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Abstract: In this paper, I propose a bird eye view image detection method for parking areas and
collision risk areas at the same time in parking situations. Deep learning algorithms using area
detection and semantic segmentation were used. The main architecture of the method described in
this paper is based on a harmonic densely connected network and a cross-stage partial network. The
dataset used for training was calibrated to four 190◦ wide-angle cameras to generate around view
monitor (AVM) images based on the Chungbuk National University parking lot, and an experiment
was performed based on this dataset. In the experimental results, the available parking area was
visualized by detecting the parking line, parking area, and available driving area in the AVM
images. Furthermore, the undetected area in the semantic segmentation as a collision risk area was
visualized in order to obtain the results. According to the proposed attention CSPHarDNet model,
the experimental results were 81.89% mIoU and 18.36 FPS in a NVIDIA Xavier environment. The
results of this experiment demonstrated that algorithms can be used in real time in a parking situation
and have better performance results compared to the conventional HarDNet.

Keywords: autonomous driving; parking area segmentation; collision risk area; image recognition;
deep learning

1. Introduction
1.1. Research Background

For a long time, camera-based object recognition technology has been studied through
digital image processing. Recently, with the advent and development of deep learning and
neural networks, there have been tremendous developments in the field of computer vision.
Among them, camera-based object recognition technology is an important research field for
autonomous driving; therefore, the autonomous driving field has also experienced much
development. With the development of computer vision based on deep learning, many
algorithms for detecting moving objects, such as pedestrians and vehicles, and stationary
objects, such as signs and obstacles, have emerged. Object classification is the most basic
field and involves algorithms that classify objects by recognizing them in images. Object
detection involves algorithms that detect objects in an image or video using a bounding
box. Object segmentation involves algorithms that group together similar parts of an image
that belong to the same class. In addition, there is image captioning, which describes
an image as text, and object tracking, which tracks an image. In this way, studies on
image-based cognitive algorithms have progressed significantly since deep learning, and
research on object detection, in particular, has shown the greatest development in the field
of autonomous driving.
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In this study, in an autonomous parking scenario, four 190◦ vehicle cameras were
calibrated, and, using an AVM-based deep learning algorithm, the parking area was
investigated via the detection of parking lines, as well as collisions with other fixed objects,
such as walls and parked cars. Moreover, a study was conducted to detect the risk area
through the semantic segmentation method.

In parking lot data-based semantic segmentation labeling, mainly used in this study, if
RGB is set on the object to be detected, ground truth is created, deep-learning-based learning
is performed, and segmented inference results can be created. Thereafter, RGB-based object
detection can be performed through image processing. For the system configuration for
semantic segmentation, a harmonic densely connected network (HarDNet) [1] structure was
used to compensate for the lack of real-time performance due to the excessive amount of
DenseNet computation [2]. A cross-stage partial network [3] was used to reduce the amount
of computation. In addition, attention was added to each block to improve the overall
image segmentation and performance for each class. The parking area and collision risk
area—detected through semantic segmentation—were visualized in AVM using OpenCV.

Network learning was performed by adjusting the loss function, optimization, and
data augmentation, and the experimental results were obtained through experiments
on indoor and outdoor environments and an integrated experiment based on the best-
performing learning technology. For network optimization, I learned that, by using AMP
and using ONNX-based TensorRT for Jetson Xavier, I could improve the frames per second
(FPS) by more than twofold.

1.2. Research Purpose

Many studies have been conducted that propose algorithms to improve on previous
studies to detect parking areas in autonomous parking. In a previous study, an algorithm
was used to find a parking area using object detection and to distinguish whether or not
parking was possible using object classification for the found area. Most representatively,
like VPS-Net [4], a previous study detected all parking surfaces using object detection,
and had a classification structure that was able to distinguish available and impossible
parking surfaces from among detected parking surfaces. The main proposals of our study
are listed below:

• Unlike the object detection method, based on the semantic segmentation algorithm
with a simple structure, the algorithm proposed in this paper can simultaneously
detect the drivable area, parking area, and parking line to essentially classify the
parking and non-parking areas. It is an algorithm that can even detect areas with
potential collision risks, such as walls, columns, parked vehicles, and pedestrians;

• In this study, a simpler model was investigated in an end-to-end method using se-
mantic segmentation without using various algorithms. In addition, a study was
conducted to detect not only the parking space but also the collision risk area by
using the undetected part after detecting the parking space, parking line, stop bar, and
drivable space;

• This study also includes an experiment to improve the performance through various
techniques with the same architecture in the process of area detection for autonomous
parking. First, experiments were conducted through four types of data augmentation
to improve the performance due to the lack of training data. Then, the experiment was
conducted while adjusting the loss function and optimizer, and the loss function and
optimizer that yielded the best results were used. In addition, optimization studies
capable of reducing the memory and learning speed during the learning process in
order to infer faster inferences after learning is completed were also conducted.
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2. Related Work
2.1. Segmentation Networks

Semantic segmentation is largely classified into the encoder and decoder. Similar to
classification, the encoder detects a feature map through convolution and classifies the
input image; the decoder plays a role in restoring the class-classified feature map to the
size of the original input image. In this study, the encoder creates a network structure
using DenseNet, and the decoder recovers the size of the input image through bilinear
interpolation. Interestingly, the semantic segmentation method was commercialized with
the advent of FCN [5], which changed the fully connected layer to 1 × 1 convolution layers
for class division using a CNN-based VGGNet [6] network. Net [7] and PSPNet [8], with
an improved performance, have emerged, and use feature maps of various scales, with the
pyramid pooling module and ICNet [9] using various image scales.

In this paper, the proposed—implemented—network is based on DenseNet, HarDNet,
and CSPNet. DenseNet is a structure that connects the output feature map from the
previous layer through the input and channel sum of the next layer, so that the feature
maps of each layer are densely connected. Since it does not use many channels like ResNet,
it offers a good performance with a minimum number of channels. The most significant
feature of DenseNet is that it connects the feature maps of all layers and has a structure
that connects the feature maps of the previous layer to the feature maps of all subsequent
layers. This structure solves two problems. First, most CNN models that appeared before
DenseNet had a problem in that the weight of the feature map was not transmitted to the
next feature map as the layer deepened. DenseNet solved this problem with a structure in
which all layers are connected. Moreover, since the initial value is transmitted to the last
layer, the gradient loss problem is also alleviated.

Another characteristic of DenseNet is that the numbers of parameters and compu-
tations are minute. DenseNet uses a small number of channels since all the layers are
connected; therefore, using a large number of channels will result in extensive computation.
HarDNet is a structure proposed by DenseNet and has fewer channels and parameters.
The implementation speed is slow and difficult to use. Therefore, in this study, HarDNet
was used. In HarDNet, some of the feature maps of each layer are connected and the size
of the channel is formed in a harmonic manner. The most essential part of the HarDNet
structure can be found in the output of the harmonic-type block structure.

In an even-numbered layer of blocks, the channel size is given to k (growth rate) to
increase the size of the channel, and a constant channel size is maintained in the odd-
numbered layers. In the output of one block, only the channels of the feature maps of
odd-numbered layers are summed and passed on to the next layer. Here, the feature maps
of even-numbered layers with a large size do not enter the output because of the weight.

As neural networks develop, studies that prove that the performance improves as
they become deeper and wider have emerged, and researchers have studied deep and
wide architectures accordingly. As a result, researchers began attentively studying how to
reduce the amount of computation, and the advent of CSPNet made it possible to reduce
the weight of many algorithms. CSPNet has a simple structure. In DenseNet-based CSPNet,
only half of the channel of the input feature map is calculated through the DenseNet block;
the other half is transferred to the transition layer by summing the channels with the output
feature map of the block.

Considering CSPNet intuitively, it is understandable that the amount of computation
is reduced since only half of it is calculated; however, there is a lack of understanding of
how to maintain the performance. The CSPNet paper also showed that the amount of
computation was reduced through various experiments. However, the proof related to the
maintenance of the performance could not be confirmed.
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2.2. Receptive Field

The semantic segmentation method classifies the class by approaching each pixel
differently from object detection, which is detected in the form of a rectangular box when
a class-categorized object is detected. Since the class is classified by approaching in pixel
units, it has the advantage of being able to distinguish the class more precisely than detec-
tion in the form of a rectangular box. However, high-performance hardware is required
for autonomous vehicles that require real-time performance, as it requires substantial com-
putation. Therefore, the semantic segmentation method is being extensively conducted
on performance and convolution techniques that can reduce the amount of computation.
Among them, many studies using the receptive field have been conducted.

The receptive field can be thought of as the size of the kernel viewed at a time during
convolution. Therefore, if the receptive field is large, a large number of areas can be
calculated at once, improving the overall division performance. However, the accuracy of
detecting the object to be distinguished is low, and, recently, a 3× 3-sized kernel was almost
fixed, and the convolution calculation was performed. Therefore, dilated convolution [10],
which can secure a larger receptive field with the same amount of computation, and depth-
wise separable convolution [11], which divides channel information and spatial information
and merges the output values into one, are convolution techniques that can reduce typical
amounts of computation.

2.3. Attention

Attention, used in the algorithm proposed in this paper, is an algorithm derived from
LSTM. The vanishing gradient problem, which is the most prominent problem in RNN,
occurred, and information loss occurred when all information was compressed into a vector
in a single fixed size. Therefore, in order to solve the problem, i.e., the accuracy of the output
sequence decreases when the input sequence becomes longer, the encoder emphasizes the
part of the input word related to the word to be predicted at the corresponding point in
the entire input sentence in the encoder each time the decoder predicts the output word.
Importantly, attention was able to perform this task.

Attention—in image processing—has received little attention. Attention in image
processing has been used substantially in the sequence structure to find the context that the
model should focus on during the process or in the video. However, with the advent of
self-attention [12], the concept of attention has been expanded. [13] It was used to refer to
focusing on a specific part and began to be applied to traditional image algorithms. Even
in the structure proposed in this paper [14], the performance of the algorithm is improved
by using channel attention and spatial attention [15] at the end of one block.

3. Calibration
3.1. Camera Calibration

To develop an algorithm using a camera, the first step is to correct camera distor-
tion. If the algorithm is developed without correcting the distortion, the accuracy is
lowered because a distorted object is detected. Due to the nature of the camera lens, distor-
tion is unconditionally generated. First, to correct this, there are two types of distortion:
(1) radial distortion and (2) tangential distortion. First, radial distortion is caused by the
refractive index of the convex lens. The distortion originates from the distance from the
center. Tangential distortion is distortion that occurs in the process of assembling the
camera because the image sensor and the camera lens are not horizontal or the center point
is not aligned. Therefore, a process known as camera calibration obtains the position where
points in 3D are projected through a lens, and reconstructs the 3D spatial coordinates from
the image coordinates.
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As can be seen in the camera coordinate system, the feature points in the three-
dimensional space are projected onto the two-dimensional image plane.
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Equation (1) is the pinhole camera transformation model. By looking at Equation (1),
it is converted into the pixel coordinate system projected onto the image plane through A
and [R|t] in the 3D world coordinate system, where A is an intrinsic parameter and [R|t]
is an extrinsic parameter. Since the internal parameters refer to the internal parameters
of the camera, such as the focal length and center point of the camera, calibration was
performed only once during the experiment. In contrast, since the external parameters vary
depending on the environment, such as the height and direction of the camera, and since
the experiment was conducted in an environment without a tolerance correction room, the
external parameters were corrected whenever the environment changed.

The camera’s internal parameters include the focal length, main point, and asymmetry
coefficient. Here, the asymmetry coefficient indicates the degree of inclination of the
image sensor. Since modern cameras do not consider the asymmetry coefficient, only the
focal length and the main point need to be corrected. The focal length is the distance
between the camera lens and the image sensor. Among the parameters corresponding to
A in Equation (1), it corresponds to fx and fy. If the focal length of the lens is short, the
angle of view becomes larger as the size of the object becomes smaller with a wide-angle
lens. Among the parameters corresponding to A in Equation (1), cx and cy are the main
points and denote the center of the camera lens. Here, the center of the lens is given by the
coordinates of the foot of the water line that is lowered from the pinhole to the image sensor.

In Equation (1), s is the scale value resulting from the influence of homogeneous
coordinates. The external parameter corresponding to [R|t] refers to a transformation
relationship that occurs through rotational transformation and translation between the
camera coordinate system and the world coordinate system. In the case of an external
parameter, it is not a parameter that the camera intrinsically has; therefore, external pa-
rameters depend on the direction or height. In this study, the external parameters were
corrected by visually changing the roll, pitch, and yaw through the four images—before,
after, left, and right—after the internal parameters were corrected.

3.2. Bird Eye View Image Registration

To produce AVM images, calibration was performed using four Sekonix 190◦ wide-
angle cameras. As shown in Figure 1, the distortion of the image received from the four
wide-angle cameras is removed. Since a wide-angle view camera is designed with a wide-
angle lens, it is difficult to model from a general perspective. A fisheye lens system with
distortion removal [16] and a linear distance was used. Fisheye transparency is used to
find the distortion point, and the final pixel coordinate vector u, v is obtained to remove
the distortion. A single AVM calibration image was created through registration.
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4. Proposed Area Detection Algorithm
4.1. Network Structure of Semantic Segmentation

In this paper, the HarDNet algorithm with a good performance and low computational
requirements was used to detect the parking area and collision risk area. Although the
amount of computation was greatly reduced, substantial computation was required in the
network structure to secure a real-time performance in autonomous parking situations.
CSPNet was applied to HarDNet. As in the existing algorithm, when the size of the feature
map channel is reduced by 1/2, the performance is reduced by more than 5%, and the
amount of computation is reduced by setting the size of the feature map channel to 2/3,
which experimentally minimizes the performance degradation.

In Figure 2, k is convolution channel, m is the channel weight, and the output structure
of CSPHarDNet [17], proposed in this paper, is shown. Based on the fusion first method
of CSPNet, the input of the feature map in the figure is divided into 2/3- and 1/3-sized
channels; the 2/3 channel performs the convolution operation with HarDNet, and the
1/3 channel is the last feature that has been calculated. After performing 11 convolutions
with the map and channel sum, the feature map is output as the next block by summing
the channels with the feature maps of odd-numbered layers.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 1. AVM calibration and registration. 

4. Proposed Area Detection Algorithm.  
4.1. Network Structure of Semantic Segmentation  

In this paper, the HarDNet algorithm with a good performance and low computa-
tional requirements was used to detect the parking area and collision risk area. Although 
the amount of computation was greatly reduced, substantial computation was required 
in the network structure to secure a real-time performance in autonomous parking situa-
tions. CSPNet was applied to HarDNet. As in the existing algorithm, when the size of the 
feature map channel is reduced by 1/2, the performance is reduced by more than 5%, and 
the amount of computation is reduced by setting the size of the feature map channel to 
2/3, which experimentally minimizes the performance degradation. 

In Figure 2, 𝑘 is convolution channel, 𝑚 is the channel weight, and the output struc-
ture of CSPHarDNet [17], proposed in this paper, is shown. Based on the fusion first 
method of CSPNet, the input of the feature map in the figure is divided into 2/3- and 1/3-
sized channels; the 2/3 channel performs the convolution operation with HarDNet, and 
the 1/3 channel is the last feature that has been calculated. After performing 11 convolu-
tions with the map and channel sum, the feature map is output as the next block by sum-
ming the channels with the feature maps of odd-numbered layers. 

 
Figure 2. The proposed CSPHarDNet structure. 

Figure 2. The proposed CSPHarDNet structure.



Sensors 2022, 22, 1986 7 of 19

The structure of the decoder is the same as the decoder used in HarDNet, and the
size of the input image is enlarged by using bilinear interpolation [18], which enlarges the
image size by N times.

Figure 3 is an architectural structure using attention to improve the performance in
CSPHarDNet. In order to improve the performance of the class, in this study, a channel
attention block using MLP and pooling and a position attention block using MAX and
pooling are created and applied to the feature map before moving on to the next block after
the CSPHarDNet block is completed and passed to the next block.
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Algorithm 1 The proposed final attention HardNet

1. Input: input channel
2. Output: output channel O
3. Channel layer k, weight value m
4. For HardNet block do
5. If k is odd number then
a. k × m
6. end
7. If k is even number then
a. k × (m× n)
8. end
9. end
10. O = {odd number k1 + . . . odd number kn}
11. Channel attention = MLP(Avgpool(O) + MLP(Maxpool(O)
12. Position attention = f 7×7(Avgpool(O)Maxpool(O))
13. O = channel attention + Position attention

As can be seen in the pseudocode above, the proposed algorithm maintains the
minimum computational complexity by creating a final feature map with the sum of
channels with a small channel size, and improves the accuracy by channel attention using
MLP, and position attention using convolution.

4.2. Network Learning Methods

In order to learn the proposed network, experiments were conducted while various ac-
tivation functions, loss functions, and optimization techniques were adjusted. Furthermore,
the algorithm that showed the best performance will be explained.

During learning, an input is received and passed through a nonlinear function before
being passed to the next layer, and the function used at this time is known as an activation
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function. Recently, most activation functions use ReLU, which has a value of 0 for negative
numbers and infinite values for positive numbers; however, the proposed network uses
Mish [19], which was published in 2019. The positive part of Mish, which can be expressed
as Equation (2), extends to infinity (similar to ReLU) to avoid saturation, and the negative
part allows for some negative non-zero values to emphasize the slope value of the function.

f (x) = xtanh(so f tpuls(x)) = xtanh(ln(1 + ex)) (2)

The loss function is an indicator of the learning state and represents the difference
between the desired output value and the model output value. Learning is the process of
finding weights and biases that minimize the loss function. A common loss function is
cross-entropy.

Cost = −
C

∑
k=1

tk log(yk) (3)

The cross-entropy error can be expressed as Equation (4). The tk value is a one-hot
encoded vector, and the output value yk is multiplied by the natural logarithm. Assuming
that the correct answer is 1, the error converges to 0 as it approaches the correct answer.
Conversely, as the distance from the correct answer increases, the error increases, and a
greater penalty is given as the distance from the correct answer is increased through the
cross-entropy error.

Cost = −
C

∑
k=1

(1− yk)
γtk log(yk) (4)

Focal loss [20] is used in the proposed network. Focal loss adds (1− yk)
γ from the

existing cross-entropy error to apply more weight to a difficult-to-classify problem than to
an easy-to-classify problem, resulting in a good performance in object detection.

The optimization technique refers to a technique that minimizes the loss function
through parameter updating. The most commonly used optimization techniques include
stochastic gradient descent (SGD) and Adam (Adagrad + RMSProp). In the network
proposed in this study, AdamW [21] was used. This included Equation (5), Equation (6),
Equation (7), Equation (8), and AdamW’s formula. α is learning, β is the moment, and M(t)
and V(t) are the exponential moving average.

M(t) = β1M(t− 1) + (1− β1)
∂

∂w(t)
(Cost(w(t)) + wxt−1) (5)

V(t) = β2V(t− 1) + (1− β2)
∂

∂w(i)
(Cost(w(t)) + wxx−1)

2 (6)

M̂(t) =
M(t)

1− βt
1

V̂ =
V(t)

1− β2t (7)

W(t + 1) = W(t)−

α ∗ M̂(t)√
̂V(t) + ε

+ wxt−1

 (8)

AdamW can be considered as adding weight decay to the existing Adam. By observing the
equation, AdamW’s formula is the same as Equations (5), (6), (7), and (8). Equations (5) and (6)
are estimates of the moment of the gradient, respectively, of the exponential mean and the
mean of square values. Equation (7) is used for bias correction for the two equations, and
Equation (8) updates W, a weight, by initializing M and V to 0. For the hyperparameters
used in the formula, α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8 were applied. Unlike
Adam, wxt−1 is added for the weight update so that the weight decay effect can be seen.
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4.3. Data Augmentation and Network Optimization

Data augmentation [22] is used to artificially change the image to the extent that it
can be used for learning. In this study, four types of data augmentation were used, as
shown in Figure 4. VerticalFlip and HorizontalFlip are techniques that reverse the top and
bottom and left and right of the image; RandomCrop is a technique that enlarges only
a part of the image; ElasticTransfrom is a technique that gives elastic noise to the image.
Inverting or adding noise to the image helps to prevent overfitting and helps generalization
learning; however, in this study, the amount of data was insufficient because the data were
directly created. Therefore, in order to collect sufficient data, data augmentation was used
to add data.
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Since autonomous driving requires real-time image processing according to the mov-
ing speed of the vehicle, the speed of the algorithm executed in the embedded system is
important. Therefore, network optimization is essential for deep learning in fields where
real-time image processing is important. First, automatic mixed precision (AMP) [23],
which can efficiently use GPU in the deep learning process, is a learning method using
floating-point arithmetic.

In the floating-point method, there is 1 bit, indicating the sign at the beginning, and,
in the case of Float32 (single precision), the 8-bit exponent and 23-bit mantissa are stored;
in the case of Float16 (half precision), the 5-bit exponent and 10-bit mantissa are stored. If
Float32 is used, calculation takes a long time since the number of bits used for the operation
is high; however, the precision is high. Conversely, if Float16 is used, the calculation time is
short, but the precision is lowered. Currently, Float32 is used for deep learning. If operating
with Float16, storage space can be saved and the operation can be accelerated. However,
since the precision is low, AMP is an algorithm that uses Float32 and Float16 together to
increase speed and maintain precision.

The operation method of mixed precision when learning the network is shown in
Figure 5. First, to use FP16 for forward and backward operations, I create an FP16 copy
weight for the FP32 weight. Then, a forward pass is performed using the FP16 copy weight.
I cast the predicted value of FP16 calculated by the forward pass to FP32. The FP32 loss
is calculated through the FP32 prediction value and multiplied by the scaling factor. The
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scales the FP32 loss to FP16 and then backwards using the scaled FP16 loss, and the gradient
is calculated. Finally, I cast the FP16 gradient to FP32, divide it by the scaling factor, and
update the FP32 weight with the FP32 gradient. If this is carried out, the FP32 weight is
continuously stored, and, since the FP16 copy weight performs forward and backward
operations, it is possible to maintain precision and reduce memory.
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After reducing the training time and memory by using AMP, the trained model is
ported to an actual embedded device. When porting to embedded devices, models can be
optimized, and TensorRT is a function used in this case. TensorRT improves the inference
speed on NVIDIA GPUs by optimizing models trained with NVIDIA-provided APIs. Due
to the fact that TensorRT can be used as an API, it can be used without learning CUDA.

TensorRT, like AMP, lowers precision in order to speed up inference. In the case of
TensorRT, the precision of FP32 data can be reduced to FP16 and INT8 data types. In
this study, the model accuracy was not affected since the experiment was conducted by
lowering it to FP16; however, additional calibration is required to lower the precision to the
INT8 data type.

In order to infer using TensorRT, there are four simple steps, as shown in Figure 6.
Since Pytorch is used in this paper, the trained model is defined as the PyTorch model.
First, in order to use C++-based TensorRT, the PyTorch model learned based on Python is
converted through Onnx. This converted Onnx file can be converted into a TensorRT file,
and inference can be made in TensorRT through the converted TensorRT model.
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5. Experiment
5.1. Experimental Environment and Evaluation Method

Table 1 shows the composition of the training dataset and validation dataset created
for network training and validation. Four hundred training data points, 100 validation
data points, and a total of 500 AVM images and label images were created. Due to the fact
that the 400 training data points were too small to reliably verify the performance of the
model, learning was conducted with a total of 1600 images through data augmentation.
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Table 1. AVM image-based parking area—travelable area dataset.

Image Training Data Test Data

AVM Image 1600 100

Label Image 1600 100

In order to accurately verify the model based on the learned model, the National
Information Society Agency DB was additionally used. NIA DB is a parking scenario
DB created by NIA. The front dataset consists of a total of 20 objects with 120 images of
1920 × 1080 size, and the AVM dataset was created with 120 images consisting of a total
of 7 objects with 1280 × 720 images. For performance verification, 1470 AVM images of
1280 × 720 size were used for verification.

Figure 7 shows an example photo of labeling data. The first row is the training image,
and the second row is the labeled ground truth image. In the ground truth image, red is
the parking line, green is the parking area, and blue is the wireless charging pad not used
in this study. Purple refers to the driving area and light purple refers to the stopper. In
the ground truth image, the parking area is an area where a vehicle can be parked without
collision, and the unlabeled area is defined as a collision risk area.
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Figure 7. Examples of data labeling.

For the training image size, the original AVM image of 1,024,939 was used as-is; however,
since the network is large and the image size is large, four GPUs were used for training.
The AMP test was conducted only on a high-performance PC (Table 2). The GPU used in
the experiment was a GeForce RTX 3090. Moreover, the AMP algorithm was used, and
the learning speed and memory usage were compared to those when the experiment was
conducted.

Table 2. High-performance PC specifications.

CPU Intel Core i9-10900x CPU 3.70 GHz

RAM 128 GB

OS Ubuntu 18.04LTS

GPU GeForce RTX 3090 × 4
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In order to assess the performance of attention in the CSPHarDNet architecture pro-
posed in this paper, I visualized the feature map of position attention and channel attention
added to each block using the hook function provided by PyTorch. The hook function
can visualize the feature map result of the desired layer during training. Figure 8 is a
visualization of the feature map of the final layer. In the initial Epoch 1, it is impossible to
evaluate which part was learned since there was minimal learning; however, in Epoch 400,
it can be visually confirmed that the six objects to be detected are learned, as learning is
in progress.
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The final test was conducted on a NVIDIA Jetson Xavier, and the proposed network—
based on the ImageNet Pretraining model in Table 3—was trained on four GPUs, and a
4GPU model was created. Moreover, a 1GPU model was trained on 1 GPU based on the
pre-trained 4GPU model, creating the final model. Afterwards, Onnx was used to change
to a C++-based model, converted into a TensorRT file, and a model that can be inferred
from TensorRT was created and tested on an NVIDIA Jetson Xavier. Lastly, for verifying
the proposed network accuracy, IoU (intersection over union)—the most used metric in the
semantic segmentation field—was used.

Table 3. Object detection performance and speed evaluation table.

Model mIoU(%) FPS(PC) FPS(Xavier) Cross Entropy-
mIoU(%)

Focal Loss
mIoU(%)

ReLU
mIoU(%)

Mish
mIoU(%)

Attention
CSPHarDNet 83.88 17.33 17.45 83.24 83.79 83.01 83.79

5.2. Experimental Results

In order to demonstrate the experimental results, learning was carried out with the
proposed network using the training data of 400 AVM images acquired from the parking
lot of Chungbuk National University. The obtained learning data and evaluation data
were acquired at the same location; however, data acquired at different points in time were
used for the learning data and evaluation data. Figures 9 and 10 show the results of the
experiment indoors and outdoors, respectively. The first image is the original image, the
second is the ground truth, and the third is the verification result. This study was carried
out to obtain results from a parking situation, and only the learning data in the parking
situation were learned; the experimental results were obtained by acquiring the verification
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data in a similar environment. Therefore, it can be confirmed that the whole is consistent
except for the error originating from the boundary part of the object.
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Table 3 shows the results for the IoU and detection speed based on the validation data
using the attention CSPArDNet model. The Python model—created on the deep learning
PC—was changed to a C++ model and run with a similar performance in Xavier, and
the mIoU of the final evaluation table in Xavier shows the performance of the attention
HarDNet result.

Table 4 shows the results of the performance analysis conducted by the National
Information Society Agency to demonstrate the performance of HarDNet and CSPHarDNet
object detection proposed in this paper. With the existing HarDNet network, 83.31% of
mIoU and 15.44 FPS were obtained. The CSPDenseNet—used to increase the detection
speed—obtained 79.84% mIoU and 19.98 FPS, and the CSPHarDNet proposed in this paper
obtained 81.89% mIoU and 18.15 FPS. Since DenseNet has more overlapping weights than
HarDNet, CSPDenseNet showed higher FPS than the experimental result. In contrast,
CSPHarDNet did not have more overlapping weights than DenseNet in the HarDNet
structure; therefore, only 1/3, not half, of the channels were used in the fusion-first method
to create the CSPHarDNet structure, resulting in a slight increase in FPS and higher mIoU
than CSPDenseNet. If I simply compare one billion FLOPs (BFLOPs), CSPDenseNet
provided the best results. However, this study proposed the detection of parking areas and
collision risk areas in a 10 km/s parking scenario, and CSPHarDNet was more suitable
as a result of conducting experiments with various obstacles using cars, people, and
parking cones during the experiment for the generalization of the model. The network-
based algorithm proposed in this study obtained lower mIoU than the HarDNet semantic
segmentation algorithm; however, since the detection speed was increased by an average
of 3 FPS, the experiment was conducted regardless of the real-time parking situation.

Table 4. NIA dataset results.

Model mIoU(%) BFLOPS FPS(PC) FPS(Xavier)

HarDNet 83.31 110.39 15.44 15.92

CSPDenseNet 79.84 60.356 19.98 20.11

CSPHarDNet 81.89 72.847 18.15 18.36

Attention
CSPHarDNet 83.76 81.443 17.33 17.45

Figure 11 shows the result of the attention experiment using PyTorch’s hook, and only
20 channels from the selected feature map were visualized after attention was progressed
and before moving on to the next layer. First, the channel attention part was studied for
the purpose of improving the perception of the parking line, parking space, collision risk
area, drivable area, stopper, and charging pad, which were the targets to be detected. It
can be seen that a great deal has been learned. However, in the case of position attention,
since object-oriented learning is taught as a whole again, the learning result for the overall
division—rather than the attention of a specific object—can be seen.
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Figure 12 shows an image comparing the performance of HarDNet and HarDNet
with attention added. First, in the case of HarDNet, there was an error in recognizing the
charging pad behind the vehicle and an error in recognizing the collision risk area as a
drivable area. Thus, I solved the problem by adding attention to the existing HarDNet to
increase the algorithm performance.
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Two optimization experiments were carried out. First, Table 5 shows the perfor-
mance comparison of AMP. Performance experiments were conducted based on attention
CSPHarDNet. GeForce RTX 1080 and GeForce RTX 3090 were the two GPUs used when
AMP was and was not used, respectively. Moreover, the accuracy, memory usage, and
learning time were compared. When using AMP based on GeForce RTX 1080, the perfor-
mance and learning time did not decrease, and the memory decreased by approximately
30%. When the experiment was conducted with GeForce RTX 3090, the performance did
not decrease, the memory decreased by 30%, and the learning time decreased by 30%. Both
GPUs reduced memory without reducing the performance. However, since PyTorch AMP
supports a function to reduce the learning time from GeForce RTX 2080 or later, the learning
time was different.
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Table 5. AMP performance comparison.

GPU AMP Accuracy (%) Memory (MB) Training Time (Hour)

GeForce GTX 1080 X 84.15 10423 6

GeForce GTX 1080 O 84.21 6854 6

GeForce RTX 3090 X 84.17 10788 6

GeForce RTX 3090 O 84.22 6932 4

Table 6 shows the performance comparison of TensorRT. In the case of TensorRT, the
mIoU and detection speed of the existing HarDNet, CSPHarDNet, and CSPHarDNet+
attention proposed in this paper were compared. The accuracy of all three models did not
decrease, and it was confirmed that the detection speed was approximately twice as fast as
the NVIDIA Xavier standard.

Table 6. TensorRT performance comparison.

Model TensorRT mIoU(%) FPS

HarDNet X 80.31 15.92

HarDNet O 80.12 32.89

CSPHarDNet X 79.84 20.11

CSPHarDNet O 79.22 41.46

Attention CSPHarDNet X 82.89 18.31

Attention CSPHarDNet O 82.57 37.41

Figure 13 shows results of the final test, which was conducted in the NVIDIA Xavier
environment, and the experiment was conducted based on attention CSPHarDNet, which
demonstrated the best performance and is suggested in this paper. In the parking situation,
the result of the parking part is detected in row 1 (white), and the result of detecting the
area not detected in the semantic segmentation result is in the second row (white). When
evaluating the objects detected as collision risk areas in row 2, stationary cars, walls, flower
beds, etc., were detected.
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6. Conclusions

In this paper, research was conducted in order to detect parking areas and collision
risk areas based on deep learning using a camera sensor. Importantly, I created a dataset
in the parking lot of Chungbuk National University in order to detect it from an AVM
image. A network was constructed using the semantic segmentation algorithm, and
CSPNet and attention were added to implement an optimal algorithm that could be used
with good performance in a real-world vehicle environment. Various attempts were
made for the activation function, optimization technique, and loss function to find the
optimal conditions and learning. In order to use the original images as-is, an encoder was
constructed, considering the amount of computation. For optimizing the training network,
we used AMP to reduce the training memory and training time and used TensorRT in order
to achieve an over two-fold FPS. By converting the desktop (PC)-created model to C++, we
found that it was possible to detect the parking area and the drivable area with the NVIDIA
Xavier and to detect the other areas as collision risk areas in order to detect the parking
area and the collision risk area in indoor and outdoor environments. For the performance
test, the self-produced AVM image and the image received from the National Institute of
Intelligent Information Society (NIA) were tested, and an actual vehicle test was conducted
in the Chungbuk National University parking lot. In future work, our results would be
suitable in an environment similar to the currently learned data; however, the results were
not obtained in new environments, e.g., parking lots with illegal parking, women-only
parking lots, and parking lots for the disabled. For future work, I plan to conduct research
for improving the performance. The final goal of this study is to detect collision-risk objects
while parking and, to measure the exact distance between objects and vehicles, I plan to
implement an algorithm to find the distance based on a model learned using a camera and
LiDAR. I plan to conduct research to find the exact location of the detected object using
only the camera in a real vehicle.
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