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Abstract: Ag-doped WO3 (Ag–WO3) films were deposited on a soda-lime glass substrate via a facile
spray pyrolysis technique. The surface roughness of the films varied between 0.6 nm and 4.3 nm,
as verified by the Atomic Force Microscopy (AFM) studies. Ammonia (NH3)-sensing measurements
of the films were performed for various concentrations at an optimum sensor working temperature
of 200 ◦C. Enrichment of oxygen vacancies confirmed by X-ray Photoelectron Spectroscopy (XPS) in
1% Ag–WO3 enhanced the sensor response from 1.06 to 3.29, approximately 3 times higher than that
of undoped WO3. Limit of detection (LOD) up to 500 ppb is achieved for 1% Ag–WO3, substantiating
the role of Ag in improving sensor performance.

Keywords: NH3 sensing; oxygen vacancies; WO3 films

1. Introduction

Various types of gas sensors, including chemoreceptive-, ionization-, acoustic-,
and resonant-based sensors are gaining more attention in different sectors, such as en-
vironmental monitoring, food safety, medical diagnosis, and industrial applications [1–3].
Among these, chemoreceptive-based metal oxide semiconductors (MOx) have received
tremendous interest in gas sensing due to their high surface/volume ratio, as the gas
reaction process is a surface phenomenon. Different MOx, such as ZnO, SnO2, WO3,
and TiO2 [4,5] have been extensively studied for gas-sensing applications. Tungsten oxide
(WO3) has emerged as a potential MOx to detect the gases, such as NH3, H2, NO2, CO,
and alcohol vapors, because of their inherent properties, including excellent electrical
conductivity, sensitivity, and selectivity [6,7]. To enhance the sensing performance further,
doping is considered one of the possible approaches. Transition metal doping, such as Cr,
Cu, Ag, and Pd, would induce the defects causing enrichment of oxygen vacancies via hole
compensation mechanism. These metals act as promoters and increase the sensing prop-
erties via spill-over effect or Fermi-level mechanisms [8–10]. Godbole et al. [11] reported
the NH3-sensing properties of Pd/WO3 films with the response of 0.27 at a working tem-
perature of 225 ◦C. Lu et al. [12] presented studies on NO2-sensing properties of Ag–WO3
nanoparticles and reported high sensitivity and better selectivity. Xu et al. [13] obtained a
superior sensor response for Ag–WO3 core-shell nanostructures towards alcohol vapor at a
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working temperature of 340 ◦C. All these studies have shown that metal incorporated into
WO3 has enhanced the sensor performance.

In this regard, we have illustrated the NH3-sensing performance of Ag–WO3 films
via the spray pyrolysis deposition technique. Ag is a noble metal that enhances the
sensor response of WO3 due to electronic sensitization mechanism [14]. Due to large
area deposition, ease of operation, and cost effectiveness, spray pyrolysis is chosen to
deposit films in this report. The availability of literature is scarce on Ag–WO3 for NH3
sensing, and one of the works published is on hydrothermal technique [14]. To the best
of our knowledge, no reports on spray-deposited Ag–WO3 films are accessible for NH3
sensing. Therefore, our attempt has proved the possibility of these films for NH3 sensing
by spray pyrolysis. Though the literature is available on NH3 sensing by metal-doped
WO3, the majority of the sensors work at high temperatures (>250 ◦C) and the reported
detection limit is high [14–16]. Ammonia (NH3), a reducing gas, is a major pollutant from
the automobiles, fertilizer, and mining industries. According to the OSHA (Occupational
Health and Safety Administration) report, the permissible limit for NH3 is 35 ppm for
15 min [17]. High exposure to the gas for a long time will trigger lung- and kidney-related
diseases, causing incurable damage to human health. In this context, we aimed to lower the
operating temperature and detection limit, which are essential for the sensing applications.
Thus, in the current work, we have reported spray-pyrolyzed Ag–WO3 films as a promising
candidate for NH3 sensing at a working temperature of 200 ◦C with the detection limit of
500 ppb.

2. Experimental

Undoped and silver-doped tungsten oxide films (Ag–WO3) were synthesized by
the spray pyrolysis method. For undoped WO3, ammonium metatungstate hydrate
(99.99% purity) is dissolved in double-distilled water and a homogeneous solution is
obtained. For Ag doping, silver nitrate was taken as a precursor, and doping was done
at a 1 wt.%, 3 wt.%, and 5 wt.% ratio. Solution concentration was maintained at 0.01 M.
Deposition parameters, such as substrate temperature and flow rate, were kept constant at
400 ◦C and 1 mL/min, respectively.

Crystal structure and phase identification were performed via Rigaku SmartLab X-ray
diffractometer with Cu Kα radiation at 40 kV, 30 mA. Raman analysis was performed
using a Horiba JOBINYVON LabRAM HR spectrometer for the confirmation of structure.
Morphological studies were performed via Innova SPM Atomic Force Microscope (AFM).
AXIS ULTRA X-ray Photoelectron Spectroscope is used for oxidation state and composition
studies. Gas sensing was conducted via dc probe measurements in an enclosed chamber
(2.96× 104 cm3 by vol.) by purging synthetic air (79% N2 + 21% O2) and NH3 to the sample.
The flow of gas was controlled using programmable mass flow controllers (MFCs), and the
overall flow was kept constant at 500 sccm. I-V measurements were performed via Keithley
source meter 2450 using silver paste electrodes. Sensor response of the films was evaluated
using the equation, ( Ra−Rg

Rg
). Ra and Rg suggest the film resistance in air and target gas

(NH3), respectively. Schematic representation of film synthesis and ammonia-sensing
measurements of Ag–WO3 film is represented in the Figure 1.
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Figure 1. Schematic illustration of film deposition and ammonia sensing measurements of Ag–WO3. 
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Diffraction peaks at the angles 24.1°, 33.9°, 49.6°, and 55.6° correspond to (200), (202), (140), 
and (240) planes, indicating monoclinic phase (γ-WO3) of WO3 films (JCPDS card no. 43–
1035) [12,18]. The appearance of sharp diffraction peaks implies that the deposited films 
have high crystallinity. The absence of any further peaks in the spectra endorsed the non-
existence of any impurity phase in the prepared Ag–WO3 films. All the films exhibited ‘a’ 
axis preferential orientation, i.e., along (200) plane. Evolution of (020) peak centered at 
23.4° is observed upon addition of Ag into WO3. The introduction of Ag formed new nu-
cleating centers for WO3, ultimately retaining monoclinic structure. The crystallite size of 
the films was determined by employing the Scherrer formula [19] and it varies from 11.5 
nm to 14.7 nm. The dislocation density and microstrain [19] were also evaluated and are 
presented in Table 1. 

Figure 1. Schematic illustration of film deposition and ammonia sensing measurements of Ag–WO3.

3. Results and Discussion
3.1. Structural and Morphological Analysis

Figure 2a–d represents the XRD pattern of Ag–WO3 films at varied Ag doping levels.
Diffraction peaks at the angles 24.1◦, 33.9◦, 49.6◦, and 55.6◦ correspond to (200), (202),
(140), and (240) planes, indicating monoclinic phase (γ-WO3) of WO3 films (JCPDS card
no. 43–1035) [12,18]. The appearance of sharp diffraction peaks implies that the deposited
films have high crystallinity. The absence of any further peaks in the spectra endorsed the
non-existence of any impurity phase in the prepared Ag–WO3 films. All the films exhibited
‘a’ axis preferential orientation, i.e., along (200) plane. Evolution of (020) peak centered
at 23.4◦ is observed upon addition of Ag into WO3. The introduction of Ag formed new
nucleating centers for WO3, ultimately retaining monoclinic structure. The crystallite size
of the films was determined by employing the Scherrer formula [19] and it varies from
11.5 nm to 14.7 nm. The dislocation density and microstrain [19] were also evaluated and
are presented in Table 1.

Since triclinic and monoclinic phases of WO3 exhibit the same set of XRD peaks, we
have conducted Raman measurements for further confirmation [20,21]. Figure 3 illustrates
the Raman spectra of Ag–WO3 films excited with the 532 nm laser source. Clear visibility
of peaks at ~112 cm−1, ~134 cm−1, ~270 cm−1, ~325 cm−1, ~719 cm−1, ~806 cm−1, and
~963 cm−1, attributed to the different modes of vibrations in the WO3 lattice. Peaks
corresponding to ~719 cm−1 and ~806 cm−1 represent the asymmetric and symmetric
stretching vibrational modes (νas and νs) of O–W–O bonds and these are often referred to
as the strongest monoclinic WO3 modes [22]. Peaks located at ~270 cm−1 and ~325 cm−1

attribute to the O–W–O bending vibrational modes (δ) and peaks below 200 cm−1 contribute
to the lattice vibrational modes [23]. All the films exhibit a peak at ~963 cm−1, which can be
ascribed to the symmetric stretching vibration of terminal W=O bonds possibly associated
with the clusters on the film surface [24,25]. The frequency of vibration of the W=O bond
is predicted to be higher than that of the W–O bond since the W–O single bond is weaker
than the W=O double bond. Raman measurements confirmed the monoclinic phase of
Ag–WO3 films.
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Table 1. Structural and morphological parameters of Ag–WO3 films.

Ag Conc. (wt.%) 2θ, (200) Crystallite Size D
(nm)

Dislocation Density δ
(×1015 m−2)

Microstrain
ε (×10−3)

RMS Surface
Roughness (nm)

0 24.12◦ 13.0 5.9 2.7 0.8
1 24.16◦ 13.6 5.4 2.5 4.3
3 24.14◦ 11.5 7.5 3 1.1
5 24.14◦ 14.7 4.6 2.4 0.6

Figure 4a–d shows the topography and microstructures (3D view) of Ag–WO3 films
examined by AFM in tapping mode configuration. All the samples were scanned in the area
of 0.5 × 0.5 µm2. Figure 4b represents the topographical view of 1% Ag–WO3. It suggests
the coalescence of grains upon Ag incorporation forming larger globules of particles with
the presence of voids. At 3% and 5%, Ag doping (Figure 4c,d), well-separated smaller
grains are visible with almost uniform distribution. RMS surface roughness of the films
was evaluated using NanoScope Analysis software and given in Table 1. Upon Ag doping,
the roughness value of the films varied, and for 1% Ag–WO3 higher value of roughness
was recorded.
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3.2. XPS Studies

Elemental composition and chemical state of Ag–WO3 films (at 0% and 1% Ag conc.)
were examined via the XPS technique. Figure 5a shows the deconvoluted spectra of
W 4f split into spin-orbit doublet, namely W 4f7/2 and W 4f5/2 located at the binding
energies (Eb) of 35.9 eV and 38.1 eV, respectively, in undoped WO3 film. These represent
the +6 oxidation state of W and another satellite peak at 40.5 eV indicates the W 5p3/2
component corresponding to the same oxidation state [26]. The incorporation of Ag into
WO3 has led to the formation of +6 and +5 oxidation states of W as depicted in Figure 5b.
Deconvolution of W 4f in Figure 5b has resulted in two pairs of doublets viz. one at 34.2 eV
and 38.4 eV equivalent to W 4f7/2 and W 4f5/2, respectively, for the +6 oxidation state of
tungsten, and other pairs of doublets comprised of W 4f7/2 and W 4f5/2 centered at 32.4 eV
and 36.5 eV are comparable to the +5 oxidation state of tungsten [27]. The peak positioned
at 30.6 eV was assigned to the metallic tungsten [28]. If oxygen vacancy is present, electron
density near neighboring W atoms intensifies, causing higher screening of its nucleus and
consequently, the 4f energy level is predicted to be at lower Eb [23,27]. In the present studies,
the shoulder associated with the W 4f is generated as a result of electrons emitted from
W atoms near oxygen vacancies, and hence W atom has an oxidation state less than +6,
resulting in the formation of sub-stoichiometric WO3−x.
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The deconvolution of O 1s spectra has produced 3 peaks (O1, O2, and O3) in both
WO3 and 1% Ag–WO3 films (Figure 5c,d) respectively. O1 centered at Eb of 530.8 eV
and 528.7 eV in WO3 and 1% Ag–WO3 respectively, was ascribed to O2− in the lattice.
Similarly, O2 centered at 532.6 eV and 531.2 eV denote the lattice oxygen associated with the
oxygen-deficient regions near W ions, which are generally referred to as oxygen vacancies
(Vo) [29,30]. Area ratio of oxygen vacancies is estimated from peak area calculations as
given below:

%Vo =
O2

(O1 + O2 + O3)
× 100

Vo for WO3 and 1% Ag–WO3 was found 35% and 45%, respectively. Hence, the studies
inferred that oxygen vacancies increased by 10% in 1% Ag–WO3. The least intense peaks
centered at 534.7 eV and 532.8 eV, respectively in WO3 and 1% Ag–WO3, connected to the
adsorbed oxygen species (O−2 , OH−) [30]. Figure 5e represents the characteristic peaks of
Ag at Eb of 368 eV and 374.5 eV contributes to Ag 3d5/2 and Ag 3d3/2, respectively, in 1%
Ag–WO3. These peaks are assigned to the Ag0/Ag1+ states of silver [28,31].
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3.3. Gas Sensing Properties

Operation temperature for WO3 towards NH3 was fixed by purging gas at various
temperatures and calculating subsequent sensor response as presented in Figure 6a,b.
Figure 6a represents the obtained graph for sensor current versus time wherein 5.03 ppm
NH3 is purged at 5 different temperatures: 100 ◦C, 150 ◦C, 175 ◦C 200 ◦C, and 250 ◦C.
An increase in temperature causes an increase in the sensor current, demonstrating the
semiconducting nature of the WO3 films. At 100 ◦C, the graph shows a straight line,
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denoting no response for NH3 due to the low thermal energy of the gas required for the
chemisorption process. Low response was noted at 150 ◦C and 175 ◦C. An increase in the
temperature to 200 ◦C has shown maximum response, and thereafter the response has
decreased as indicated in Figure 6b. With the enhancement in the temperature, WO3 started
to respond, as enough thermal energy is provided for the surface reaction to occur by
overcoming the activation energy barrier [32]. After the maximum response, a reduction in
the sensing performance at 250 ◦C is due to the lower adsorption capability of gas molecules.
In addition, it is observable that baseline stability was lost above 200 ◦C (Figure 6a). Hence,
200 ◦C is considered a suitable operating temperature for all the deposited films, and
further studies were conducted at the same temperature.
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Sensor response, rate of response, and recovery (τres and τrec ) are the essential param-
eters that determine the efficiency of any sensor. Figure 7a–d depicts the transient response
curves of Ag–WO3 films (0%, 1%, 3% and 5% Ag conc.) for different NH3 concentrations.
Figure 7e shows the variation of sensor response with the NH3 concentration. The sensor
response for 5 ppm NH3 was found to be 1.06, 3.29, 0.34, and 0.62 with the standard error
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of ±0.07 for undoped, 1%, 3%, and 5% Ag-doped WO3 films, respectively. The highest
response was recorded for 1% Ag–WO3 with the τres of 5.5 min and τrec of 7.9 min. Dop-
ing of Ag reduced the detection limit from 1 ppm to 0.5 ppm (500 ppb) in 1% Ag–WO3.
‘Ag’, being a noble metal, acts as a catalyst due to chemical sensitization and also causes
electronic sensitization due to the interaction between Ag and WO3, which might have
induced the enhancement in the sensor response of the WO3 film [9]. AFM studies revealed
that 1% Ag–WO3 showed higher surface roughness value (Table 1) compared to other Ag
concentrations. Surface roughness is one of the parameters that can increase the surface to
volume ratio of the films and thereby enhances the gas adsorption capacity [33]. M. Kumar
et al. [34] and J. M. Lee et al. [33] observed similar results for CO and H2-gas sensing,
respectively. Augmentation in the sensing performance of 1% Ag–WO3 could be accredited
to improved oxygen vacancies upon Ag doping, which is confirmed by XPS analysis and
also higher surface roughness and void formation on the film surface is proven by AFM,
providing a greater number of adsorption centers for NH3 [22,35]. Nevertheless, a decrease
in sensor response beyond 1% Ag doping is connected to lower surface roughness of the
films and catalytic efficiency of Ag, indicating that while Ag inclusion improves sensing
performance, increasing the doping concentration above the optimum level may reduce
catalytic efficiency [27]. Also, XPS revealed the possibility of Ag2O formation upon Ag
doping. When Ag concentration exceeds 1%, Ag2O amounts might increase and cause an
increase in the depletion layer width, deteriorating the sensor response of the films.

Selectivity and repeatability are the key factors that decide the performance of the
sensors. Figure 8 represents the bar graph elucidating sensor responses of WO3 and
1% Ag–WO3 films towards various gases. These films are tested at a 5-ppm concentra-
tion towards NH3, CO, CH4, and NO2. Both films showed the highest response to NH3
indicating the selective nature of the deposited films towards ammonia among other
gases. Repeatability measurements of about 5 cycles were performed for both WO3 and
1% Ag–WO3 films, shown in Figure 9a,b. Almost repeatable sensing characteristics were
obtained 5 times for NH3 purge at 5 ppm concentration, implying the stable response of the
films. In comparison, sensing properties of the current work with the previously reported
literature is given in Table 2. The WO3 nanoflakes synthesized via spray pyrolysis detected
the lowest NH3 concentration to be up to 120 ppm at 150 ◦C [36], while the V-WO3 films
synthesized by soft chemical route exhibited a detection limit of 100 ppm towards NH3
at 300 ◦C [37]. The Cr–WO3 nanosheets synthesized by acidification with impregnation
process detected 2 ppm NH3 at 400 ◦C [38], whereas the WO3–Fe2O3 nanocomposites by
hydrothermal synthesis demonstrated NH3 detection of 25 ppm at 300 ◦C [39]. In the
present work, we were able to achieve lowest detection limit of 500 ppb towards NH3 gas,
keeping an operating temperature of 200 ◦C, which is a significant improvement in the
sensing performance compared to the literature presented in Table 2.

The well-known gas detection mechanism of metal oxide gas sensors involves the
resistance variations caused by the chemisorption of gas molecules on the sensor surface.
Depending on the operating temperature, WO3 exposure to the synthetic air produces
molecular/atomic oxygen ions (O−2 , O−, and O2−). Electron transfer from the surface of
the WO3 to the adsorbed oxygen species creates a band bending region called the depletion
layer, resulting in a decrease in the carrier concentration of the film and an increase in
the resistance. Later, when WO3 is subjected to NH3 exposure, the depletion layer width
decreases due to the release of electrons back to the WO3. As Ag–WO3 is exposed to
NH3, the depletion layer further decreases due to the electronic sensitization mechanism
giving rise to an increment in carrier concentration and a reduction in surface resistance.
Figure 10 illustrates the schematic representation of the sensing mechanism. Specific
reactions involved in the process are governed by the equations given below [14,35]:

O2(gas)→ O2(ads) (1)

O2(ads)+e−→ O−2 (2)
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O−2 +e−→ 2O− (3)

4NH3(g) + 5O−2 → 4NO + 6H2O + 5e− (4)

2NH3(g) + 3O− → N2 + 3H2O + 3e− (5)
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Table 2. NH3-sensing properties of the present work and reported in the literature.

Material Method of Deposition Limit of Detection Operating
Temperature (◦C) Reference

Pd–WO3 films Spray pyrolysis 10 ppm 225 [9]
Ag–WO3 nanorods Hydrothermal 50 ppb 450 [12]

WO3 nanoflakes Spray Pyrolysis 120 ppm 150 [36]
V–WO3 films Soft-chemical route 100 ppm 300 [37]

Cu–WO3 films Soft-chemical route 100 ppm 200 [37]

Cr–WO3 nanosheets Acidification with
impregnation 2 ppm 400 [38]

WO3–Fe2O3
nanocomposites Hydrothermal 25 ppm 300 [39]

Ag–WO3 films Spray pyrolysis 500 ppb 200 This work
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4. Conclusions

Spray pyrolyzed Ag–WO3 films were investigated for NH3 sensing at different con-
centrations. XRD spectra depicted the monoclinic phase of deposited films, which was
further verified by Raman analysis. Oxygen vacancies, higher surface roughness, and
void-like structures of 1% Ag–WO3 contributed to enhancement in the sensor response
value. Selectivity studies of WO3 and 1% Ag–WO3 towards NH3, NO2, CH4, and CO
exhibited an excellent response to NH3 compared to other gases. Spray deposited Ag–WO3,
as a unique approach for NH3 sensing, produced a superior response at a low operating
temperature of 200 ◦C with a detection limit in the sub-ppm levels.
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