions and the projected corner points
using the estimated intrinsic parameters.

*  The checkerboard corner re-projection error, which is the distance between the detected
corners in a calibration image, and the corresponding 3D corner points projected into
the same image.

¢ The Control Points re-projection error, which is the distance between the projections of
a 3D Control Point when using the estimated and the ground truth intrinsic parameters.
In Section 3.6.2, we introduce and describe the “Control Points” in more detail.

3.6.2. Control Points

The re-projection error is a metric used to quantify the distance between the projection
estimate of a 3D point and its actual projection. This metric is widely used to estimate the
performance of the camera intrinsic parameters, measuring the detected corners and their
3D estimated counterparts. However, since these points only contain areas belonging to
the checkerboard, this metric is unreliable on other parts of the image. For this reason, we
decided to purposely insert 3D virtual points into the simulation to assist in measuring the
performance on the edges of the image.

The Control Points are 3D virtual points strategically positioned in the camera frustum
that we defined in Section 3.1. They target the areas of the camera field of view that
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the checkerboard corners are projected with low error.

are prone to project points incorrectly due to lens distortions. We located these points
systematically as shown in Figure 4 at 5m and 50 m from the camera origin. We defined

those two distances to test the performance at close and long-range.

e Control Points, 5 m
x  Control Points, 50 m
» Camera Origin

x %
x | 2 x
¥ x
* x
x xdi ........
x ST L
e ¥ \
......... 30
= \

60 _ \ 20
50 . ‘ \ AN} 1)0
40 > ,—"’— \ y

3 ,—"”‘ \ -10
30 . PPl . -20
z =
20 \ \ -30
\ -40
\
0 20

40

Figure 4. Control Points systematically located inside the baseline camera frustum.

Figure 5 shows two simulated checkerboards with an almost identical re-projection
error value when using only the checkerboard corners. The ground truth checkerboard
corners are drawn with a red crosshair, while the re-projected corners are drawn with
a green crosshair. The corner points for both checkerboards are re-projected after un-
distortion with sub-pixel accuracy. However, when using the Control Points to calculate the
re-projection error in Figure 5a, the error metric increases considerably. The checkerboard in
Figure 5b, on the other hand, has lower control point re-projection error due to the intrinsic
parameters being closer to the ground truth. We use this new metric to help us determine

whether a checkerboard pose is adequate or not.

o9
.
Pess?

(a) Control Points showing a significant projection error, even when (b) Control Points and checkerboard corners showing a reduced

projection error.

Figure 5. Control points as an auxiliary metric. Green marks represent the “Control points” projected
with the ground truth intrinsic parameters, while purple marks represent the projection of the “Con-
trol Points” using the estimated intrinsic parameters. Both (a,b) have the same subpixel checkerboard
corner re-projection error value, and corners in the checkerboard are correctly re-projected in both

cases. However, the estimated intrinsic parameters have a large error in (a), correlating to Control

Point re-projection error.
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3.6.3. Dual Checkerboard Calibration

In this series of experiments, we evaluated the effect of varying the position and
rotation of each checkerboard. This paper aims to formulate guidelines that will help
to narrow down the number of combinations required when increasing the number of
checkerboards. To do this, we must determine the poses that result in a minimized error.

Having explained the proposed method for corner detector evaluation and defined
the required metrics, we also aim to evaluate how the following items affect the calibra-
tion parameters:

*  The rotation angles 