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Abstract: Detection of human lower body provides an implementation idea for the automatic
tracking and accurate relocation of automatic vehicles. Based on traditional SSD and ResNet, this
paper proposes an improved detection algorithm R-SSD for human lower body detection, which
utilizes ResNet50 instead of VGG16 to improve the feature extraction level of the model. According
to the application of acquisition equipment, the model input resolution is increased to 448 × 448
and the model detection range is expanded. Six feature maps of the updated resolution network are
selected for detection and the lower body image dataset is clustered into five categories for aspect
ratio, which are evenly distributed to each feature detection map. The experimental results show
that the model R-SSD detection accuracy after training reaches 85.1% mAP. Compared with the
original SSD, the detection accuracy is improved by 7% mAP. The detection confidence in practical
application reaches more than 99%, which lays the foundation for subsequent tracking and relocation
for automatic vehicles.

Keywords: object detection; SSD; ResNet

1. Introduction

As an important carrier of logistics and transportation, automatic guided vehicles are
developing rapidly. Various intelligent factories have introduced intelligent transportation
systems to improve production efficiency. However, the application scenarios of the
industrial workshop are more and more complex, so the requirements for the accuracy,
stability and flexibility of AGV are also increasing. With the development of computer
technology and artificial intelligence, vision technology has been paid great attention in
the field of research and production. Effective detection and tracking in the process of
intelligent factories has great application prospects. Due to the low base of the automatic
guided vehicle, the perceptual visual range is mainly concentrated in the area above the
ground. In order to ensure the accuracy of detection, the human lower body is selected
as the object to be detected. Therefore, it is particularly important to propose a detection
method suitable for the human lower body.

In recent years, deep learning, especially convolutional neural networks, has per-
formed very well in the field of object detection. The popular detection methods can be
divided into two categories: a two-stage object detection algorithm and a one-stage object
detection algorithm. The representative of two-stage target detection is Faster R-CNN [1],
and the representatives of one-stage target detection are YOLO [2] and Single Shot Multibox
Detector (SSD) [3]. Among them, SSD shows a good balance between speed and accuracy.
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In the engineering application, Kumar et al. [4] demonstrated an approach to train
CNN based on SSD and MobileNet, which improved detection speed and accuracy. Biswas
et al. [5] implemented SSD to estimate traffic density. Gupta et al. [6] analyzed the two
algorithms YOLOv3 and SSD to count the number of people at any junction. Their results
have shown that SSD is better than YOLOV3 v3. Zimoch et al. [7] proposed a centroid
algorithm combined with the Siamese network based on the pretrained SSD method in
people detection. Their approach involved on-edge image analysis to decrease the risk of
data loss and the system cost. Ahmed et al. [8] proposed an SSD model with Mobilenetv2
as the basic network to detect people. The detection model’s accuracy was enhanced with
a transfer learning approach. To speed up the computational performance of the people
detection technique, Kumar et al. [9] used the SSD algorithm along with the help of the
architecture of a faster region convolutional neural network. Jang et al. [10] proposed
the Face-SSD method using a Fully Convolutional Neural Network (FCNN) to detect
multiple faces of different sizes and recognize one or more face-related classes. Nagrath
et al. [11] proposed the SSDMNV2 approach to detect faces using SSD as a face detector
and MobilenetV2 architecture as a framework for the classifier.

In terms of feature extraction networks, researchers have developed more and more
efficient network structures [12–14], such as VGGNet [15], GoogLeNet [16], ResNet [17] and
so on. SSD adopted the network structure of VGG16, which changed the full connection
layer to the full convolution layer and added several layers for auxiliary feature extraction.
Aiming at a low level of small target detection, Zhai et al. [18] proposed an improved
algorithm based on the DenseNet backbone network and feature fusion, which improved
the performance of the model and had a good detection effect for small objects. Hao
et al. [19] fused a deformable convolution network and SSD, which adapted to the geometric
changes of image content and effectively improved the accuracy of general object detection.

With the design of the network structure becoming more perfect, the effect is getting
better in public datasets, such as Pascal VOC [20] and MS COCO [21]. However, in
engineering applications, an appropriate training model should be selected according to
the needs of the scene. In terms of appearance, the physical model of the human lower
body is relatively simple. In the process of deep-seated network training, it is easy to
appear the phenomenon of model overfitting or model degradation. Therefore, this paper
selects ResNet to improve the ability of feature expression of the model instead of original
network structure VGG. When an object is tracked, the position of the object is relatively
fixed in space. The size and aspect ratio of the object are linearly distributed. Therefore,
based on the aspect ratio of the human lower body, the size of the original prediction
frame of SSD is adjusted to multiple distribution to improve the detection accuracy of
the model. This paper is ordered as follows. The methodologies of SSD and ResNet are
introduced in Section 2. The implementation principle of R-SSD is described in Section 2.2.
Section 3 describes the datasets used for the detection experiment and the experimental
results. Discussions of R-SSD are presented in Section 4. Finally, the conclusion is presented
in Section 5.

2. Materials and Methods

To build a target detection model, it is necessary to design a convolutional neural
network learning framework to train the labeled target sample data after target sample
production and image target detection preprocessing.

2.1. SSD

SSD is a “one-step” feedforward detection framework based on a deep convolutional
neural network. The framework generates a set of predictive regression boxes and the
confidence score set of objects in these boxes, and then obtains the final result through the
non-maximum suppression (NMS) method.

Figure 1 illustrates the SSD architecture. The framework utilizes the standard network
VGG of high-quality image classification as the basic network architecture and modifies
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the last two layers of the full connection layer into the convolution layer. Extra convolution
layers are added for feature extraction with lower resolution. The framework is called a full
convolution network, which can adapt to images of various sizes and is no longer subject
to the size of the input image.
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Figure 1. SSD object recognition algorithm architecture.

The architecture of the VGG network is composed of 5 convolutional layers and 3 fully
connected layers, and the activation units of all hidden layers adopt the ReLU function.
The structure of multiple convolutional layers alternating with nonlinear activation layers
performs better than the structure of a single convolutional layer in extracting deeper
features. The visualization of the VGG architecture is shown in Figure 2.
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Figure 2. The visualization architecture of VGG network 2.2 The residual network of ResNet.

The auxiliary structure is added to the network to generate detection with the following
key features: multi-scale feature map and multi-aspect ratio bounding regression box.
Using VGG as a reference, SSD adopts small convolution filters to predict the class fraction
and position offset of a set of default bounding boxes on the feature map, which does not
need to resample the bounding box features. In order to achieve high detection accuracy,
different scale predictions are produced from different scale feature maps and the prediction
is clearly separated by aspect ratio. The low-level feature maps predict small objects and
the high-level feature maps predict large objects.

In general, each layer of the neural network corresponds to the extraction of feature
information of different levels, including low level, middle level and high level. The deeper
the network is, the more information at different levels will be extracted, and the more
combinations of information at different levels there will be. The VGG network tries to
explore the depth of the deep learning network to continuously improve classification
accuracy. However, when CNN reaches a certain depth, the increasing number of layers
does not bring further improvement in classification performance but leads to slower
network convergence and worse classification accuracy of the test dataset. In view of this,
ResNet is proposed to solve the problem of degradation.



Sensors 2022, 22, 2008 4 of 12

ResNet is a residual network module. The residual structure associates input and
output channels through “shortcut connections.” It can be understood as a sub-network
and can be stacked to form a deep network, which not only ensures that the network
can achieve a deep and complex structure and improve the ability of feature expression,
but also solves the problems of overfitting and degradation that can easily occur in the
network. Assuming that the expected output of the underlying mapping is H(x) and that
residual feature mapping is F(x) = H(x)− x, it is easier to optimize the residual to 0 than
to optimize the original underlying mapping. Figure 3 shows the residual network.
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2.2. Improved SSD with ResNet (R-SSD)

The network structure of improved SSD with ResNet (R-SSD) can be divided into
three parts: the backbone network ResNet for feature extraction, the extra network for
extracting deeper features and the prediction network for object detection on a multi-scale
feature map, including category prediction and position regression. The structure of the
whole model is shown in Figure 4.
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network is used to detect objects on a multi-scale feature map, including category prediction and
position regression.

2.2.1. Model Input Resolution

The image input resolution of the model is 448× 448 in order to adapt to the resolution
of the image acquisition camera, and different size feature maps are obtained through a
classification network. Compared with the original 300 × 300, the feature of the object can
be extracted better from a larger image range.
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2.2.2. Feature Extraction Layer

Because it is easy to change dimensions, design network flexibility, and reduce the
amount of computing, we choose the convolution layer modules (called “Bottleneck”) in
ResNet50 to replace the VGG16 network of the original SSD. In order to ensure the accuracy
of detection, all the feature maps in R-SSD are processed by Batch Normalization and
nonlinear activation function ReLU to improve the feature expression ability of network
structure and to avoid the overfitting phenomenon. To better preserve the expression ability
of features, the convolution kernel with a step size of 2 is used to replace the pooling layer
used for feature compression in the original SSD. Figure 5 shows the network structure of
the feature extraction.
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In Figure 5, the left part shows two parts of the feature extraction network: backbone
network and extra network. Taking Bottleneck2 as an example, the right part shows the
specific internal structure of each residual block. A “short connection” is realized through a
1 × 1 convolution kernel performing feature channel fusion between each block.

2.2.3. Multi-Scale Object Detection

In the original SSD, Conv4_3, Conv7 of VGG16, and added Conv8_2, Conv9_2,
Conv10_2 and Conv11_2 layers are selected for object classification and position regression.
We constructed a multi-scale feature extraction layer based on SSD. Due to the difference
in input size, the size of the feature extraction layer changes according to the structure
of the human lower body and the general position occupied in the image. Bottleneck3_4,
Bottleneck4_6, Bottleneck5_3 and added Bottleneck6, Conv7 and Conv8 layers are utilized
as object detection layers. The size of the feature layer group is composed of six scales:
56 × 56, 28 × 28, 14 × 14, 7 × 7, 4 × 4, 1 × 1. The number of default boxes in each layer
of the feature layer group is distributed according to {5, 5, 5, 5, 5, 5} (see D. Box Clusters)
and the total number is 20910, which is far more than that of the original SSD. The specific
parameters of the multiscale detection network are shown in Table 1. For the Bottleneck3_4
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feature map of R-SSD, since the network layer is in the front and the variance is relatively
large, L2 normalization technology is adopted to adjust the feature norm of all outputs
to 20.

Table 1. Object multiscale detection network parameters.

Feature Layer Group Feature Map Size
Default Boxes

Distribution Number

Bottleneck3_4 56 × 56 5 15,680
Bottleneck4_6 28 × 28 5 3920
Bottleneck5_3 14 × 14 5 980

Bottleneck6 7 × 7 5 245
Conv7 4 × 4 5 80
Conv9 1 × 1 5 5

2.2.4. Bounding Box Clusters

The object position in this study is relatively fixed and the degree of change is relatively
small. In order to detect the object location more accurately, we use the dimension clusters
in YOLO9000 [22] for reference and cluster the size of the bounding box in the training
dataset. The clustering criteria are as follows:

d(box, centriod) = 1− IOU(box, centriod) (1)

According to the above criteria, the bounding boxes of the sample data are divided
into five categories, which replace the original manual default boxes in the six feature maps.
The relative size is shown in Table 2 and the size of the unified dimension is shown in
Figure 6. On the premise of ensuring the number of default boxes, we can improve the
speed and accuracy of the detection process. The default boxes after clustering are longer
and narrower than the original manual calculation, which conforms to the contour of the
human lower body.
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Figure 6. (a) The relationship between the number of clusters and the average IOU; (b) Dataset
clustering bounding boxes.
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Table 2. Relative size of feature detect maps.

Number Relative Size Aspect Ratio

1 (0.134, 0.317) 0.42
2 (0.082, 0.183) 0.45
3 (0.395, 0.861) 0.46
4 (0.243, 0.406) 0. 6
5 (0.416, 0.416) 1.0

The R-SSD algorithm comprehensively considers the loss of location and confidence,
which follows the original SSD loss calculation criteria. Based on this, the performance of
the algorithm is evaluated. The loss function is calculated as follows:

L(x, c, l, g) =
1
N

(
Lcon f (x, c) + αLloc(x, l, g)

)
(2)

where N is the number of default boxes with successful detection. If N = 0, the sum of
losses is zero. When the cross-entropy loss is used for evaluation, the weight coefficient α is
set to 1.

The location loss is a Smooth L1 loss [23] to measure the error between the predicted
box (l) and the ground truth box (g) parameters. The bias of the center point of the box (cx,
cy) and the width (w) and height (h) of the pre-selected box are predicted by regression
according to the gradient descent direction of the loss.

Lloc(x, l, g) =
N

∑
i∈Pos

∑
m∈{cx,cy,w,h}

xk
ijsmoothL1

(
lm
i − ĝm

j

)
(3)

ĝcx
j =

(
gcx

j − dcx
i

)
dw

i

ĝcy
j =

(
gcy

j − dcy
i

)
dh

i

ĝw
j = log

(
gw

j

dw
i

)

ĝh
j = log

(
gh

j

dh
i

)
(4)

where xk
ij ∈ {0, 1}, it indicates whether the i-th predicted box matches the j-th ground truth

box. If the value is 1, the matching correct category is k.

smoothL1(x) =
{

0.5x2, |x| < 1
|x| − 0.5, otherwise

(5)

The confidence loss is a softmax loss based on multi-classification probability.

Lcon f (x, c) = −
N

∑
i∈Pos

xp
ijlog

(
ĉp

i

)
− ∑

i∈Neg
log
(

ĉ0
i

)
(6)

where

ĉp
i =

exp
(

ĉp
i

)
∑p exp

(
ĉp

i

) (7)
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Implementation of SSD and R-SSD: For an object detection algorithm, creating training
datasets is a meticulous process. We marked 1367 objects over 1132 images. All label
images create an XML file that contains detailed information about the label object (location,
height and width). Before the label dataset is submitted to SSD, a mapping of the dataset
location is created. The batch size we used is 32. The base network layers are initialized
with the parameters trained on VOC2007, and the extra convolution layers are initialized
with the “kaiming” method [24]. Most of our training strategies follow SSD, including loss
function, data augmentation and so on. The latest SSD result, including a random data
augmentation strategy, has proved to be very useful in detecting small objects and this
strategy is also used in the R-SSD framework. The hard negative mining technique of SSD
adopted to make the proportion of positive and negative samples is at most 3:1, which
makes the optimization faster and training more stable. During the training process, we set
the learning rate to 0.0005. After that, the learning rate will gradually decrease according to
the number of iterations to obtain more accurate training results. At the end of the training
process, a pth file is created for object detection.

2.2.5. Dataset

A dataset is an important part of CNN research, especially in the training and vali-
dation phase. The quality of the data affects the research effect. The data are collected by
Daheng image industrial camera in our work. The pixel size is 640 × 480 pixels, which
comes from the factory workshop, laboratory environment and part of the network. The
annotation of the image objects is done using the open-source software “LabelImg” [25].
The label process is presented in Figure 7.
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Figure 7. Labeled lower bodies shown in software ‘LabelImg’.

In our work, the lower body is labeled as a unified label to obtain more accurate
multi-directional feature information because the view of tracking is mainly the back of
the human body and the front and back features are highly similar. Given the factory
application scenario, training people have distinctive leg shapes, such as overalls and
jeans, excluding data with obvious occlusion, such as skirts. Training images with a single
background and complete object are added to enhance the training of image data with
partial occlusion. Training models (pth) are created simultaneously, as one of the purposes
of this study is to understand the influence of background complexity on training accuracy.
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Table 3 describes the number of complex images and simple images that are tagged to
create the same training dataset.

Table 3. Number of labeled images for training.

Number of Images
Number of Lower

Body with Complex
Images

Number of Lower
Body with Simple

Images

Total Number of
Lower Body

1132 1367 213 1580

3. Results

SSD and R-SSD are tested on 268 sample images and the accuracy of the algorithm
is evaluated by training loss and recognition accuracy. Using NVIDIA GTX 2080Ti GPU
to train 200 epochs, the average time of each epoch is about 15 s and the average training
time of the system is 50 min. In the process of training, we train and verify at the same time
and observe the visualization process of network model changes so as to make the network
super parameters better. The loss changes in the training process are shown in Figure 8.
Each epoch will create a model and the best one is the model corresponding to the epoch
with the lowest loss in the verification phase. The accuracy of the following experimental
results comes from the best model, as shown in Table 4.
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Figure 8. Training process loss curve of SSD based on 300 × 300 pixels and R-SSD based on
448 × 448 pixels. The red line represents the loss of the training process, and the black line represents
the loss of the validation process. Because the training data structure is relatively simple and the
validation loss is the result of training after an epoch, the validation loss is slightly lower than the
training loss in the initial stage. (a) SSD training process loss; (b) R-SSD training process loss.

Table 4. Detection accuracy assessment for SSD and R-SSD on test set.

Method Input Data Pre-Train BN Clusters mAP

SSD 300 Complex
√

× × 78.1%
R-SSD 300 Complex

√ √
× 80.7%

R-SSD 448 Complex
√ √

× 83.0%
R-SSD 448 Complex + Simple

√ √
× 84.5%

R-SSD 448 Complex + Simple
√ √ √

85.1%

3.1. Training Model

First, we compare the influence of different backbone models on the recognition
accuracy of the human lower body. As can be seen from the first and second rows of Table 4,
compared with the original SSD (78.1% mAP), SSD based on ResNet (80.7% mAP) has an
accuracy improvement of 2.6%.
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3.2. Input Size

Analyzing rows 2 and 3 in Table 4, when the training input size is 300, the detection
accuracy of the model is 80.7% mAP. While the training input size is 448, the detection
accuracy of the model is improved to 83.0% mAP. This means that the larger the input size,
the better the detection results will be. However, in order to avoid increasing the detection
time due to the large input size, we set 448 × 448 as the final model input size combined
with the use of the camera resolution.

3.3. Data Expansion

Compared with rows 3 and 4 in Table 4, the detection effect is improved significantly
with an improvement rate of 1.5% (83.30% mAP vs. 84.5% mAP) after adding training
data with a simple background and obvious object characteristics. This shows that the
enhancement of the object data sample has an obvious effect and can reduce the information
loss of the original input image.

3.4. Bounding Box Clustering

From the last two rows of Table 4, it can be seen that the detection accuracy after using
bounding box clustering (85.1% mAP) is slightly improved compared with that without
bounding box clustering (84.5% mAP). This shows that the method is effective and feasible
and the effect will be more significant under the condition of sufficient data.

3.5. Visualization

Figure 9 shows the recognition results of the object in different environments. Under
the four conditions of illumination, object scale change and occlusion, the lower body can
be accurately recognized and detected. The recognition confidence is 99%, 99%, 83%, and
93%, respectively and the average recognition confidence is 93.5%. When the object is far
or the object is blocked by obstacles, the detection accuracy will be lower if the camera feels
less objects in its’ field of vision. When the object is close, the camera feels more objects in
its’ field of vision, and the detection accuracy will be higher.
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illumination; (c) Object scale change; (d) Object occlusion.
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4. Discussion

Based on traditional SSD and ResNet, this paper proposes an improved detection
algorithm R-SSD for human lower body detection, which utilizes ResNet50 instead of
VGG16 to improve the feature extraction level of the model. Through Figure 8, the original
SSD has a small degradation phenomenon in the late training period, which may be caused
by the lack of training data complexity. The SSD based on ResNet avoids this situation.
This proves the effectiveness of our method in replacing the backbone network framework
(from VGG to ResNet). The experimental results show that the model R-SSD detection
accuracy after training reaches 85.1% mAP. Compared with the original SSD, the detection
accuracy is improved by 7% mAP. The detection confidence in practical application reaches
more than 99% with the enhancement of the object data sample; the proposed method has
an obvious effect. Through many experiments, as long as the target object is clearly visible,
the improved algorithm can maintain good effectiveness and applicability in industrial or
other complex environments.

5. Conclusions

This study provides a new and feasible idea to achieve automatic tracking and the
method is improved positioning accuracy. This study presents an improved object detection
algorithm called R-SSD, which is based on SSD, ResNet, high input resolution and multi-
scale feature maps. Compared with the original SSD, the recognition accuracy of R-SSD
is improved by 7% mAP for the lower body of humans in AGV. In terms of training data,
the strategy of strengthening the object data makes the detection accuracy significantly
improved. However, in the next work, we will train the public dataset using our method.
For different scenarios, the corresponding data filling can achieve stable and reliable
practical application.

Author Contributions: Conceptualization, J.Z. and X.G.; methodology, X.G.; software, J.X.; validation,
J.X., J.Z. and X.G.; formal analysis, C.L.; investigation, C.L.; resources, J.Z.; data curation, J.X.; writing—
original draft preparation, X.G.; writing—review and editing, P.H.; visualization, P.H., supervision,
J.D.; project administration, J.D.; funding acquisition, J.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by the National Key R&D Program of China: 2019YFC1711200;
the Shandong Key Laboratory of Computer Networks open project, grant number SKLCN-2020-08;
the Key R&D project of Shandong Province of China: 2020CXGC011001; the Key R&D project of
Shandong Province of China: 2019JZZY020113.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Conflicts of Interest: Authors declare no conflict of interest exists in the submission of this manuscript,
and the manuscript is approved by all authors for publication. The work described was original
research that has not been published previously and is not under consideration for publication
elsewhere, in whole or in part.

References
1. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]
2. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2016,

arXiv:1506.02640.
3. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of

the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M.,
Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37.

4. Sanjay Kumar, K.K.R.; Subramani, G.; Thangavel, S.K.; Parameswaran, L. A Mobile-Based Framework for Detecting Objects
Using SSD-MobileNet in Indoor Environment. In Intelligence in Big Data Technologies—Beyond the Hype; Peter, J.D., Fernandes, S.L.,
Alavi, A.H., Eds.; Springer: Singapore, 2021; pp. 65–76, ISBN 9789811552854.

http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650


Sensors 2022, 22, 2008 12 of 12

5. Biswas, D.; Su, H.; Wang, C.; Stevanovic, A.; Wang, W. An Automatic Traffic Density Estimation Using Single Shot Detection
(SSD) and MobileNet-SSD. Phys. Chem. Earth Parts A/B/C 2019, 110, 176–184. [CrossRef]

6. Gupta, P.; Sharma, V.; Varma, S. People Detection and Counting Using YOLOv3 and SSD Models. Mater. Today Proc. 2021.
[CrossRef]

7. Zimoch, M.; Markowska-Kaczmar, U. Human Flow Recognition Using Deep Networks and Vision Methods. Eng. Appl. Artif.
Intell. 2021, 104, 104346. [CrossRef]

8. Ahmed, I.; Ahmad, M.; Ahmad, A.; Jeon, G. IoT-Based Crowd Monitoring System: Using SSD with Transfer Learning. Comput.
Electr. Eng. 2021, 93, 107226. [CrossRef]

9. Kumar, A.; Srivastava, S. Object Detection System Based on Convolution Neural Networks Using Single Shot Multi-Box Detector.
Procedia Comput. Sci. 2020, 171, 2610–2617. [CrossRef]

10. Jang, Y.; Gunes, H.; Patras, I. Registration-Free Face-SSD: Single Shot Analysis of Smiles, Facial Attributes, and Affect in the Wild.
Comput. Vis. Image Underst. 2019, 182, 17–29. [CrossRef]

11. Nagrath, P.; Jain, R.; Madan, A.; Arora, R.; Kataria, P.; Hemanth, J. SSDMNV2: A Real Time DNN-Based Face Mask Detection
System Using Single Shot Multibox Detector and MobileNetV2. Sustain. Cities Soc. 2021, 66, 102692. [CrossRef] [PubMed]

12. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of
the Advances in Neural Information Processing Systems, Lake Tahoe, NE, USA, 3–6 December 2012; Curran Associates, Inc.: Red
Hook, NY, USA, 2012; Volume 25.

13. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Proceedings of the Computer Vision—ECCV
2014, Zurich, Switzerland, 6–12 September 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International
Publishing: Cham, Switzerland, 2014; pp. 818–833.

14. Biswas, D.; Su, H.; Wang, C.; Blankenship, J.; Stevanovic, A. An Automatic Car Counting System Using Over Feat Framework.
Sensors 2017, 17, 1535. [CrossRef] [PubMed]

15. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
16. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with

Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9. [CrossRef]

17. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

18. Zhai, S.; Shang, D.; Wang, S.; Dong, S. DF-SSD: An Improved SSD Object Detection Algorithm Based on DenseNet and Feature
Fusion. IEEE Access 2020, 8, 24344–24357. [CrossRef]

19. Hao, G.; Yingkun, Y.; Yi, Q. General Target Detection Method Based on Improved SSD. In Proceedings of the 2019 IEEE 8th Joint
International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 24–26 May 2019; pp.
1787–1791.

20. Everingham, M.; van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

21. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in
Context. In Proceedings of the Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; Fleet, D., Pajdla, T.,
Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 740–755.

22. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. arXiv 2017, arXiv:1612.08242.
23. Girshick, R. Fast R-CNN. arXiv 2015, arXiv:1504.08083.
24. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. arXiv 2017, arXiv:1703.06870.
25. GitHub—Tzutalin/LabelImg: LabelImg Is a Graphical Image Annotation Tool and Label Object Bounding Boxes in Images.

Available online: https://github.com/tzutalin/labelImg (accessed on 15 February 2022).

http://doi.org/10.1016/j.pce.2018.12.001
http://doi.org/10.1016/j.matpr.2020.11.562
http://doi.org/10.1016/j.engappai.2021.104346
http://doi.org/10.1016/j.compeleceng.2021.107226
http://doi.org/10.1016/j.procs.2020.04.283
http://doi.org/10.1016/j.cviu.2019.01.006
http://doi.org/10.1016/j.scs.2020.102692
http://www.ncbi.nlm.nih.gov/pubmed/33425664
http://doi.org/10.3390/s17071535
http://www.ncbi.nlm.nih.gov/pubmed/28665360
http://doi.org/10.1109/CVPR.2015.7298594
http://doi.org/10.1109/ACCESS.2020.2971026
http://doi.org/10.1007/s11263-009-0275-4
https://github.com/tzutalin/labelImg

	Introduction 
	Materials and Methods 
	SSD 
	Improved SSD with ResNet (R-SSD) 
	Model Input Resolution 
	Feature Extraction Layer 
	Multi-Scale Object Detection 
	Bounding Box Clusters 
	Dataset 


	Results 
	Training Model 
	Input Size 
	Data Expansion 
	Bounding Box Clustering 
	Visualization 

	Discussion 
	Conclusions 
	References

