
����������
�������

Citation: Saradopoulos, I.; Potamitis,

I.; Ntalampiras, S.; Konstantaras, A.I.;

Antonidakis, E.N. Edge Computing

for Vision-Based, Urban-Insects Traps

in the Context of Smart Cities. Sensors

2022, 22, 2006. https://doi.org/

10.3390/s22052006

Academic Editors: Antonio Guerrieri,

Liang-Hung Wang, Ying-Ren Chien,

Mu Zhou and Xun Zhang

Received: 19 January 2022

Accepted: 1 March 2022

Published: 4 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Edge Computing for Vision-Based, Urban-Insects Traps in the
Context of Smart Cities
Ioannis Saradopoulos 1, Ilyas Potamitis 2,*, Stavros Ntalampiras 3 , Antonios I. Konstantaras 1

and Emmanuel N. Antonidakis 1

1 Department of Electronic Engineering, Hellenic Mediterranean University, 73133 Chania, Greece;
ddk86@edu.hmu.gr (I.S.); akonstantaras@hmu.gr (A.I.K.); antonidakis@hmu.gr (E.N.A.)

2 Department of Music Technology and Acoustics, Hellenic Mediterranean University, 74100 Rethymno, Greece
3 Department of Computer Science, University of Milan, 20133 Milan, Italy; stavros.ntalampiras@unimi.it
* Correspondence: potamitis@hmu.gr

Abstract: Our aim is to promote the widespread use of electronic insect traps that report captured
pests to a human-controlled agency. This work reports on edge-computing as applied to camera-
based insect traps. We present a low-cost device with high power autonomy and an adequate
picture quality that reports an internal image of the trap to a server and counts the insects it contains
based on quantized and embedded deep-learning models. The paper compares different aspects
of performance of three different edge devices, namely ESP32, Raspberry Pi Model 4 (RPi), and
Google Coral, running a deep learning framework (TensorFlow Lite). All edge devices were able
to process images and report accuracy in counting exceeding 95%, but at different rates and power
consumption. Our findings suggest that ESP32 appears to be the best choice in the context of this
application according to our policy for low-cost devices.

Keywords: e-traps; pest detection; image sensors; edge computing

1. Introduction

Smart cities rely on a range of technologies—including artificial intelligence (AI), the
internet of things (IoT), and wireless connectivity solutions to provide social services that
promote quality of life and sustainability to their citizens. Sensor technology and AI prac-
tices that process these sensors can leverage detection and density estimation of creatures
that have attained the pest status in daily practice. This includes rodents spreading through
a network of buildings, stinging insects that carry vector-borne diseases (mosquitoes, biting
midges), wood-boring insects that can inflict structural damage to wood (termites, wood-
boring beetles in urban greenery), sanitary problems in hospitals, schools, metro lines
(cockroaches), domestic health threats (bed bugs), or simple annoyance only by the insect
presence (ants in houses, clothes moths, spiders, millipedes, centipedes). Pest management
and control strategies are based on early detection and pest identification before planning
the treatment strategy that includes the application of chemical and nonchemical control
treatments. Early pest detection is crucial for effective and affordable control in urban
environments, but manual assessment of traps cannot expand in vast spatial and time
scales because of cost and manpower constraints.

In recent years, we are witnessing an upsurge of interest in technologically advanced
devices as applied to automatic insect detection, counting, and identification [1]. There are
mainly three major approaches: (a) optical counters attached to the entrance of traps that
target specific pests using lures (pheromones in the case of lepidoptera [2] and palm pests,
soil arthropods [3,4] or scents and CO2 in the case of mosquitoes [5]), (b) camera-based
traps that take a picture of their internal space [6–14], and (c) near infrared sensors [15]
and lidars that emit light covering a volume of space of the open field and registering the
backscattered wingbeat signal of flying insects [16–18]. All approaches have advantages

Sensors 2022, 22, 2006. https://doi.org/10.3390/s22052006 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22052006
https://doi.org/10.3390/s22052006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3482-9215
https://orcid.org/0000-0002-1052-1948
https://doi.org/10.3390/s22052006
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22052006?type=check_update&version=1

Sensors 2022, 22, 2006 2 of 12

and disadvantages depending on the application scenario. In short, optical counters are
low-cost, low-power, and count insects upon their entrance into the trap. Therefore, they
can count a large number of insects per day as in the case of mosquitoes and lepidoptera
(e.g., Tuta absoluta, Helicoverpa armigera). They do not face luminosity variations or miss
overlapping insects (as is the case with camera-traps) or encounter unknown insect fauna
(as is the case with lidars). Their disadvantage is that they only sample a targeted subset of
insect fauna at specific locations, and one may need a dense network to face the volatility of
insect densities. Moreover, the counting modality does not offer the amount of information
a picture can provide or the enormous numbers of insects a lidar-based technology can
register. If the targeted pest is a single species, then we face a binary problem, and a smart
trap may be the best option compared to a costly lidar. If the task involves the continuous
and unobtrusive biomonitoring of insect abundance, biomass, and diversity over a field,
then lidars have the advantage.

Optical counters rely on the specificity of lures to attribute class to captured insects,
whereas camera-based approaches rely on the classification of the contents of the captured
image. This work adopts the third approach as it is best suited for crawling/walking
Arthropoda encountered in urban environments. There is a large corpus of previous
approaches on cameras embedded in insect traps (see [6–14] and the references therein).
Their role is to either report a picture to a server and let a human observer discern the
number and the species of the captured insects [14], or proceed into processing the captured
image to detect [10,12] and automatically count and/or identify insects [7–11,13,19]. In the
former case, the gain is the reduction of cost and manpower required to visit the network
of traps and deliver the photos. However, in the case of dense networks that upload many
images, the manual inspection on the server side can become impractical. In the latter case,
the image can be processed automatically, relieving the burden of manual identification,
but the classification results can be inferior to those detected by a human eye or the manual
counting of insects in situ.

An insect in the context of image processing can be seen as a deformable template
that can be found oriented at any angle in the trap. We are in line with [1] that this kind of
problem is best tackled by deep learning (DL) architectures [19–21] that have a modular
layer composition where the layers close to the input learn to extract low-level features
(e.g., starting from the edges of insect legs/antennas and proceeding to the main body
curves) and subsequent layers rely on the previous one(s) to synthesize patterns of higher
abstraction and textures (as the texture of wings and body) and ending in insect species [21].
DL [22,23] can be applied either at the server level or at the device (edge computing). If one
chooses to upload pictures on the server, one can apply more sophisticated classification
models at the endpoint as there are no restrictions on power and hardware, but this makes
intense use of costly communication bandwidth and power. If one processes the images on
the device, then one can only report results and environmental parameters to the server and
reduce significantly the transferred data load because transmission of images dominates
the overall energy consumption. In this work, we upload both the picture and the counting
results for demonstration and verification, but in operational mode only the counting
results and the environmental variables will be transmitted. A lower communication
bandwidth requirement allows the use of a long-range, low-power, wide-area network
modulation technique (LoRa) that can enlarge the battery life tenfold. We have the vision to
establish remote automated monitoring of all insects of economic and hygienic importance
at large spatial scales using different modalities according to the application (i.e., optical
counters [2,5], camera-based devices [10], spectral [24] and multi-spectral sensors [25]). To
achieve this, one needs to prioritize its goals and this prioritization inflicts constraints on the
design and accuracy of the system. Our priority is set to present a practical and affordable
solution so that it is adopted by the community. Low cost is the first and ultimate policy to
meet widespread acceptability. The second priority is power sufficiency and robustness.
The devices are spread at large scales and located in cryptic places, usually partially
protected against weather conditions. The manual visits to the traps must be therefore

Sensors 2022, 22, 2006 3 of 12

sparse and must exceed by a large extent the effective time of replacing a pheromone or
a food bait. The third priority is the accuracy of the data reporting procedure and the
automatic counting.

This work differs from [10] in that it uses an embedded DL algorithm that counts
insects and makes the whole setup more practical by removing the laser beam and intro-
ducing DL-based insect counting to identify the entrance of an insect. The novelties of
this work with respect to the reported literature are the following: (a) in order to meet the
low-cost and low-power requirement we use a microcontroller implementation (ESP32)
and we compare it to other low-cost boards, namely RPi4 and Google Coral; the use of
a microcontroller with a small amount of memory introduces technical challenges in the
design (quantization of deep learning weights, search for optimal structure of the embed-
ded graph) and is programmed in TensorFlow-light; and (b) we include a generic insect
counter based on a camera; the counter does not identify the species of insects but only
reports their number (i.e., a regression task), and is used as a triggering process to upload a
new image and to alert the monitoring procedure in case the inferred number of captured
insects surpasses a threshold. The literature on counting insects based on the image is
sparse as the main research trend is on localizing and identifying insects.

We believe that if we bring global access to more versatile and more affordable mon-
itoring tools for insects, we will encourage local stakeholders and citizens to engage in
the effort of mapping urban insect fauna in their corresponding regions. To this end, we
provide at an open source, https://github.com/Gsarant/Edge-computing (accessed date
19 January 2022), the software and models of all electronic components and all necessary de-
tails so that they can be freely copied, modified at will, and hopefully massively deployed.
Our approach follows the line of thought of [26], where the AudioMoth has brought down
tenfold the cost of audio recorders for biodiversity assessment of vocalizing animals and
allowed the widespread use of affordable audio monitoring tools, to improve coverage for
conservation researchers and managers.

2. Materials and Methods

In this section we start with the basic principles of edge devices with wireless com-
munication functionality and a camera. There are many hardware choices we can take
to face the task but in order to meet the low-cost, high power-sufficiency we need to go
down to the level of microcontrollers such as the ESP32. The use of a microcontroller with
a small amount of memory and the need for power sufficiency restrains us from importing
sophisticated but large libraries of object detection models with large weights that require
substantial computational resources [27–29]. In Appendix A we compare ESP32 with
other more advanced hardware platforms running the same software and list the technical
capabilities and their corresponding costs.

2.1. The Edge Devices

In Figure 1, we present the boards we have tested and compared on the same tasks.
Each edge device is equipped with a camera and WiFi communication. All devices run
Tensor Flow light. In each memory we embed the same DL model that we have trained
off-line after quantization. The size after quantization is 1/10 of the original (see Section 3).
Camera quality is a significant factor for camera-based traps. However, in our case, the task
is to count the insects and upload a reference image. This is a lighter task than performing
species identification or object localization that rely heavily on the quality of the image
and allows us to pick more cost-effective solution to suppress the cost. In Appendix A we
report the technical details and indicative costs of the cameras we tried.

https://github.com/Gsarant/Edge-computing

Sensors 2022, 22, 2006 4 of 12Sensors 2022, 22, x FOR PEER REVIEW 4 of 13

(a) (b) (c)

Figure 1. (a) The ESP32-CAM-based device, (b) the Coral-based device, and (c) the Raspberry Pi4 de-
vice.

2.2. The Images
In Figure 2a, we present a small sample of the insects used to compose the training

set. We do not claim that all these species can be found in urban environments or in this
specific trap setup. In fact, we want to build a generic insect counter that is indifferent to
the insect species. We need to avoid targeting a specific species if we want to make a de-
vice that would count insects in different parts of the globe. Therefore, what we are inter-
ested in is to have the maximum diversity of body forms and wing shapes at random
poses. In sticky traps like the one used in this work, we do not face the same extent of
insect overlap as in traps in agricultural tasks where insects are typically queued in fun-
nels and fall possibly one on top of the other (see Figure 2b). Therefore, our policy for
creating the database is to have a variety of insects with very different shapes and forms
and to compose many images containing a random number of insects.

(a) (b) (c)

Figure 2. (a) A subsample of insects used to make the reference database. (b) A typical photo from
a funnel trap in the field. (c) A photo from the internal space of the suggested device (ESP32-CAM).

Figure 1. (a) The ESP32-CAM-based device, (b) the Coral-based device, and (c) the Raspberry
Pi4 device.

2.2. The Images

In Figure 2a, we present a small sample of the insects used to compose the training set.
We do not claim that all these species can be found in urban environments or in this specific
trap setup. In fact, we want to build a generic insect counter that is indifferent to the insect
species. We need to avoid targeting a specific species if we want to make a device that
would count insects in different parts of the globe. Therefore, what we are interested in is
to have the maximum diversity of body forms and wing shapes at random poses. In sticky
traps like the one used in this work, we do not face the same extent of insect overlap as in
traps in agricultural tasks where insects are typically queued in funnels and fall possibly
one on top of the other (see Figure 2b). Therefore, our policy for creating the database is
to have a variety of insects with very different shapes and forms and to compose many
images containing a random number of insects.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 13

(a) (b) (c)

Figure 1. (a) The ESP32-CAM-based device, (b) the Coral-based device, and (c) the Raspberry Pi4 de-
vice.

2.2. The Images
In Figure 2a, we present a small sample of the insects used to compose the training

set. We do not claim that all these species can be found in urban environments or in this
specific trap setup. In fact, we want to build a generic insect counter that is indifferent to
the insect species. We need to avoid targeting a specific species if we want to make a de-
vice that would count insects in different parts of the globe. Therefore, what we are inter-
ested in is to have the maximum diversity of body forms and wing shapes at random
poses. In sticky traps like the one used in this work, we do not face the same extent of
insect overlap as in traps in agricultural tasks where insects are typically queued in fun-
nels and fall possibly one on top of the other (see Figure 2b). Therefore, our policy for
creating the database is to have a variety of insects with very different shapes and forms
and to compose many images containing a random number of insects.

(a) (b) (c)

Figure 2. (a) A subsample of insects used to make the reference database. (b) A typical photo from
a funnel trap in the field. (c) A photo from the internal space of the suggested device (ESP32-CAM).
Figure 2. (a) A subsample of insects used to make the reference database. (b) A typical photo from a
funnel trap in the field. (c) A photo from the internal space of the suggested device (ESP32-CAM).

Sensors 2022, 22, 2006 5 of 12

The synthesis of pictures with a varying number of insects is also allowing us to have
the ground truth of the insects that are depicted in a picture and, therefore, to bypass the
very difficult task of manually tagging thousands of insect photos. Figure 2c is an example
of a picture taken from the trap in operational conditions.

3. Results
3.1. Building the Reference Database

The main difficulty of DL applications is not in selecting the model architecture with
the right complexity and versatility but gathering the quality and quantity of data needed
to train the models. This applies in the case of insects in particular, as they are cryptic
creatures and the largest and most diverse group of animals on Earth [30]. The fact that
insect biodiversity varies considerably around the globe makes the construction of a generic
insect counter harder. Open-source image databases are rare [31] and may refer to a specific
targeted insect. Images of insects found on the internet or in online biodiversity databases
are not suitable for training devices operating in the field, as they are of high-quality and
close-focus, which does not match the pictures taken from the internal space of operational
traps in the field (the so-called ‘training-test mismatch’). As shown in Figure 2b, images
from traps contain insects at various orientations and degradation level in the presence of
debris and varying illumination levels and shadows. In this work we face this challenge by
evading the direct collection and tagging of specific species. Our data come from insect
collection of students in a department of entomology. One of their graduation duties is to
capture, dry, and classify a number of insects found in the field. We extracted 100 different
insects from various collections (one insect per species), and we placed them inside the
trap randomly and photographed them. We extracted the image from its background and
programmed an algorithm that combines them at random numbers. The combined image is
superimposed to a background image picked randomly and since the combination number
is controlled by the algorithm, the true label corresponding to the true insect counts is
known for each composed image and is stored in its filename. The combination is done in
a way that avoids significant overlap among pictures. In operational conditions we use
sticky traps and, therefore, the probability of significant insect overlap is reduced.

We first place each of the 100 insects inside the trap and we take a photograph of each
one alone. 70 of them are retained for the training set and 30 for the test set.

All images for the validation experiments have been created by following an automatic
procedure:

1. We take a random image from the folder of backgrounds (null_image.jpg). This folder
contains images of backgrounds that differ slightly.

2. We select at random a number between 0–6 and images from the ‘insect for the training
set’ folder that matches this random number.

3. Each image is rotated randomly between 0–360 degrees and placed in the background
without overlap thus forming a single image. We store the composed image and the
reference label (ground truth) of the total number of insects as well.

We repeat steps 1–3 until we create 14,000 images for the training set and 1400 for the
test set. For the test set, in step 2 we select randomly from the ‘insects for the test set’ folder
as we need to secure that no insect used in the training set is also used in the test set.

We used an 8 CPU, 30 GB RAM, 1 RTX4000 GPU server and the training time was
approximately 1 h for training the model in Figure 3 using the database in Table 1. The
training procedure evolved smoothly and ran for 240 epochs. It was regulated by the
validation set that stopped training at a 0.956 accuracy. The batch size was 32 images. The
image size was 240 × 240 pixels grayscale. We picked a mean square error (MSE) training
loss as this is a regression task. We tried mean absolute error as a loss function as well, but
we did not observe a noticeable difference worth mentioning. The optimizer was Adam
with learning rate = 0.001, and weights relaxation (beta_1 = 0.9, beta_2 = 0.999) (see [23]).
During training we followed a standard augmentation policy that consists of random flips

Sensors 2022, 22, 2006 6 of 12

(horizontal and vertical) with probability 0.5, random rotation with probability 0.5 and
random zoom with probability 0.2. The final model is depicted in Figure 3.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 13

random flips (horizontal and vertical) with probability 0.5, random rotation with proba-
bility 0.5 and random zoom with probability 0.2. The final model is depicted in Figure 3.

Figure 3. A customized DL model for counting insects that fits into a microprocessor.

Table 1. The reference database. Numbers 0–6 denote how many insects are in an image.

Images Training (70%) Validation (30%) 0 1 2 3 4 5 6
Train: 14,000 9800 4200 2000 2000 2000 2000 2000 2000 2000

 0 1 2 3 4 5 6
Test: 1400 200 200 200 200 200 200 200

3.2. Verification Experiments
The absolute constraints imposed by the memory of the systems forced us to create

our own model, tailored to the memory size of the smallest device (ESP32), instead of
importing a more sophisticated model (Fast R-CNN [27], Inception v3, Yolov4-tiny, VGG-
19 etc.). Even models such as SqueezeNet and MobileNet that have been developed for
mobile devices [23] and would fit in RPi4 and Coral are too large for the basic ESP32 mi-
crocontroller-based system. However, it is possible to optimize a custom neural network
architecture to fit within the constraints of a microcontroller [27] without sacrificing accu-
racy. Once the model in Figure 3 has been trained offline using TensorFlow, the following
step is to process it TensorFlow-light and then to quantize the weights at 8bit and form a
graph that fits in the memory of the devices. All three hardware platforms report the same

Figure 3. A customized DL model for counting insects that fits into a microprocessor.

Table 1. The reference database. Numbers 0–6 denote how many insects are in an image.

Images Training
(70%)

Validation
(30%) 0 1 2 3 4 5 6

Train: 14,000 9800 4200 2000 2000 2000 2000 2000 2000 2000

0 1 2 3 4 5 6

Test: 1400 200 200 200 200 200 200 200

3.2. Verification Experiments

The absolute constraints imposed by the memory of the systems forced us to create our
own model, tailored to the memory size of the smallest device (ESP32), instead of importing
a more sophisticated model (Fast R-CNN [27], Inception v3, Yolov4-tiny, VGG-19 etc.).
Even models such as SqueezeNet and MobileNet that have been developed for mobile

Sensors 2022, 22, 2006 7 of 12

devices [23] and would fit in RPi4 and Coral are too large for the basic ESP32 microcontroller-
based system. However, it is possible to optimize a custom neural network architecture
to fit within the constraints of a microcontroller [27] without sacrificing accuracy. Once
the model in Figure 3 has been trained offline using TensorFlow, the following step is to
process it TensorFlow-light and then to quantize the weights at 8bit and form a graph that
fits in the memory of the devices. All three hardware platforms report the same accuracy
when running the same model. Therefore, we report a single table on accuracy (see Table 2).
Note in Table 2 that the weights of the online trained model are 5.9 MB and end up ~0.5 MB
after quantization (see also details of the models in Appendix B).

Table 2. Accuracy and model size in MB for various backends.

Software Back-End Model Name Acc. (α = 1 − |Mc −
Ac|/Mc) Model Size (MB)

TensorFlow model_count_final.h5 0.951 5.9
TensorFlow Lite model_count_final.tflite 0.951 2

TensorFlow Lite Quantization model_count_final_quant.tflite 0.950 0.5
TensorFlow Lite Quantization

TPU (Coral) model_count_final_quant_edgetpu.tflite 0.950 0.55

To evaluate the accuracy of the proposed system, we compare the inferred counts of
the DL model with the numbers during the composition of the dataset. The inaccuracy
of the system is based on the error between the ground truth and system’s prediction.
Equation (1), which represents the accuracy of the system, is shown as follows:

α = 1 − |Mc − Ac|/Mc (1)

where α is the counting accuracy of the system, Mc is the true number of insects in an
image, and Ac is the number of the automatically counted captures.

As it is clearly presented, our e-trap achieves 95% accuracy on automatic counts
compared to the ground truth (see Tables 2 and 3 for per class accuracy).

Table 3. Accuracy (α = 1 − |Mc − Ac|/Mc) as measured per class. Accuracy drops from 99% for the
background class to 95% for the 6 insects class. The mean acc. is 0.950.

Number of Insects Per Image Accuracy (α = 1 − |Mc − Ac|/Mc)

0 0.991
1 0.942
2 0.931
3 0.945
4 0.945
5 0.953
6 0.951

Mean Accuracy 0.950

In Table 4 we examine another aspect of the hardware platforms, that of the processing
time. The ESP32 has, by far, the worst performance compared to RPi4 and Coral devices.
The Coral with the TPU accelerator is extremely fast compared to any other hardware
platform we examined. However, speed of execution is a quality we are more than willing
to sacrifice in the context of this specific task to lower the cost. The e-trap takes only one
photo per day, which is enough for insect monitoring applications. Insect monitoring does
not need the high frequency rates of video processing and real-time performance. The
interested reader needs to see the indicative cost of its hardware platform in Appendix A
with ESP32 being the most affordable one at USD 8 (as per 30/12/21, see Table A1) and
also power consumption as depicted in Table 5.

Sensors 2022, 22, 2006 8 of 12

Table 4. Processing time for all edge devices on the same quantized model: (a) load models and
initialize the inference procedure, (b) process an image and derive a count of the insects inside.

Edge Device Model Load Model and Initialize Inference Time

ESP32-CAM TensorFlow Lite Quant. Micro 51 s
Raspberry Pi4 TensorFlow Lite Quant. 70.550 µs 88.868 µs

Coral mini Dev TensorFlow Lite Quant. 6.726 µs 132.546 µs
Coral mini Dev TensorFlow Lite Quant. TPU (Coral) 385.854 µs 31.531 µs

Table 5. Power consumption for key tasks. First column: Standby and deep sleep Average current.
This is the key consumption number that allows the ESP32 to be the suggested solution. Second
column: Avg. current: the consumption to take a picture with flash and the time needed to carry out
the task. Third column: Avg. current for inference, consumption, and time to run the model for 1
picture. Fourth column: current required to save a picture to the SD and upload it through the WiFi.
Fifth column: Avg. current to carry out other functions such as: system initialization, setup WiFi,
load model and initialize camera. Last column: Total consumption and time to carry out all tasks
from waking up, performing all tasks till going back to standby mode.

Edge Device
Stand By or Deep

Sleep Avg. Current
(mA)

Avg. Current Avg. Current
Inference

Avg. Current
Store in SD
Wifi Upload

Avg. Current
Other

Functions

mA in
63 s

mA Sec mA Sec mA Sec mA Sec mA mA

ESP32-CAM
TensorFlow Lite Micro 6 2 180 51 85 3.5 150 6.5 70 5595

Raspberry pi 4 B
TensorFlow Lite 410 0.914 470 0.174 560 0.918 490 60.994 410 25984.38

Coral mini Dev
TensorFlow Lite 240 0.062 400 0.135 460 0.08 450 62.723 240 15176.42

Coral mini Dev
TensorFlow Lite

TPU (Coral)
240 0.062 400 0.036 460 0.076 450 62.826 240 15153.8

Last, we examine the important parameter of power consumption. E-traps offer the
benefit of reducing the costs of manual visits to the traps; therefore, they need to be power
sufficient for as long as possible. In Table 5, we gather the consumptions of all hardware
platforms. Given that a device carries two batteries, 2 × 3350 = 6700 mAH at 3.7 V (3.5–4.2),
the ESP32 is expected to last 50 days when uploading one image per day, as well as the
classification results.

Note that power sufficiency is measured by using a maximum consumption scenario
as the device uploads an image only if there is a difference in the insect counts from day
to day. In urban traps, this does not happen often. Similarly, if classification is performed
locally on the edge device and only the classification output is transmitted (no photo
uploaded), this achieves a lifetime of 52 days.

3.3. Operational Conditions

During operation (see Figure 4a), the device takes a photo once a day using a flash. If
the insect counts predicted differ from the previous count, then the latest photo and the
counting results are uploaded to the server through a WiFi connection (see Figure 4b,c).
The last picture is stored in the SD card (only for validation, as it is not necessary). The list
of tasks can be found below.

Sensors 2022, 22, 2006 9 of 12Sensors 2022, 22, x FOR PEER REVIEW 9 of 13

(a) (b) (c)

Figure 4. (a) The camera-based trap in operational conditions. (b) The case of one insect at day T. (c) At
day T + 1 there are three insects. The difference in inferred counts from day T to T + 1, triggered an alert.
Counting does not require a high analysis picture as in an identification task. Note the low quality of the
pictures in (b,c).

All devices carry out the following chain of tasks:
(a) They wake up by following a pre-stored schedule and load the DL model weights;
(b) They take a picture once per day at night with flash;
(c) They infer the number of insects in the picture;
(d) If the insect count in the current picture is different from the previous count, the im-

age is uploaded to a server through WiFi by making an http, post request;
(e) They store the last picture in the SD (non-mandatory);
(f) They go into a deep sleep mode and follow steps (a)–(e).

4. Concluding Remarks and Further Steps
Smart cities gradually adopt more sophisticated means to control urban pests that have

economic and human health implications [32,33]. We have presented an e-trap that provides
consistent estimates not only of insects’ presence (detection) but of relative abundance
(monitoring). It is also useful for evaluating insecticide treatment efficacy (post-treatment
analysis) and control (population reduction). In this work, we decided to count by regres-
sion. This entails that the DL model learns a direct mapping from a picture to countable
insects and skips localization, semantic segmentation, and species recognition. We took this
approach because the latter tasks are typically carried out by employing larger and more
sophisticated models and, in our application, we struggle with memory and power limita-
tions and also because it has been reported that counting by regression is more robust to
insect overlapping [34]. The single most important outcome of this paper is that a microcon-
troller worth USD8 (as per 30 December 2021, see Table A1) can adequately carry out the
task of taking and image from inside a trap, apply a DL-based, insect counting model using
TensorFlow-light micro and upload the results through its WiFi modem. We traded cost-
and power-sufficiency that are of paramount importance with execution speed that is not
important in the context of this specific application. Further steps include its mass deploy-
ment in a city and the analysis of the feedback from citizen science.

Author Contributions: I.S. set-up the hardware and developed the software code for all platforms.
I.P. gathered the database and wrote the manuscript. S.N. designed the study and helped to analyze
the data. A.I.K. supervised technical analysis on deep learning neural networks, proofread and re-
vised the manuscript. E.N.A. provided suggestions on the experimental design and analyses of deep
learning techniques. All authors have read and agreed to the published version of the manuscript.

Figure 4. (a) The camera-based trap in operational conditions. (b) The case of one insect at day T.
(c) At day T + 1 there are three insects. The difference in inferred counts from day T to T + 1, triggered
an alert. Counting does not require a high analysis picture as in an identification task. Note the low
quality of the pictures in (b,c).

All devices carry out the following chain of tasks:

(a) They wake up by following a pre-stored schedule and load the DL model weights;
(b) They take a picture once per day at night with flash;
(c) They infer the number of insects in the picture;
(d) If the insect count in the current picture is different from the previous count, the image

is uploaded to a server through WiFi by making an http, post request;
(e) They store the last picture in the SD (non-mandatory);
(f) They go into a deep sleep mode and follow steps (a)–(e).

4. Concluding Remarks and Further Steps

Smart cities gradually adopt more sophisticated means to control urban pests that
have economic and human health implications [32,33]. We have presented an e-trap
that provides consistent estimates not only of insects’ presence (detection) but of relative
abundance (monitoring). It is also useful for evaluating insecticide treatment efficacy
(post-treatment analysis) and control (population reduction). In this work, we decided to
count by regression. This entails that the DL model learns a direct mapping from a picture
to countable insects and skips localization, semantic segmentation, and species recognition.
We took this approach because the latter tasks are typically carried out by employing larger
and more sophisticated models and, in our application, we struggle with memory and
power limitations and also because it has been reported that counting by regression is more
robust to insect overlapping [34]. The single most important outcome of this paper is that a
microcontroller worth USD8 (as per 30 December 2021, see Table A1) can adequately carry
out the task of taking and image from inside a trap, apply a DL-based, insect counting
model using TensorFlow-light micro and upload the results through its WiFi modem. We
traded cost- and power-sufficiency that are of paramount importance with execution speed
that is not important in the context of this specific application. Further steps include its
mass deployment in a city and the analysis of the feedback from citizen science.

Author Contributions: I.S. set-up the hardware and developed the software code for all platforms. I.P.
gathered the database and wrote the manuscript. S.N. designed the study and helped to analyze the
data. A.I.K. supervised technical analysis on deep learning neural networks, proofread and revised
the manuscript. E.N.A. provided suggestions on the experimental design and analyses of deep
learning techniques. All authors have read and agreed to the published version of the manuscript.

Sensors 2022, 22, 2006 10 of 12

Funding: This work has been supported by the GSRT-Greece matching funds project 80809 associated
to the EC’s Horizon-2020 project IoBee.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: A link to the database used in this work can be found at: https:
//github.com/Gsarant/Edge-computing, accessed on 19 January 2022.

Acknowledgments: We acknowledge Giota Psirofonia for providing us enough insect collections for
our experiments.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Technical specifications of the hardware platforms compared in this work. The cost is
indicative (30/12/21).

ESP32 Raspberry Pi 4 Model B Coral Dev Board Mini Datasheet

CPU
Xtensa®dual-core 32-bit LX6

microprocessor(s), up to
600 MIPS 160 MHz

Broadcom BCM2711, quad-core
Cortex-A72 (ARM v8)
64-bit SoC @ 1.5GHz

MediaTek 8167s SoC Quad-core
ARM Cortex-A35 1.5 GHz

GPU Imagination PowerVR GE8300
TPU Google Edge TPU ML accelerator
RAM 520KB SRAM +4M PSRAM 4 Gigabyte LPDDR4 RAM 2 GB LPDDR3
Flash 4 MB Flash 8 GB eMMC,
WiFi 802.11 b/g/n/ 802.11 b/g/n/ac Wireless LAN WiFi 5

Ethernet Gigabit Ethernet port (supports
PoE with add-on PoE HAT)

Bluetooth Bluetooth 4.2 BR/EDR BLE Bluetooth 5.0 with BLE Bluetooth 5.0
SD Card TFCard SD Card Meets SD/SDIO 3.0 standard

Camera SCCB

1× Raspberry Pi 2-lane MIPI
CSI Camera and 1x Raspberry

Pi 2-lane MIPI DSI Display
connector

MIPI-CSI2 camera input

Operating System Free RTOS Raspbian Mendel Linux
Turn off flash lamp

180 mA@5V Typical 800 mA Accelerator Module

TurnOn flash lamp
310 mA@5V Stress 1200 mA TPU used 425 mA 212 mA@3,3 V

Deep-sleep 6 mA@5V Idling 600 mA Typical idle 114–121 mA@3,3 V

Halt current 23 mA PMIC digital I/O power supply
current (AON) 10 mA

Sources
Copyright© 2022 Shenzhen
Ai-Thinker Technology Co.,

Ltd. All Rights Reserved

Raspberry Pi 4 Model B
Datasheet Copyright Raspberry

Pi (Trading) Ltd. 2019
Dev Board Mini datasheet

US$7.99 $55.00 $110.95
OV2640 Raspberry Pi Camera Module Coral Camera

Chip OV2640 CAMERA CHIP Sony IMX 219 PQ CMOS image
sensor in a fixed-focus module. 5-megapixel OmniVision sensor

Resolution 2-megapixel 8-megapixel 5-megapixel
Max Resolution 1600 × 1200 3280 × 2464 2582 × 1933

Video UXGA(1600 × 1200) 15fps 1080p(1920 × 1080) 30fps
SVGA(800 × 600) 30fps 720p(1280 × 720) 60fps
CIF (352 × 288) 60fps (640 × 480) 60/90 fps

https://github.com/Gsarant/Edge-computing
https://github.com/Gsarant/Edge-computing

Sensors 2022, 22, 2006 11 of 12

Table A1. Cont.

ESP32 Raspberry Pi 4 Model B Coral Dev Board Mini Datasheet

Image area 3.59 × 2.684 mm 3.68 × 2.76 mm (4.6 mm diag.) 2.5 mm
Pixel size 2.2 µm × 2.2 µm 1.12 µm × 1.12 µm 1.4 × 1.4 µm pixel size

Picture formats

YUV(422/420) YCbCr422,
RGB565/555, 8-bit

Compressed data, 8~10 bit
Raw RGB data

JPEG, JPEG + DNG (raw), BMP,
PNG, YUV420, RGB888

Len Size 1/4” 1/4” 1/4”
Sensitivity 600 mV /Lux-sec 680 mV/lux-sec
Cam Cost $7.99 camera and board $25.00 $24.95

Appendix B

Code and images and links to a database can be found at: https://github.com/
Gsarant/Edge-computing accessed on 19 January 2022 at the corresponding folders. Re-
garding the trained weights we comment as follows:

1. model_count_insects_final.h5. The model that was trained offline.
2. model_count_insects_final.tflite a smaller version of model_count_bugs_final.h5 to be

executed by Tensorflow Lite.
3. model_count_insects_final_quant.tflite a smaller version of model_count_bugs_final.h5

to be executed by Tensorflow Lite but is now quantized (8 bit).
4. model_count_insects_final_quant.cc a matrix with structure and quantized weights in

C to work with Tensorflow Lite micro to esp32-cam.
5. model_count_insects_final_quant_edgetpu.tflite This is the Coral version of

model_count_insects_final_quant.tflite that has been processed to run in Coral’s TPU.

References

1. Høye, T.T.; Ärje, J.; Bjerge, K.; Hansen, O.L.P.; Iosifidis, A.; Leese, F.; Mann, H.M.R.; Meissner, K.; Melvad, C.; Raitoharju, J. Deep
learning and computer vision will transform entomology. Proc. Natl. Acad. Sci. USA 2021, 118, e2002545117. [CrossRef]

2. Rigakis, I.I.; Varikou, K.N.; Nikolakakis, A.E.; Skarakis, Z.D.; Tatlas, N.A.; Potamitis, I.G. The e-funnel trap: Automatic monitoring
of lepidoptera; a case study of tomato leaf miner. Comput. Electron. Agric. 2021, 185, 106154. [CrossRef]

3. Flórián, N.; Gránicz, L.; Gergócs, V.; Tóth, F.; Dombos, M. Detecting Soil Microarthropods with a Camera-Supported Trap. Insects
2020, 11, 244. [CrossRef]

4. Balla, E.; Flórián, N.; Gergócs, V.; Gránicz, L.; Tóth, F.; Németh, T.; Dombos, M. An Opto-Electronic Sensor-Ring to Detect
Arthropods of Significantly Different Body Sizes. Sensors 2020, 20, 982. [CrossRef]

5. Weber, M.; Geier, M.; Potamitis, I.; Pruszynski, C.; Doyle, M.; Rose, A.; Geismar, M.; Encarnacao, J. The BG-counter, the first
operative automatic mosquito counting device for online mosquito monitoring: Field tests and technical outlook. In Proceedings
of the AMCA 2017 83rd Annual Meeting, The American Mosquito Control Association, San Diego, CA, USA, 13–17 February
2017; p. 57.

6. Preti, M.; Verheggen, F.; Angeli, S. Insect pest monitoring with camera-equipped traps: Strengths and limitations. J. Pest Sci. 2021,
94, 203–217. [CrossRef]

7. Martineau, M.; Conte, D.; Raveaux, R.; Arnault, I.; Munier, D.; Venturini, G. A survey on image-based insect classification. Pattern
Recognit. 2017, 65, 273–284. [CrossRef]

8. Bjerge, K.; Nielsen, J.B.; Sepstrup, M.V.; Helsing-Nielsen, F.; Høye, T.T. An Automated Light Trap to Monitor Moths (Lepidoptera)
Using Computer Vision-Based Tracking and Deep Learning. Sensors 2021, 21, 343. [CrossRef]

9. Bjerge, K.; Mann, H.M.; Høye, T.T. Real-time insect tracking and monitoring with computer vision and deep learning. Remote
Sens. Ecol. Conserv. 2021. [CrossRef]

10. Eliopoulos, P.; Tatlas, N.-A.; Rigakis, I.; Potamitis, I. A Smart Trap Device for Detection of Crawling Insects and Other Arthropods
in Urban Environments. Electronics 2018, 7, 161. [CrossRef]

11. Sun, Y.; Lin, Y.; Zhao, G.; Svanberg, S. Identification of Flying Insects in the Spatial, Spectral, and Time Domains with Focus on
Mosquito Imaging. Sensors 2021, 21, 3329. [CrossRef]

12. Doitsidis, L.; Fouskitakis, G.N.; Varikou, K.N.; Rigakis, I.I.; Chatzichristofis, S.; Papafilippaki, A.; Birouraki, A.E. Remote
monitoring of the Bactrocera oleae (Gmelin) (Diptera: Tephritidae) population using an automated McPhail trap. Comput. Electron.
Agric. 2017, 137, 69–78. [CrossRef]

13. Ramalingam, B.; Mohan, R.E.; Pookkuttath, S.; Gómez, B.F.; Sairam Borusu, C.S.C.; Wee Teng, T.; Tamilselvam, Y.K. Remote
Insects Trap Monitoring System Using Deep Learning Framework and IoT. Sensors 2020, 20, 5280. [CrossRef]

https://github.com/Gsarant/Edge-computing
https://github.com/Gsarant/Edge-computing
http://doi.org/10.1073/pnas.2002545117
http://doi.org/10.1016/j.compag.2021.106154
http://doi.org/10.3390/insects11040244
http://doi.org/10.3390/s20040982
http://doi.org/10.1007/s10340-020-01309-4
http://doi.org/10.1016/j.patcog.2016.12.020
http://doi.org/10.3390/s21020343
http://doi.org/10.1002/rse2.245
http://doi.org/10.3390/electronics7090161
http://doi.org/10.3390/s21103329
http://doi.org/10.1016/j.compag.2017.03.014
http://doi.org/10.3390/s20185280

Sensors 2022, 22, 2006 12 of 12

14. Schrader, M.J.; Smytheman, P.; Beers, E.H.; Khot, L.R. An Open-Source Low-Cost Imaging System Plug-In for Pheromone Traps
Aiding Remote Insect Pest Population Monitoring in Fruit Crops. Machines 2022, 10, 52. [CrossRef]

15. Rydhmer, K.; Bick, E.; Still, L.; Strand, A.; Luciano, R.; Helmreich, S.; Beck, B.D.; Grønne, C.; Malmros, L.; Poulsen, K.; et al.
Automating insect monitoring using unsupervised near-infrared sensors. Sci. Rep. 2022, 12, 2603. [CrossRef]

16. Brydegaard, M.; Svanberg, S. Photonic Monitoring of Atmospheric and Aquatic Fauna. Laser Photonics Rev. 2018, 12, 1800135.
[CrossRef]

17. Kirkeby, C.; Rydhmer, K.; Cook, S.M.; Strand, A.; Torrance, M.T.; Swain, J.L.; Prangsma, J.; Johnen, A.; Jensen, M.;
Brydegaard, M.; et al. Advances in automatic identification of flying insects using optical sensors and machine learning. Sci. Rep.
2021, 11, 1555. [CrossRef]

18. Genoud, A.P.; Torsiello, J.; Belson, M.; Thomas, B.P. Entomological photonic sensors: Estimating insect population density, its
uncertainty and temporal resolution from transit data. Ecol. Inform. 2020, 61, 101186. [CrossRef]

19. Venegas, P.; Calderon, F.; Riofrío, D.; Benítez, D.; Ramón, G.; Cisneros-Heredia, D.; Coimbra, M.; Rojo-Álvarez, J.L.; Pérez, N.
Automatic ladybird beetle detection using deep-learning models. PLoS ONE 2021, 16, e0253027. [CrossRef]

20. Steenweg, R.; Hebblewhite, M.; Kays, R.; Ahumada, J.; Fisher, J.T.; Burton, C.; Townsend, S.E.; Carbone, C.; Rowcliffe, M.;
Whittington, J.; et al. Scaling-up camera traps: Monitoring the planet’s biodiversity with networks of remote sensors. Front. Ecol.
Environ. 2016, 15, 26–34. [CrossRef]

21. Xia, D.; Chen, P.; Wang, B.; Zhang, J.; Xie, C. Insect Detection and Classification Based on an Improved Convolutional Neural
Network. Sensors 2018, 18, 4169. [CrossRef]

22. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
23. Chollet, F. Deep Learning with Python, 2nd ed.; Manning Publications: Shelter Island, NY, USA, 2021.
24. Hassall, K.L.; Dye, A.; Potamitis, I.; Bell, J.R. Resolving the identification of weak-flying insects during flight: A coupling between

rigorous data processing and biology. Agric. For. Èntomol. 2021, 23, 489–505. [CrossRef]
25. Rigakis, I.; Potamitis, I.; Tatlas, N.-A.; Livadaras, I.; Ntalampiras, S. A Multispectral Backscattered Light Recorder of Insects’

Wingbeats. Electronics 2019, 8, 277. [CrossRef]
26. Hill, A.P.; Prince, P.; Piña Covarrubias, E.; Doncaster, C.P.; Snaddon, J.L.; Rogers, A. AudioMoth: Evaluation of a smart open

acoustic device for monitoring biodiversity and the environment. Methods Ecol. Evol. 2018, 9, 1199–1211. [CrossRef]
27. Zualkernan, I.; Judas, J.; Mahbub, T.; Bhagwagar, A.; Chand, P. An AIoT System for Bat Species Classification. In Proceedings of

the 2020 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS), Bali, Indonesia, 27–28 January
2021; pp. 155–160. [CrossRef]

28. Sanchez-Iborra, R.; Skarmeta, A.F. TinyML-Enabled Frugal Smart Objects: Challenges and Opportunities. IEEE Circuits Syst. Mag.
2020, 20, 4–18. [CrossRef]

29. Albanese, A.; Nardello, M.; Brunelli, D. Automated Pest Detection with DNN on the Edge for Precision Agriculture. IEEE J.
Emerg. Sel. Top. Circuits Syst. 2021, 11, 458–467. [CrossRef]

30. Stork, N.E. How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth? Annu. Rev. Èntomol. 2018,
63, 31–45. [CrossRef]

31. Van Horn, G.; Mac Aodha, O.; Song, Y.; Cui, Y.; Sun, C.; Shepard, A.; Adam, H.; Perona, P.; Belongie, S. The iNaturalist
Species Classification and Detection Dataset. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Piscataway, NJ, USA, 18–23 June 2018; pp. 8769–8778. [CrossRef]

32. Bajaj, N.; Giampietro, N.C.; Mao, K.; Rushton, M.E.; Spomer, N.A.; Rhoads, J.F. Searching for bed bugs: The design, development,
and evaluation of an oscillator-based trans-2-hexenal sensor array. Sens. Actuators B Chem. 2020, 333, 129161. [CrossRef]

33. Gondhalekar, A.D.; Appel, A.G.; Thomas, G.M.; Romero, A. A Review of Alternative Management Tactics Employed for the
Control of Various Cockroach Species (Order: Blattodea) in the USA. Insects 2021, 12, 550. [CrossRef]

34. Ovadia, Y.; Halpern, Y.; Krishnan, D.; Livni, J.; Newburger, D.; Poplin, R.; Zha, T.; Sculley, D. Learning to Count Mosquitoes for
the Sterile Insect Technique. In Proceedings of the 23rd SIGKDD Conference on Knowledge Discovery and Data Mining, Halifax,
NS, Canada, 13–17 August 2017.

http://doi.org/10.3390/machines10010052
http://doi.org/10.1038/s41598-022-06439-6
http://doi.org/10.1002/lpor.201800135
http://doi.org/10.1038/s41598-021-81005-0
http://doi.org/10.1016/j.ecoinf.2020.101186
http://doi.org/10.1371/journal.pone.0253027
http://doi.org/10.1002/fee.1448
http://doi.org/10.3390/s18124169
http://doi.org/10.1038/nature14539
http://doi.org/10.1111/afe.12453
http://doi.org/10.3390/electronics8030277
http://doi.org/10.1111/2041-210X.12955
http://doi.org/10.1109/IoTaIS50849.2021.9359704
http://doi.org/10.1109/MCAS.2020.3005467
http://doi.org/10.1109/JETCAS.2021.3101740
http://doi.org/10.1146/annurev-ento-020117-043348
http://doi.org/10.1109/CVPR.2018.00914
http://doi.org/10.1016/j.snb.2020.129161
http://doi.org/10.3390/insects12060550

	Introduction
	Materials and Methods
	The Edge Devices
	The Images

	Results
	Building the Reference Database
	Verification Experiments
	Operational Conditions

	Concluding Remarks and Further Steps
	Appendix A
	Appendix B
	References

