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Abstract: In this paper, a multipopulation dynamic adaptive coevolutionary strategy is proposed
for large-scale optimization problems, which can dynamically and adaptively adjust the connection
between population particles according to the optimization problem characteristics. Based on analysis
of the network evolution characteristics of collaborative search between particles, a dynamic adaptive
evolutionary network (DAEN) model with multiple interconnection couplings is established in this
algorithm. In the model, the swarm type is divided according to the judgment threshold of particle
types, and the dynamic evolution of collaborative topology in the evolutionary process is adaptively
completed according to the coupling connection strength between different particle types, which
enhances the algorithm’s global and local searching capability and optimization accuracy. Based on
that, the evolution rules of the particle swarm dynamic cooperative search network were established,
the search algorithm was designed, and the adaptive coevolution between particles in different
optimization environments was achieved. Simulation results revealed that the proposed algorithm
exhibited a high optimization accuracy and converging rate for high-dimensional and large-scale
complex optimization problems.

Keywords: large-scale complex optimization; dynamic adaptive evolutionary network; collaborative
topology; search rules

1. Introduction

Many scientific and engineering application problems are complex multi-objective
optimization problems involving more decision variables and optimization objectives,
such as management and optimal distribution of energy resources [1], the short-term load
forecast of power systems [2], the solution time of the joint energy-reserve market clearing
problem [3], and wind signal prediction [4], etc. However, in the face of the characteristics
of data hybridity in complex problems, it is difficult to use the model-driven method to
establish accurate models based on prior knowledge, which has essential limitations. At
the same time, the traditional method is difficult to adapt to the uncertainty changes of the
search environment and the problem itself in the process of solving complex optimization
problems. In particular, with the increase of the dimension of the optimization problem, the
search space expands exponentially, and the probability of finding the optimal solution de-
creases exponentially, which leads to the performance of the algorithm deteriorate sharply.
For example, in [5], the trust-tech methods, consensus-based PSO (particle swarm optimiza-
tion), and local optimization methods that are integrated to compute the small-dimension
benchmark optimization problems. It is shown in [6] that the quasi-opposition-based
learning (QOBL) and chaotic local search (CLS) strategies with SOS (symbiotic organisms
search) are integrated to deal with the global optimization problems with a higher quality
solution and faster convergence. The authors of [7] proposed to use the repulsive force
rule in mimicry physics to keep the diversity of particles and improve the global search
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ability of the algorithm. That is, the traditional algorithm mainly enhances the global search
ability by improving the diversity of population particles, but it is difficult to solve the
high-dimensional complex optimization problems. Consequently, large-scale optimization
algorithms have become a research focus in the fields of science and engineering.

In recent years, domestic and foreign scholars have mainly conducted research on
two aspects for large-scale optimization algorithms. On the one hand, large-scale complex
problems are decomposed into lower-dimensional simple problems in order to get a good
solution in a reasonable time. On the other hand, it is a nongrouping strategy, which is
mainly solved by utilizing new evolutionary algorithms or adding a local search strategy
and tabu search strategy to the original algorithm based on the characteristics of the large-
scale and complex problems. Han et al. proposed a dynamic coevolutionary strategy, which
integrates the dynamic coevolution mechanism of two probability models and the best
individual inheritance strategy into the compact genetic algorithm [8]. For the nongrouping
strategy, Aminbakhsh, S. et al. [9] utilized an adaptive differentiation evolution operator
in order to solve the local optimization of subproblems, and introduced random search
mechanisms based on simulated annealing to improve the global searching capability of
the algorithm. Liang, J. [10] reported a random dynamic coevolutionary strategy, which
was introduced into the dynamic multi-group PSO algorithm in order to realize the dual
grouping of population particles and decision variables. Yao Yucheng et al. [11] made
use of the repulsive force rules in pseudo-physics in order to keep the particles diverse
and improve the algorithm’s global searching capability. When the population enters
the global optimal solution region, the gravitational effect is enhanced and the repulsive
effect is reduced. The algorithm’s local searching capability can be improved by using the
gravitational effect of particles with better adaptability and global searching capability.
Kyle Robert Harrison et al. [12] proposed a parameter-free PSO algorithm based on the
prediction model built by machine learning. Moreover, the dynamic grouping strategy
and dynamic topology evolution are used to solve large-scale optimization problems.
In the latest work [13], a stochastic dynamic coevolution strategy is proposed, which is
added to the dynamic multipopulation particle swarm optimization algorithm to realize
the double grouping of population particles and decision variables, and thus improves
the local search ability and population diversity of the algorithm. The authors of [14]
proposed a hybrid topology mixed with fully connected topology and ring topology, where
it enables the particles to have stronger exploration ability and fast convergence rate at
the same time. However, the above methods rarely aim at high-dimensional complex
optimization problems. According to the coupling connection strength between different
types of particles, the cooperation relationship and strength between particles are adjusted
adaptively in order to improve the algorithm’s adaptability to the complex and variable
optimization environment, and thereby overcome the algorithm’s huge space–time cost in
solving large-scale complex optimization problems.

Thus, this paper will study the dynamic adaptive coevolution strategy for high-
dimensional complex optimization problems, where particles can be divided into model
particles, which can guide the whole population to evolve toward the optimal value
direction, and ordinary particles, which can guide the population to explore new search
directions. According to the cooperation weight between particles and the connecting nodes’
response degree, the two kinds of particles continuously adjust their node connection
strength in order to complete the population’s evolution from fully-connected topology at
the early stage of evolution to the ring-like topology at the later stage. Based on analysis of
the network evolution characteristics of collaborative search between particles, a dynamic
adaptive evolutionary network (DAEN) model with multiple interconnections coupling
is established in this algorithm. In the model, the swarm type is divided according to the
judgment threshold of particle types, and the dynamic evolution of collaborative topology
in the evolutionary process is adaptively completed according to the coupling connection
strength between different particle types, which enhances the algorithm’s global and local
searching capability and optimization accuracy.
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The contribution of the paper is the adaptive adjustment of evolutionary topology
according to particle node connection strength at different stages of evolution. In particular,
the abundant evolution rules are indeed beneficial to solving large-scale complex opti-
mization problems such as sensor network node deployment, acceleration sensor dynamic
compensation, sensor optimal configuration, and so on. For example, particle swarm
optimization algorithm can be applied to the layout of sensor network nodes, and the
global optimization ability of particle swarm optimization algorithm is used to optimize
the network coverage. Particle swarm optimization algorithm can also be used for dynamic
compensation of an acceleration sensor to expand its frequency range to meet the needs
of dynamic measurement. In addition, in order to improve the accuracy of test results
in dynamic testing, a particle swarm optimization algorithm can optimize the configu-
ration of sensors, determine the optimal number of sensors, and configure them in the
optimal position.

This paper is organized as follows: the problems to be studied are stated in Section 2.
The DAEN model and undirected weighted DAEN evolution rules for coevolutionary
particle swarm optimization are defined in Section 3. Large-scale complex optimization
experiments are given in Section 4 and conclusion are made in Section 5.

2. Description of Large-Scale Complex Optimization Problems

Large-scale complex optimization problems are often nondifferentiable and nonlin-
ear. When solving large-scale complex optimization problems with continuous iterations,
dimension disaster is likely to be encountered [15]. In order to overcome the algorithm’s
huge computational time and space cost in solving the large-scale complex optimization
problems, the algorithm’s optimization accuracy, convergence speed, and solution success
rate in large-scale complex optimization problems have been improved. The large-scale
complex optimization problem is expressed by the following formula:

min f(x) / max f(x)
Xi = (xi1, xi2, · · · , xiD)

s.t. ∈ Ω
. (1)

where min f(x)/max f(x) refers to the objective function of the optimization problem. In
the single objective optimization problem, it can be understood as a real valued continuous
nonlinear objective function mapping from d-dimensional space to one-dimensional fitness
value. Xi = (xi1, xi2, · · · , xiD) is the boundary constraint. D is the number of decision
variables, that is, the dimensions of the optimization problem. In large-scale setting, the
number of decision variables D is generally greater than 100, usually reaching more than
1000 dimensions, and xi1 is the decision variable.

3. Coevolutionary Particle Swarm Optimization Algorithm Based on DAEN

With the increase of the dimensions of large-scale optimization problems, the time-
varying law presents multiscale characteristics. If the full connection method is adopted, it
is easier to fall into local optimization, and the performance of particle swarm optimization
algorithm will degrade rapidly, so it is difficult to directly apply this method to large-scale
complex optimization problems. To solve this problem, we need to improve and expand
the population optimization model, and establish information interaction and association
rules between different search tasks and cooperative populations.

Specifically, the coupling degree of evolution within and between communities can be
reduced through the mechanism of coevolution, and the node strength is used to represent
the cooperation strength among communities. In particularly, the collaborative rules are
used to trigger the multicommunity collaborative search process. And thus, the scalability
and adaptability of the algorithm are improved through the dynamic reorganization of
the cooperation relationship. On the other hand, the parallel implementation mechanism
is adopted to set up the global optimal location storage area of community members,
which could complete the asynchronous iteration of each search process. Moreover, the
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iterative results of each step are sent to other processes in the form of broadcast to reduce
process communication and improve the optimization efficiency of the algorithm effectively.
Consequently, the DAEN model and undirected weighted DAEN evolution rules for coevo-
lutionary particle swarm optimization are presented in this section. The coevolutionary
flowchart is shown in Figure 1.
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1. Dynamic adaptive evolutionary network model based on topological connection
strength. It is well-known that a network can be regarded as the combination of vertex
set and edge set. Thus, we have used the edge to represent the connection between
particles, which can describe the cooperative search relationship between particles,
and analyze its adaptive cooperative evolution law. Following this idea, the particles
were divided into model particles and ordinary particles according to the threshold
value of particle type, where the model particles have strong local optimization
ability, and ordinary particles have strong global exploration ability. On this basis,
the topological connection relationship between different particles was established,
and the cooperation and optimization ability of particles were comprehensively
evaluated by the distance vector and connection strength between particles, where the
evolution rules of topological connection among particles were formulated to form a
self-adaptive evolutionary network model that adapts to the environmental changes
of large-scale complex optimization problems.

2. Algorithm execution model. During the algorithm execution, the topology connection
relationship among particles was adaptively adjusted according to the complex search
environment, and the current optimal location and global optimal location storage
area was set. Thus, the new global optimal position obtained was sent to other
processes in the form of broadcast of the asynchronous iteration process, which
was calculated as the current generation global optimal value. Consequently, the
process communication could be reduced, and the optimization efficiency of the
algorithm was improved while conforming to the biological mechanism of particle
swarm optimization.

3.1. Standard Particle Swarm Algorithm

The PSO algorithm was inspired by social animals, such as flocks of birds and fish.
PSO is initialized by a set of random solutions, which searches for the optimal solution
through generation updates [16].



Sensors 2022, 22, 1999 5 of 21

There are m particles in D dimension search space. The particle i, the position of
i = 1, 2, · · · , m being Xi = (xi1, xi2, · · · , xiD), experiences the optimal position, which is
recorded as Pi = (pi1, pi2, · · · , piD), also known as particle extremum (pbest). The best
position that all particles in the population have experienced is Pg =

(
pg1, pg2, · · · , pgD

)
,

also known as global extreme (gbest). Particle velocity is expressed in terms of Vi =
(vi1, vi2, · · · , viD). For each generation, the particles update themselves by tracking
two extremes, that is, the particles evolve according to the following formula.

vt+1
id = ω·vt

id + c1·rand1( )·
(

Pt
id − xt

id
)
+ c2·rand2( )·

(
Pt

gd − xt
id

)
(2)

xt+1
id = xt

id + vt+1
id (3)

The above formula describes that in each iteration process, each member particle
changes its own state according to the position and speed update rules, and continuously
improves itself by tracking the historical optimal value of the particle member and the
global optimal value of the community. Where t or t + 1 is the number of iterations, ω
is the inertia weight, c1 and c2 are acceleration constants, and rand1( ) and rand2( ) are
random functions that vary in the range of [0, 1]. The first part is the particles’ searching
speed, which reflects the particles’ memory. The second part is the “cognition”, which
reflects the particles’ thinking and affirmation. The third part is the “society”, reflecting
the information sharing and cooperation among particles. Significantly, each search agent
is checked for out-of-search space and amended. If Xt+1 is beyond the upper boundaries
of the search space, Xt+1 is the value of the upper boundary. If Xt+1 is beyond the lower
boundaries of the search space, Xt+1 is the value of the lower boundary.

3.2. DAEN Model

The standard particle swarm algorithm is a global optimization model based on the
optimal particles, whose neighborhood structure is equivalent to a fully-connected net-
work, which can converge to the optimal value more quickly. However, it is inconvenient
to use a fully-connected network to process high-dimensional data. For more complex
high-dimensional data, the fully-connected method falls more easily into the local optimum.
Based on the six-degree separation theory [17] and small-world network [18], the DAEN,
with a fast convergence speed and strong global searching capability, is formed by com-
bining the fully-connected topology with the ring topology, as shown in Figure 2. In this
topology, there are cooperative relations due to different types of particles, including the
cooperative relations between model particles and other model particles, model particles
and ordinary particles, and ordinary particles and other ordinary particles.
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From a mathematical perspective, the network can be regarded as a combination of
vertex sets and edge sets. In order to better describe DAEN and establish its evolution
model, the following definitions are given.
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Definition 1. In the DAEN structure, edges between the nodes are undirected and have connection
strength. Connections between particles can be represented by the undirected weighted graph
G(P, R), as shown in Figure 3. Where P = (p1, p1, . . . , p1, . . . , pn) represents the set of all
particles in the population. R =

(
r(p1, p2), r(p1, p3), . . . , r

(
pi, pj

)
, . . . , r(pn, pn),

)
represents the

set of connection relations among particles. ∀rs
(

pi, pj
)
∈ R, s = 1, 2, where r1 represents the

connection relationship of the ring topology in the first step of initializing the topology. r2 represents
the connection between the model particles in the second step of initializing topology. |Ri| denotes
the module with connection relation set R with particle pi, and indicates that there are |Ri| edges
directly connected with pi.
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Definition 2. Particle type determination threshold F.

F =
∑n

i=1 fi

n
(4)

where fi is the fitness value of particle pi and n is the total number of particles in the population.

According to particle type determination threshold F, the particles in the population
can be divided into model particles pm and ordinary particles po. If the fitness value, Fi,
of the particle satisfies Fi < F, the particle has a better fitness value, which is divided into
model particles in order to guide the whole population to evolve toward the optimal value
direction. On the contrary, if Fi ≥ F, the particle fitness is poor, and it is divided into
ordinary particles in order to guide the population to explore a new direction.

In order to determine whether DAEN needs to add connections or to continue to
reduce them, the evaluation index of the optimal value for population nodes gbesti is
introduced: distance vector H.

Definition 3. Distance vector. The difference between the global optimal value gbesti of the
population and the individual optimal position pbesti of m particles with t = n iterations in the
population is calculated and absolute values are taken, then the population’s distance vector H under
the current iteration times is obtained.

H = (h1, h2, ···, hm) (5)

Definition 4. Particle connection strength. In DAEN, the two particles’ connection strength is
defined as the undirected weighted graph’s weight vij. The undirected weighted graph’s connection
strength is calculated from the two currently connected particles’ fitness values:

vij =

{
1− | fi− f j|

fbest
, ∀F

(
r ∈ r

(
pi, pj

))
< F

0, ∀F
(
r ∈ r

(
pi, pj

))
≥ F

(6)
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Suppose that there are n particles in the undirected weighted DAEN, and there are n
particles with connection relationship r with particle pi, then the local aggregation coefficient
of particle pi is:

µi =
∑n

j,k rjk

n(n− 1)
(7)

On the basis of Equation (2), the particle connection strength matrix can be expressed
as C. E is the nth order unit matrix, and matrix C can be expressed as:

C = v(r(pi, pj))× E (8)

According to Equations (2) and (3), the particle undirected weighted DAEN model
can be expressed as follows:

M = (B, C)nm, m = n + 1 (9)

3.3. Undirected Weighted DAEN Evolution Rules

The calculation of the reduced connection rule and the added connection rule for
the undirected edge is based on particle connection strength and particle fitness value.
Hopefully, two high-connection strength particles can get more reliable connections, and
particles with good fitness values can get more connections. After each iteration, the
particles’ fitness value is recalculated and the particle type is judged. Meanwhile, the
reduced-connection or added-connection operations are carried out. Figure 4 shows the
evolution process.

1. Initialize the topology: initialize particle swarm, set the fitness value threshold, calcu-
late each particle’s fitness value, judge whether the particles’ fitness value reaches the
threshold value, and define the particles that reach the threshold value as model parti-
cles and those that do not as ordinary particles. That is, the topology is initialized as a
ring topology, and the connections between the model particles are fully connected in
order to build an initial fully-connected topology.

2. Reduced-connection rule: in order to make the algorithm jump out of local optimiza-
tion and seek global optimal solution, the reduced connection operation is performed
according to the edge’s reduced connection rule every time the algorithm evolves.
The fully connected topology’s initial search speed is faster, but it is easy to fall into
local optimization. In this paper, two kinds of reduced-connection rules are designed.
Rule 1: If ∃Fi ≥ F, Then ∀r2(pi) = 0;
Rule 2: If ∀Fi < F, vij(|Ri|=|Rmax|, fi = fmax) 6= 0, Then r2(p(vmin)) = 0;

3. Reduced-connection termination rule: according to the connection relationship r be-
tween particles and the distance vector, two kinds of reduced-connection termination
rules are designed:
Rule 3: If | r2| = 0, End;
When the change of the distance vector’s module for the particle is less than the
designed threshold value, the reduced connection is stopped:
Rule 4: If |Hn − Hn + 1 | /|Hn | < γH, End;

4. Added-connection rule: according to the number of r2 edges of the model particle pi,
i.e., the size of | r2| and the local aggregation coefficient, the added-connection rules are
designed to improve different particles’ adaptability and balance the particles’ global
and local searching capability. Two kinds of added connection rules are designed.
When DAEN is a ring topology, and when | r2| = 0, the model particle pj with the
farthest distance from pi is selected in order to establish the connection:
Rule 5: If | r2| = 0, pi = pmin and pj = pm, Then r2(i, j + 1) = 1, j = i + N/2 +
n(n = 0, 1, 2, 3)
When |r2| 6= 0, the local aggregation coefficient µ of all model particles is calculated,
and the model particle with the smallest µ is selected in order to establish a connection
with the model particles farthest away from the population:
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Rule 6: If |r2| 6= 0,µi = µmin and pj = pm, Then r2(i, j + 1) = 1, j = i + N/2 +
n(n = 0, 1, 2, 3).
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3.4. Algorithm Execution Steps

When improving search speed and searching capability, each particle is given subjec-
tive initiative, considering the evolutionary method diversity presented by particles with
different individual attributes, and resource sharing among members in the community and
information interaction between the communities are fully utilized. Based on the particles’
fitness values and connection strength, the added-connection and reduced-connection rules
for edges are designed, and the added-connection and reduced-connection operations
are performed, As shown in Figure 5. Then, in order to improve search efficiency in the
algorithm’s early stage and enhance the local searching capability in the later stage, the
DAEMPSO algorithm is proposed by using the DAEN model evolution in order to combine
the fully-connected topology with the ring topology.
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Based on this parallel idea, the specific pseudo-code for the DAEMPSO algorithm
(Algorithm 1) is:

Algorithm 1: DAEMPSO.

1. procedure DAEMPSO
2. for each particle i:
3. Initialize velocity Vi and position Xi for particle i. Evaluate particle i and set pBesti = Xi
4. end for
5. gBest = min{pBesti}
6. for i = l to neighborhood

7. F = ∑n
i=1 f itnessi

n
8. if |r2| 6= 0, & |Hn − Hn+1|/|Hn| > γH
9. if ∃Fi > F // Model particle
10. Update neighborhood // Reduce edge
11. Update the velocity and position of particle i. Evaluate particle i
12. if fitness(Xi) < fitness(pBesti), pBesti = Xi // Update individual optimal value
13. if ∀Fi < F //Ordinary particle
14. if vij(|Ri| = |Rmax|, fi = fmax) 6=0
15. repeat steps 10–12 // Reduce edge
16. if |Hn − Hn+1|/|Hn| < γH
17. if µi = µmin and pj = pm

18. repeat steps 10–12 // Increase edge
19. if |r2| = 0
20. if i = imin and j = jm
21. repeat steps 10–12 // Increase edge
22. if fitness(pBesti) < fitness(gBest), gBest = pBesti; // Update neighborhood optimum
23. end for
24. print gBest
25. end producer

4. Analysis of Simulation Results
4.1. Test Function and Experimental Environment

In order to analyze the DAEMPSO algorithm’s adaptability, execution efficiency, and
calculation accuracy in solving high-dimensional complex problems, 13 high-dimensional
complex multimode functions of the virtual simulation library are used for simulation
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analysis. These functions include unimodal and multimodal functions, and the vari-
able dimensions can be set. The thirteen test functions’ main characteristics are shown
in Tables 1 and 2. The first 13 problems are classical benchmark functions utilized in the
optimization literature [19–22].

Table 1. High-dimensional unimodal benchmark test functions.

Function Name Function Dimensions Search Space Theory
Optimum

F1 SPHERE
FUNCTION f (x) =

n
∑

i=1
x2

i
1000 [−100, 100] 0

F2
ROTATED HYPER-

ELLIPSOID
FUNCTION

f (x) =
n
∑

i=1

(
i

∑
j−1

x2
j

)
1000 [−100, 100] 0

F3 SCHWEFEL’ S
PROBLEM f (x) = maxi

{∣∣x2
i
∣∣, 1 ≤ i ≤ n

}
1000 [−100, 100] 0

F4 ROSENBROCK
FUNCTION f (x) =

n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

1000 [−30, 30] 0

F5 STEP
FUNCTION f (x) =

n
∑

i=1
([xi + 0.5])2 1000 [−100, 100] 0

F6 QUARTIC
FUNCTION f (x) =

n
∑

i=1
ix4

i + random[0, 1] 1000 [−1.28, 1.28] 0

Table 2. High-dimensional unimodal benchmark test functions.

Function Name Function Dimensions Search Space Theory Optimum

F7 SCHWEFEL
FUNCTION f (x) = 418.9829d−

d
∑

i=1
xisin

(√
|xi |
)

1000 [−500, 500] 0

F8 RASTRIGIN
FUNCTION f (x) = ∑n

i=1
[
x2

i − 10 cos(2πxi) + 10
]

1000 [−5.12, 5.12] 0

F9 ACKLEY
FUNCTION f (x) = −20exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20+ e 1000 [−32, 32] 0

F10 GRIEWANK
FUNCTION f (x) = 1

4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 1000 [−600, 600] 0

F11
GENERALIZED

PENALIZED
FUNCTION 1

f (x) = π
n

{
10 sin(πy1) +

n−1
∑

n=1
(yi − 1)2[1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
+

n
∑

i=1
u(xi , 10, 100, 4)

yi = 1 + xi+1
4 u(xi , a, k, m) =

 k(xi − a)m xi > a
0− a < xi < a

k(−xi − a)m xi < −a

1000 [−50, 50] 0

F12
GENERALIZED

PENALIZED
FUNCTION 2

f (x) = 0.1
{

sin2(3πx1) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1 + sin2(2πxn)

]}
+

n
∑

i=1
u(xi , 5, 100, 4)

1000 [−5, 5] 0

F13 LEVY
FUNCTION f (x) = sin2(πω1) +

d−1
∑

i=1
(ωi + 1)

[
1 + 10 sin2(πωi + 1)

]
+(ωd − 1)2[1 + sin2(2πωd)

] 1000 [−10, 10] 0

4.2. Simulations

In the experiment, GWO [23], BOA [24], MPA [25], and COOT [26] were selected to
compare with DAEMPSO in order to verify the effectiveness of the new strategy. GWO has
achieved good results in large-scale global optimization algorithm, and BOA, MPA, and
COOT are three recently proposed large-scale optimization algorithms. Compared with
these algorithms, the effectiveness of the DAEMPSO based on coevolution strategy can be
verified. Specifically, the GWO algorithm mimics the leadership hierarchy and hunting
mechanism of grey wolves in nature. Four types of grey wolves, such as alpha, beta, delta,
and omega are employed for simulating the leadership hierarchy. BOA is mainly based
on the foraging strategy of butterflies, which imitates their sense of smell to determine the
optimal value of the function. According to the motion type and velocity of the predator,
MPA has an optimal motion strategy for the predator to maximize the encounter rate with
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the prey. The Coot algorithm imitates the movement patterns of two different birds on the
water surface: in the first stage, the movement of birds is irregular, and in the second phase
the movements are regular. At the same time, the colony moves to a group of leaders to
obtain food supply, and the movement of the end of the colony is in the form of a chain of
coots, each coot moving behind the coots in front of it.

The parameters of the five algorithms are set as follows. That is, the dimensions are
500, 800, and 1000 and the maximum number of iterations is 500. The above algorithms are
run independently 25 times, and the optimal value, average optimal value, and success
rate are recorded. Tables 3–8 shows the test results.

Table 3. Comparison of the optimization results of five algorithms for six functions (500 dimensions).

F1 F2 F3 F4 F5 F6

GWO

Obtained best solution 2.68 × 10−9 4.42 × 104 7.13 × 10−4 1.22 × 10−6 1.87 × 10−7 3.66 × 10−8

Average 1.33 × 10−5 1.02 × 105 6.25 × 10 4.97 × 102 7.82 × 10 1.12 × 10−2

Standard deviation 1.21 × 10−5 8.34 × 104 2.54 × 10 9.85 × 10 3.65 × 10 1.01 × 10−2

Success rate 100% 0 68% 52% 76% 96%

BOA

Obtained best solution 4.83 × 10−15 8.46 × 10−17 1.15 × 10−18 6.18 × 10−6 2.47 × 10−11 1.07 × 10−12

Average 1.28 × 10−11 1.27 × 10−11 6.26 × 10−9 4.98 × 102 1.22 × 102 6.48 × 10−4

Standard deviation 3.04 × 10−11 2.33 × 10−11 5.32 × 10−9 1.88 × 102 7.48 × 10 4.78 × 10−4

Success rate 100% 100% 100% 48% 44% 92%

MPA

Obtained best solution 1.01 × 10−19 1.41 × 10−7 5.51 × 10−8 5.25 × 10−6 1.70 × 10−7 5.33 × 10−10

Average 5.64 × 10−16 2.42 × 103 2.41 × 10−5 4.96 × 102 5.91 × 10 1.13 × 10−3

Standard deviation 4.23 × 10−16 5.35 × 102 4.29 × 10−5 3.12 × 10 8.99 3.89 × 10−4

Success rate 100% 36% 100% 82% 88% 96%

COOT

Obtained best solution 5.82 × 10−46 2.10 × 10−54 8.47 × 10−22 5.97 × 10−9 1.86 × 10−8 5.94 × 10−7

Average 4.33 × 10−44 1.45 × 10−42 3.42 × 10−18 4.98 × 102 7.42 × 10 1.86 × 10−3

Standard deviation 3.89 × 10−44 2.19 × 10−42 3.13 × 10−18 8.48 × 10 2.67 × 10 6.64 × 10−3

Success rate 100% 100% 100% 88% 92% 96%

DAEMPSO

Obtained best solution 1.11 × 10−95 6.67 × 10−73 2.00 × 10−45 7.73 × 10−10 7.90 × 10−9 6.66 × 10−14

Average 6.51 × 10−87 4.79 × 10−66 5.35 × 10−41 2.75 × 10−2 1.91 × 10−1 5.58 × 10−5

Standard deviation 4.45 × 10−87 6.33 × 10−66 7.33 × 10−41 5.34 × 10−2 1.56 × 10−1 5.33 × 10−5

Success rate 100% 100% 100% 88% 92% 96%

Table 4. Comparison of the optimization results of five algorithms for seven test functions
(500 dimensions).

F7 F8 F9 F10 F11 F12 F13

GWO

Obtained best solution 8.38 × 104 1.77 × 10−8 6.22 × 10−9 9.25 × 10−12 2.81 × 10−10 9.17 × 10−7 8.19 × 10−8

Average 1.41 × 105 3.31 × 10 1.55 × 10−4 1.13 × 10−6 6.29 × 10−1 4.23 × 10 3.79 × 10
Standard deviation 5.99 × 104 2.59 × 10 3.34 × 10−4 5.34 × 10−7 2.45 × 10−1 9.38 1.42 × 10

Success rate 0 84% 92% 100% 92% 76% 80%

BOA

Obtained best solution 9.96 × 104 1.82 × 10−18 5.12 × 10−13 7.02 × 10−18 1.16 × 10−12 9.89 × 10−11 9.12 × 10−8

Average 1.90 × 105 9.09 × 10−13 5.47 × 10−9 1.46 × 10−11 1.14 4.99 × 10 4.58 × 10
Standard deviation 6.34 × 104 7.16 × 10−13 3.67 × 10−9 6.55 × 10−11 1.06 1.94 × 10 1.05 × 10

Success rate 0 100% 100% 100% 84% 88% 88%

MPA

Obtained best solution 7.45 × 104 1.82 × 10−16 2.53 × 10−15 7.34 × 10−20 8.48 × 10−9 9.68 × 10−12 7.63 × 10−12

Average 1.17 × 105 9.09 × 10−13 1.53 × 10−9 1.11 × 10−16 2.18 × 10−1 4.56 × 10 3.20 × 10
Standard deviation 6.44 × 104 3.48 × 10−13 1.70 × 10−9 7.09 × 10−16 3.85 × 10−1 1.76 × 10 9.16

Success rate 0 100% 100% 100% 92% 88% 92%

COOT

Obtained best solution 1.15 × 105 3.82 × 10−14 9.32 × 10−19 1.69 × 10−14 3.54 × 10−10 1.19 × 10−12 8.78 × 10−11

Average 1.35 × 105 1.45 × 10−11 8.88 × 10−16 7.21 × 10−11 2.17 × 10−1 5.50 × 10 3.96 × 10
Standard deviation 4.93 × 104 2.76 × 10−11 4.27 × 10−16 2.71 × 10−11 9.80 × 10−2 3.24 × 10 3.32 × 10

Success rate 0 100% 100% 100% 96% 88% 92%

DAEMPSO

Obtained best solution 6.69 × 10−13 1.82 × 10−17 4.85 × 10−23 2.62 × 10−19 5.86 × 10−14 4.31 × 10−16 5.12 × 10−7

Average 2.31 × 10 9.09 × 10−13 8.88 × 10−16 7.77 × 10−16 1.75 × 10−4 6.21 × 10−7 3.84 × 10−4

Standard deviation 1.03 × 10 1.85 × 10−13 6.58 × 10−16 4.72 × 10−16 5.70 × 10−4 1.38 × 10−7 7.81 × 10−4

Success rate 36% 100% 100% 100% 96% 100% 96%
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Table 5. Comparison of the optimization results of five algorithms for six test functions (800 dimensions).

F1 F2 F3 F4 F5 F6

GWO

Obtained best solution 6.18 × 10−9 1.02 × 105 7.13 × 10−7 5.11 × 10−12 7.25 × 10−8 8.20 × 10−8

Average 8.36 × 10−5 2.70 × 105 6.70 × 10 7.97 × 102 1.44 × 102 2.49 × 10−2

Standard deviation 1.36 × 10−5 3.59 × 103 8.24 1.35 × 10 2.97 × 10 1.12 × 10−2

Success rate 100% 0 60% 52% 64% 92%

BOA

Obtained best solution 3.90 × 10−15 6.21 × 10−17 5.06 × 10−15 1.68 × 10−12 4.27 × 10−11 7.81 × 10−9

Average 1.28 × 10−11 1.28 × 10−11 5.68 × 10−9 7.98 × 102 1.97 × 102 6.88 × 10−4

Standard deviation 1.21 × 10−11 6.02 × 10−11 5.35 × 10−9 1.62 × 102 8.89 × 10 8.23 × 10−4

Success rate 100% 100% 100% 68% 80% 96%

MPA

Obtained best solution 6.04 × 10−18 4.11 × 10−6 1.55 × 10−14 5.99 × 10−12 2.10 × 10−11 1.52 × 10−8

Average 5.01 × 10−15 5.08 × 103 4.02 × 10−5 7.95 × 102 1.24 × 102 1.40 × 10−3

Standard deviation 9.73 × 10−15 4.62 × 103 6.76 × 10−5 5.73 × 102 9.73 × 10 9.79 × 10−3

Success rate 100% 60% 88% 64% 56% 92%

COOT

Obtained best solution 2.58 × 10−56 2.10 × 10−64 4.78 × 10−22 7.59 × 10−12 6.81 × 10−8 4.59 × 10−14

Average 5.92 × 10−51 1.27 × 10−53 1.85 × 10−17 6.36 × 103 1.46 × 102 2.91 × 10−3

Standard deviation 4.40 × 10−50 6.48 × 10−51 9.56 × 10−17 2.74 × 103 1.07 × 102 6.30 × 10−3

Success rate 100% 100% 100% 48% 68% 96%

DAEMPSO

Obtained best solution 1.88 × 10−97 3.55 × 10−67 2.63 × 10−45 5.13 × 10−11 9.70 × 10−13 3.66 × 10−9

Average 4.37 × 10−90 2.41 × 10−61 1.44 × 10−36 1.05 × 10−1 1.11 × 10−4 4.11 × 10−5

Standard deviation 8.94 × 10−88 8.15 × 10−60 3.90 × 10−36 9.52 × 10−2 2.63 × 10−5 2.23 × 10−5

Success rate 100% 100% 100% 72% 96% 96%

Table 6. Comparison of the optimization results of five algorithms for seven test functions
(800 dimensions).

F7 F8 F9 F10 F11 F12 F13

GWO

Obtained best solution 1.92 × 105 1.13 × 10−8 8.81 × 10−9 2.95 × 10−12 6.81 × 10−8 1.79 × 10−7 9.18 × 10−8

Average 2.45 × 105 7.15 × 10 1.30 × 10−3 4.23 × 10−2 7.02 × 10−1 7.17 × 10 6.41 × 10
Standard deviation 7.09 × 104 4.58 × 10 6.19 × 10−4 9.58 × 10−3 5.19 × 10−1 3.55 × 10 2.99 × 10

Success rate 0 80% 96% 96% 92% 88% 84%

BOA

Obtained best solution 2.06 × 105 2.18 × 10−16 2.15 × 10−19 7.52 × 10−16 6.11 × 10−8 4.55 × 10−11 9.55 × 10−11

Average 3.15 × 105 9.09 × 10−13 2.22 × 10−14 1.47 × 10−11 1.14 7.99 × 10 7.31 × 10
Standard deviation 2.01 × 105 4.48 × 10−13 5.20 × 10−14 3.83 × 10−11 8.05 × 10−1 5.62 × 10 6.74 × 10

Success rate 0 100% 100% 100% 92% 76% 84%

MPA

Obtained best solution 1.65 × 105 3.52 × 10−15 1.50 × 10−15 4.69 × 10−22 2.48 × 10−9 6.89 × 10−9 8.18 × 10−8

Average 2.09 × 105 1.82 × 10−12 1.81 × 10−9 1.12 × 10−16 3.60 × 10−1 7.68 × 10 6.01 × 10
Standard deviation 1.95 × 105 6.33 × 10−13 5.05 × 10−9 9.27 × 10−17 2.23 × 10−1 3.78 × 10 4.13 × 10

Success rate 0 100% 100% 100% 92% 80% 84%

COOT

Obtained best solution 1.98 × 105 3.51 × 10−17 5.48 × 10−18 4.12 × 10−19 8.15 × 10−9 2.26 × 10−12 8.25 × 10−11

Average 2.54 × 105 9.09 × 10−13 2.22 × 10−14 5.66 × 10−15 5.66 × 10−1 7.98 × 10 6.74 × 10
Standard deviation 9.25 × 104 7.88 × 10−13 5.91 × 10−14 3.75 × 10−15 4.89 × 10−1 5.09 × 10 4.90 × 10

Success rate 0 100% 100% 100% 92% 84% 88%

DAEMPSO

Obtained best solution 6.94 × 10−8 7.50 × 10−17 5.51 × 10−21 7.25 × 10−18 3.65 × 10−13 2.35 × 10−12 3.28 × 10−9

Average 3.48 9.09 × 10−13 8.88 × 10−16 3.33 × 10−16 2.99 × 10−7 6.42 × 10−6 4.50 × 10−2

Standard deviation 2.84 9.24 × 10−13 7.41 × 10−16 9.13 × 10−16 1.35 × 10−7 4.36 × 10−6 2.03 × 10−2

Success rate 44% 100% 100% 92% 100% 100% 96%

As compared with Tables 3–8, when the dimension is set to 500, 800, and 1000 for
high-dimensional complex optimization functions, each optimization algorithm can better
adapt to the peak shape changes of F1 and F6 with the increase of the search area, but it
has poor adaptability for multimodal functions like F7, F12, and F13. That is, the number
of peaks of the function has a great impact on the algorithm convergence. It is shown
that GWO has a local convergence for high-dimensional functions. In particular, BOA
has worse local convergence for F4, F5, F7, F12, and F13. Analysis of the reasons posits
that BOA did not consider the typical characteristics of large-scale optimization problems;
although BOA can divergent the search path in the search process, it is difficult to jump
out of multiple local optimal points of the high-dimensional multimodal functions or high-
dimensional unimodal functions, which leads to the poor performance of the algorithm



Sensors 2022, 22, 1999 13 of 21

in solving large-scale optimization problems. Because the search process in MPA uses a
phased strategy, the search stages cannot be dynamically divided, which leads to poor
performance in the testing process of high-dimensional multimodal functions. COOT does
not have the previous speed parameter in the proposed algorithm, and the location of
each search agent is updated according to the location of the current search agent and the
location of multiple search agents. On the other hand, the proposed algorithm updates a
new position based on topological link motion and random motion in different directions,
and it can converge to the optimal value in most cases. It is noted that DAEMPSO can
adaptively adjust the evolutionary topology according to particle node connection strength
at different stage of evolution, which evolves between the fully-connected topology and the
ring topology by evolutionary rules for different optimization environments. Consequently,
the optimization accuracy of DAEMPSO is significantly higher than that of the above four
optimization algorithms.

Table 7. Comparison of the optimization results of five algorithms for six test functions (1000 dimensions).

F1 F2 F3 F4 F5 F6

GWO

Obtained best solution 2.75 × 10−6 5.93 × 104 3.55 × 10−2 2.61 × 10−2 3.43 × 10−3 8.25 × 10−6

Average 6.68 × 10−4 1.02 × 105 7.13 5.97 × 102 1.87 × 102 3.03 × 10−2

Standard deviation 5.39 × 10−4 9.48 × 104 5.87 2.54 × 102 1.15 × 102 5.02 × 10−2

Success rate 100% 0% 88% 36% 44% 88%

BOA

Obtained best solution 7.15 × 10−13 4.45 × 10−12 8.12 × 10−11 5.51 × 10−5 1.15 × 10−4 4.65 × 10−6

Average 1.29 × 10−11 1.26 × 10−11 6.05 × 10−9 6.18 × 102 2.47 × 102 1.83 × 10−1

Standard deviation 8.01 × 10−12 1.30 × 10-−12 5.83 × 10−9 3.90 × 102 8.94 × 10 1.10 × 10−1

Success rate 100% 100% 100% 32% 44% 84%

MPA

Obtained best solution 6.15 × 10−18 7.64 × 10−8 9.76 × 10−7 3.65 × 10−6 4.38 × 10−4 2.19 × 10−8

Average 1.01 × 10−14 1.41 × 10−4 5.51 × 10−4 5.95 × 102 1.70 × 102 1.36 × 10−1

Standard deviation 5.71 × 10−14 7.95 × 10−5 1.46 × 10−4 2.41 × 102 1.25 × 102 5.29 × 10−1

Success rate 100% 100% 100% 44% 48% 92%

COOT

Obtained best solution 9.69 × 10−36 7.52 × 10−39 2.66 × 10−29 2.41 × 10−7 7.27 × 10−9 3.65 × 10−10

Average 5.82 × 10−26 2.10 × 10−34 8.47 × 10−22 5.97 × 102 1.86 × 102 5.94 × 10−4

Standard deviation 5.59 × 10−26 6.84 × 10−34 3.36 × 10−22 2.86 × 102 1.37 × 102 1.44 × 10−4

Success rate 100% 100% 100% 48% 48% 96%

DAEMPSO

Obtained best solution 1.26 × 10−82 3.92 × 10−62 1.34 × 10−48 6.16 × 10−9 9.38 × 10−10 7.46 × 10−6

Average 1.11 × 10−77 6.67 × 10−57 2.00 × 10−35 3.15 × 10−1 7.90 × 10−1 6.66 × 10−2

Standard deviation 7.46 × 10−76 6.10 × 10−57 2.76 × 10−35 1.43 × 10−1 4.95 × 10−1 3.11 × 10−2

Success rate 100% 100% 100% 84% 88% 92%

Table 8. Comparison of the optimization results of five algorithms for seven test functions (1000 dimensions).

F7 F8 F9 F10 F11 F12 F13

GWO

Obtained best solution 2.26 × 105 3.46 × 10−6 2.72 × 10−9 9.47 × 10−7 4.71 × 10−8 4.79 × 10−8 4.68 × 10−11

Average 3.13 × 105 1.33 × 102 3.13 × 10−3 9.25 × 10−2 8.13 × 10−1 9.17 × 10 8.19 × 10
Standard deviation 1.96 × 105 1.12 × 102 2.23 × 10−3 5.63 × 10−2 5.05 × 10−1 7.15 × 10 5.36 × 10

Success rate 0 32% 88% 92% 96% 76% 80%

BOA

Obtained best solution 1.37 × 104 7.16 × 10−15 9.49 × 10−19 5.68 × 10−14 5.19 × 10−5 2.29 × 10−6 8.83 × 10−8

Average 3.97 × 105 1.82 × 10−12 5.12 × 10−9 1.41 × 10−11 1.16 9.89 × 10 9.12 × 10
Standard deviation 1.84 × 105 4.45 × 10−12 3.10 × 10−9 1.65 × 10−11 9.49 × 10−1 4.12 × 10 2.34 × 10

Success rate 0 100% 100% 100% 96% 88% 88%

MPA

Obtained best solution 1.01 × 105 5.99 × 10−19 8.11 × 10−15 7.00 × 10−18 3.31 × 10−10 6.39 × 10−8 9.77 × 10−5

Average 2.86 × 105 1.32 × 10−13 2.53 × 10−9 1.11 × 10−16 4.48 × 10−1 9.68 × 10 7.63 × 10
Standard deviation 1.34 × 105 6.73 × 10−13 1.06 × 10−9 4.95 × 10−16 3.34 × 10−1 6.38 × 10 6.06 × 10

Success rate 0 100% 100% 100% 84% 88% 88%

COOT

Obtained best solution 2.88 × 105 8.50 × 10−18 4.92 × 10−18 6.50 × 10−15 6.68 × 10−5 6.72 × 10−6 1.82 × 10−11

Average 3.40 × 105 3.82 × 10−11 9.32 × 10−14 1.69 × 10−14 5.54 × 10−1 1.19 × 102 8.78 × 10
Standard deviation

Success rate 0 100% 100% 100% 88% 72% 84%

DAEMPSO

Obtained best solution 8.85 × 10−7 4.90 × 10−15 1.99 × 10−25 8.34 × 10−22 5.54 × 10−10 1.29 × 10−9 7.65 × 10−4

Average 1.14 × 10 1.82 × 10−12 8.88 × 10−16 2.22 × 10−2 5.86 × 10−7 4.31 × 10−2 5.12 × 10−3

Standard deviation 1.04 × 10 7.96 × 10−13 6.04 × 10−16 1.92 × 10−2 4.99 × 10−7 3.67 × 10−2 4.98 × 10−3

Success rate 32% 100% 100% 92% 100% 92% 96%
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The test function is a large-scale global optimization algorithm test function set,
which contains single-mode and multi-mode characteristics. From the results shown
as Figures 6 and 7, we can see the effectiveness of the DAEMPSO algorithm in solving
large-scale optimization problems, which are determined by the characteristics of dynamic
topology connection based on performance evaluation of particle collaboration. It divides
the population into model and ordinary particles, and the two kinds of particles continu-
ously adjust their node connection strength in order to complete the population’s evolution
from fully-connected topology at the early stage of evolution to the ring-like topology at the
later stage. Noticeably, in test functions F4, F12, and F13, both BOA and MPA algorithms
use the coevolutionary strategy of population grouping, where due to the strong local
search ability of dynamic multigroup strategy and the sacrifice of global search ability, the
convergence ability of the algorithm is not strong, so the test results of BOA and MPA are
not good. Moreover, COOT converges in multiple test functions, but fails to converge at F7,
F12, and F13. Generally, when the dimension is 1000, the above algorithm’s convergence
performance is similar for F1, F6, F9, and F10, the convergence speed is faster for F7, F9, and
F10. But for F5, F7, F12, and F13, the performance of DAEMPSO is obviously better than
other algorithms, in which the evolutionary topology can be adjusted adaptively accord-
ing to the connection strength of particle nodes, and rich evolution rules are formulated
considering the characteristics of large-scale complex optimization problems during the
implementation of the algorithm.
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Figure 6. Convergence curves of five optimization algorithms for function (1000-dimension) F1–F13.
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4.3. Statistical Analysis of DAEMPSO

This section uses the Bonferroni–Dunn test to analyze the competitiveness of DAEMPSO
with respect to its other competitors. In order to have a reliable test, this study categorized
the inspection data into three groups. The three groups of data are the basic test functions
of different algorithms in 500, 800, and 1000 dimensions, which are ranked according
to the running results of the convergent average. This test demonstrates that there is a
significant difference in performance between two algorithms if the difference in average
ranking of methods is greater than the critical difference (CD). Figure 8 shows the average
ranking of methods in different dimensions with a significance level of 0.1. DAEMPSO can
significantly outperform those algorithms, whose average ranking is above the threshold
line shown in the figure in 500 and 800 dimensions. The threshold line of each group is
identified by its color. As is observable from the figure, DAEMPSO is ranked first and has
significant advantages over other algorithms.
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4.4. Result Analysis

As the aforementioned simulation results, one can observe that the DAEMPSO algo-
rithm shows significantly superior convergence performance for multidimensional F1–F6
and F7–F13 in comparison to other improved methods such as GWO, BOA, MPA, and
COOT. On the other hand, it is noted that the other aforementioned methods may fail to
retain their convergence speed with the increasing dimensions. In particular, as shown
in Figures 6 and 7, the presented method can guarantee a well-balanced performance
for the exploratory and exploitative propensities on problem’s topographies with high
dimensions. Moreover, these comparative results show even worse ability between several
methods such as the GWO, BOA, MPA, and COOT, with high-quality solutions found by
DAEMPSO. Consequently, the dynamic coevolution behaviors are of great importance for
the high-dimension problems. To address this issue, some efforts have been advanced to
exploit the ability of adaptive dynamic topology evolution in different evolution stages
in Tables 3–8. It is shown that DAEMPSO is validated to adjust node connection strength
to guarantee the evolutionary topology adaptively in different dimensions. The results
also support the superior exploratory strengths of DAEMPSO for multimodal and hybrid
composition landscapes. Moreover, the results for 1000 dimensions functions in Tables 3–8
also disclose that the improved convergence performance can be achieved for the proposed
algorithm in comparison to other conventional methods.

The following features are provided to demonstrate the efficacy of the proposed methods:

1. Division of superior and inferior populations with regard to the average location of
particles can encourage the exploratory behavior of DAEMPSO in the initial iterations.

2. Node connection strength has a dynamic randomized time-varying nature to guaran-
tee the adaptive adjustment of DAEMPSO exploration and exploitation patterns.

3. Different topological evolution patterns according to the connection strength of par-
ticle nodes enhance the exploitative behaviors of DAEMPSO when performing a
local search.

4. The progressive topological coevolution scheme can be used to drive the model
particles to find the optimal position step by step, so as to improve the quality of the
solution and enhance the iterative ability of the algorithm.

5. A series of adaptive adjustment strategies, based on H and C for the DAEN model
can inspire particles to select the best topological link relationship. Such ability also
has a constructive impact on the exploitation potential of the algorithm.

5. Conclusions

In this paper, a dynamic adaptive coevolutionary strategy is proposed for large-scale
complex optimization problems, where particles can be divided into model particles and
ordinary particles. Thus, the model particles can guide the whole population to evolve
toward the optimal value direction, the ordinary particles can guide the population to
explore new search directions. According to the cooperation ability between particles,
the two kinds of particles continuously adjust their node connection strength in order to
complete the population’s evolution from fully-connected topology at the early stage of
evolution to the ring-like topology at the later stage. The contribution of this paper is
to adjust the evolutionary topology adaptively in different evolution stages according to
the connection strength of particle nodes. The dynamic evolution of connection topology
can solve the problem of multiple decision variables and correlation among variables,
while population dynamic grouping can solve the problem of multimodality and algorithm
convergence too fast and fall into a local optimum. Finally, the proposed algorithm is
compared with other algorithms in benchmark function set testing to verify the effectiveness
of the results. However, there are still some problems to be solved in future work.

1. Parameter adjustment: the new algorithm does not discuss the parameter adjustment
to increase the adaptive mechanism of parameters and reduce the complexity of
the algorithm.



Sensors 2022, 22, 1999 20 of 21

2. Practical application: the algorithm proposed in this paper has good results on the
test platform, but the results in practical application have not been verified, so the
effectiveness of the algorithm in practical optimization problems such as large-scale
production line collaborative operation needs to be verified.
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