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Abstract: The periodic inspection of railroad tracks is very important to find structural and geometri-
cal problems that lead to railway accidents. Currently, in Pakistan, rail tracks are inspected by an
acoustic-based manual system that requires a railway engineer as a domain expert to differentiate
between different rail tracks’ faults, which is cumbersome, laborious, and error-prone. This study
proposes the use of traditional acoustic-based systems with deep learning models to increase perfor-
mance and reduce train accidents. Two convolutional neural networks (CNN) models, convolutional
1D and convolutional 2D, and one recurrent neural network (RNN) model, a long short-term memory
(LSTM) model, are used in this regard. Initially, three types of faults are considered, including superel-
evation, wheel burnt, and normal tracks. Contrary to traditional acoustic-based systems where the
spectrogram dataset is generated before the model training, the proposed approach uses on-the-fly
feature extraction by generating spectrograms as a deep learning model’s layer. Different lengths of
audio samples are used to analyze their performance with each model. Each audio sample of 17 s
is split into 3 variations of 1.7, 3.4, and 8.5 s, and all 3 deep learning models are trained and tested
against each split time. Various combinations of audio data augmentation are analyzed extensively
to investigate models’ performance. The results suggest that the LSTM with 8.5 split time gives the
best results with the accuracy of 99.7%, the precision of 99.5%, recall of 99.5%, and F1 score of 99.5%.

Keywords: railway track inspection; spectrograms; acoustic signals; machine learning; deep convolution
neural networks; LSTM

1. Introduction

The railway network is an important transportation channel that serves as the back-
bone for many developing countries such as Pakistan. The railway system plays a vital
role in a country’s economy by moving people, as well as goods, efficiently and rapidly [1].
With the increase in the number of passengers, the railway network is becoming more
sophisticated, burdened, and prone to tear and wear. At the same time, environmental
conditions and mechanical forces are speeding up the degradation of railway tracks [2].
Rail tracks are one of the most essential and integral parts of the railway network, and
the inspection of rail tracks is essential to prevent accidents and to reduce injuries and
casualties [3]. Pakistan is a country where a large number of people use trains for traveling.

In Pakistan, 757 train accidents have been recorded from 2012 to 2017 [4], with an
average of 125 accidents per year. Although the ratio of train accidents is higher for
developing countries, the United States (US) also has a higher number of accidents. A
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total of 11,434 rail accidents are reported in the year 2019, causing 7730 injuries and
937 fatalities [5]. A yearly summary of accidents in the US is provided in Table 1. The train
accidents in Pakistan and the US show that the lives of hundreds of thousands of people
are at risk, and negligence or human error in rail track inspection can increase fatalities and
injuries. Proper inspection and timely detection of faults can save countless human lives,
as well as reduce the financial losses of the railway network [6]. However, the inspection
and maintenance of rail tracks are expensive and time-consuming activities.

Table 1. Railway accidents stats in Pakistan [7].

Year No. of Deaths No. of Injured

2015 40 No Reports
2016 28 150
2017 16 10
2018 No Reports 32
2019 97 100
2020 19 No Reports
2021 32 64

For rail track inspection, different non-destructive evaluation (NDE) techniques have
been used such as Eddy current testing [8], magnetic flux leakage testing [9], ultrasonic
testing [9,10], phased array detection [11], guided wave detection [12], and so on. More
details about the tools and techniques used for rail track inspection can be found in [8,13].
In traditional systems, visual inspection and acoustic emission may be included [13]. In
the last few years, the Internet of Things (IoT) and machine learning and deep learning
networks are gaining large attention for railway track inspection. These approaches are
used to develop novel, efficient and effective NDE systems. For this purpose, high-speed
cameras [14] and acoustic transducers [15] are installed that provide a blend of traditional
inspection methods with the machine learning models. The use of machine learning
approaches has eased tasks for human beings with increased processing time and automatic
feature extraction. Now, the analysis of long railways tracks is easy and fast when using
automated approaches. Even though many techniques are working in rail track inspection,
anomaly detection, and classification, numerous challenges remain unsolved, such as a
lack of proper datasets, the effective detection of a variety of faults, testing at speeds over
80 km/h, and handling sensors producing big data [13,16].

Before using deep learning, hand-crafted feature engineering was used in applications
related to computer vision and audio machine learning. Hand-crafted feature extraction
required in-depth, domain-specific knowledge for problem-solving and tuning up the
system for better performance [17]. Recently, the automatic feature extraction capability
of deep learning has attracted many researchers to work with rail fault detection [18].
Railway track inspection and classification has three main steps. The first step is the
preprocessing of the ‘wav’ files for eliminating undesired sounds. After preprocessing,
feature extraction is performed by using spectrograms. The spectrograms are generated
on-the-fly to make the system more flexible. Then, the classification model is trained for
railway track fault detection.

Figure 1 shows steps for providing an understanding of the tasks carried out in
this research. In this research, three different deep learning models are tested for their
performance. This research focuses on convolutional 1D, convolutional 2D, and long
short-term memory (LSTM). The dataset [19] used in this research is a balanced one
with three classes including normal, superelevation, and wheel burnt. The first step of
preprocessing is to remove the noise of air, rain, and all the dead space in the audio by
using a signal envelope function with a threshold of 100 Hz. After cleaning all audio files,
they are downsampled to 16 kHz and then split into 1.7 s, 3.4 s, and 8.5 s durations for
the experiments. Later, spectrograms are generated on-the-fly. The on-the-fly approach
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provides flexibility for performing different experiments and increases efficiency at the
same time. The key contributions of the study are are follows:

• A novel approach is proposed that can work on the real acoustic dataset for finding
railway track faults. The proposed approach uses an on-the-fly approach to generate
spectrograms during the training process. It offers flexibility as compared to the tradi-
tional approach where the spectrogram dataset is generated before the model training.

• A comparative analysis of the impact of different time slots of the audio sample is
carried out. This research also compared the impact of using Mel-Spectrogram and
Log-Spectrogram for training purposes.

• Performance analysis is carried out using state-of-the-art techniques with respect to
accuracy, precision, recall, and F1 score. In addition, its performance is validated using
a statistical t-test.

Figure 1. Architecture of the study.

The rest of the paper is organized in the following fashion. Important research works
related to the current study are discussed in Section 2. The proposed methodology and
related items are provided in Section 3. Section 4 provides the analysis and discussions of
the experimental results. In the end, the conclusion is given in Section 5.

2. Related Work

Rail track inspections can be generally categorized into two classes: structural inspec-
tion and geometric inspection [20]. Structural inspections are conducted to find structural
defects which, may include wheel burnt rails or other structural degradation. Geometric
inspections are conducted to find geometric irregularities, which may include rail mis-
alignments and other similar problems. Geometric irregularities may also cause structural
defects and either of them can lead to train accidents. More information related to structural
and geometric defects can be found in [21,22]. A large body of literature can be found
that different techniques of shallow learning, deep learning, and transfer learning for rail
tracks inspection. In shallow learning, Refs. [23–27] use support vector machine (SVM),
Refs. [19,28] use random forest (RF), Ref. [29] uses Adaboost, and [30,31] use principal
components analysis (PCA). Regarding the deep learning approach, Refs. [24,32–35] use
convolutional neural networks (CNN), Refs. [36–38] use LSTM, and [39] uses a combina-
tion of both CNN and RNN called convolutional–recurrent neural network (CRNN). In
transfer learning approaches, Refs. [40,41] uses ResNet, and [41] uses a visual geometry
group (VGG).

Shafique et al. [19] use tree-based classification models, random forest (RF) and
decision tree (DT), which performed well compared to deep learning models for rail
track inspection. Jie Liu et al. [23] investigate different variants of SVM, such as twin
SVM, LSSVM, etc. They used data from the braking system and tested the model on the
KEEL data repository. They focused on the braking system of high-speed trains using an
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imbalanced dataset and verified their work on publicly available datasets. The sensors are
used to collect data related to the braking system. Xavier et al. [24] worked on the dataset
collected from 85 miles of railway track. They collected an image dataset from a moving
vehicle. They implemented both CNN and SVM techniques in their research. They classify
rail fasteners as good, missing, or broken. Study [25] worked to detect geometric defects
using the SVM model. The authors used the RAS problem-solving competition 2015 dataset
and investigated less severe geometric defects that can develop into more severe geometric
defects. Hajizadeh et al. [26] performed a structural inspection to detect structural defects
using shallow machine learning techniques. He used SVM and introduced a new metric
known as positive and unlabeled learning performance (PULP). The study uses PULP to
access the working of classifiers on datasets containing only defective observations.

Along the same lines, Ref. [27] utilize an imbalanced dataset of images taken from the
video cameras to detect squats defects. They used a semi-supervised technique to handle
vast amounts of unbalanced data. The authors detect structural defects of railway tracks
in [28]. The PCA, Kernal-PCA, and histogram match (HM) are used for feature extraction.
The extracted features from a dataset comprising non-defective images are utilized to
train RF to show the superiority of PCA features for the task at hand. The authors used
Adaboost in [29] to detect structural damage and damage specifically related to broken
rail fasteners. The study used a Haar-like feature set as the geometrical characteristics of
fasteners. Famurewa et al. [30] worked on the geometric aspect of railway tracks. The study
detects abnormal patterns in sharp curves by using the PCA algorithm. The experiments are
carried out on the Swedish railway network using manually collected data. Lasisi et al. [31]
also worked on geometric features of rail by using the PCA algorithm for dimensionality
reduction. Kernal-PCA is used along with the SVM to classify four different types of defects
in the US Class I railway network.

Dawei Li et al. [32] used a faster region-based CNN for the railway track’s fault. The
images are captured using 6 cameras at the speed of a maximum of 15 km/h to detect
structural defects of the surface of the metro tunnel. The study suggests that better results
can be obtained at a train speed of 5 to 10 km/h. Faghih-Roohi et al. [33] used the CNN
model with a manually labeled image dataset collected from rail tracks of the Netherlands.
They used three CNN architectures of different sizes and obtained the best result by the
deepest architecture. Similarly, Giben et al. [34] suggested a four-layered CNN model
on a manually labeled image dataset collected from the US Northeast Corridor for the
classification of material used in the rail track. Santur et al. [35] used a 3D laser camera for
a more accurate and fast inspection of the rail track. The study used CNN for the binary
classification of rail tracks into ‘healthy’ or ‘faulty’ tracks. The study [36] used an ultrasonic
vehicle for finding flaws in the railway track. The LSTM model is used for the detection
which shows its feasibility of detection faults at the speed of 15 km/h. Fu et al. [37] worked
to detect the structural damage. They used LSTM for classification. They worked on the
dataset produced by SIMPACK simulation software.

Bruin et al. [38] used LSTM to detect the presence of trains on the track. They
worked to detect different structural faults such as ballast degradation, insulated joint
defect, conductive object, etc. Qin et al. [39] used a hybrid neural network with the
data generated in SIM-PACK simulation software. Four classes are used for experiments,
including normal, LD fault, AS fault, and AD fault. Chen et al. [41] worked on image data
randomly selected from inspection videos. They took the images of current-carry rings and
manually labeled them as ‘normal’ or ‘faulted’. They used VGG, ResNet50, and Res2Net50
models for performance evaluation. They trained and tested the models to predict normal
and defective current carry rings. Yang et al. [40] analyzed the structural defects, e.g., rail
end better, localized surface collapse, and turning points, etc. They used ResNet and fully
CNN (FCN) for the problem. The experimental results show that ResNet is slightly better
than FCN with 0.77 and 0.76 precision scores for ResNet and FCN, respectively. Mahfuz
et al. [42] worked on a dummy system using an Ultrasonic sensor and Arduino Mega. They
worked to detect cracks on railway tracks without using machine learning or deep learning
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models. The study [38] worked to find faults on railway track circuits. They used LSTM to
determine different faults in circuits such as conductive objects, electrical disturbance, etc.

3. Materials and Methods

The architecture of the proposed approach is given in Figure 2. The main advantage
of this research is generating the spectrograms at a run time that makes the system more
flexible than the traditional approaches. Traditionally, spectrograms are generated and
stored on a disk before feeding them into the machine and deep learning networks, which
makes the network slower and requires more space. For example, MusicNet [43], a large
labeled dataset publicly available to learn music features requires a substantial disk size.
This dataset is 20 GB in size, and creating different types of spectrograms using different
parameters, it can take up to 1TB of disk space.

Figure 2. Proposed methodology in contrast with traditional acoustic-based research methodology.

Even if the aspect of high storage requirement is ignored, sound to spectrograms
conversion requires a large amount of time. For the experiments, this study uses Librosa, a
famous Python library for converting sound to spectrograms. On Google Colab, it took
about 20 h and 48 min for converting sound to spectrogram for 1240 samples, and it took
about 29 h and 40 min for converting 1850 sound to spectrogram conversion on PC. Librosa
takes 1.0 min and 0.96 min on average for creating one spectrogram on both CPU and GPU,
respectively. Optimizing the parameters for creating better spectrograms to obtain more
accurate results can consume even larger time. So, in this research, instead of generating
spectrograms as a separate and independent process, they are calculated on-the-fly as a
layer of the neural network using Kapre [44].
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3.1. Dataset

The dataset used in this research is collected by [19]. It has 720 mono channel audio
‘wav’ samples and is collected in the area of Sadiq Abad Junction, Pakistan. Figure 3 shows
the setup used for the data collection. An onsite setup is used where 2 microphones were
mounted at a distance of 1.75 inches from wheel and track contact point. A mechanical
cart is used for data collection at an average speed of 35 km per hour. Two ECM-X7BMP
Unidirectional electric condensers are used, which are supplied with a 3-pole locking mini
plug. The sensitivity of the microphone is −44.0 ± 3 dB, while the output impedance
is 1.2 kΩ ± 30%. The dynamic range is 88 dB, the signal-to-noise ratio is 62 dB, and
the operating voltage is 5.0 V. The microphones are connected through a wire and are
unidirectional. For further details about the data collection process, the readers are referred
to [19].

Figure 3. The railway cart equipped with microphones for the data collection [19].

The dataset has three classes, i.e., normal, superelevation, and wheel burnt. It is a
balanced dataset with each class containing 240 samples with a length of 17 s each. For
experiments, every 17 s, the audio file is split into 1.7 s, 3.4 s, and 8.5 s time intervals (see
Table 2).

Table 2. Number of samples in each time split, with and without augmentation.

Audio Length 1.7 s 3.4 s 8.5 s

Number of samples without augmentations 5800 2830 1160
Number of samples with augmentations N/A N/A 3480

3.2. Data Preprocessing

Data preprocessing is one of the most important steps required for machine learning
models, as the learning process is affected by the preprocessing. For preprocessing, first
of all, unwanted sounds are removed from all collected audio samples. These unwanted
sounds include the sound of rain and wind, etc. Then, dead space from the audio is
removed by using a threshold value, see Figure 4. A threshold value of 100 Hz is used
to clean the audio samples, so any frequency below 100 Hz will be removed. Finally, the
down-sampling technique is used at the rate of 16,000 [45]. This down-sampling is used
during the splitting of all audio files for specific time intervals and saved back to the storage.
For the research purpose, audio is split into 1.7 s, 3.4 s, and 8.5 s. Figure 4b, is the zoomed
portion of the plot Figure 4a.
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(a) (b)

Figure 4. Signal envelope function: (a) Signal envelope plot; (b) Zoomed portion of the plot.

3.3. Data Augmentation

Undoubtedly an appropriate artificial neural network (ANN) model and its tuned-up
hyperparameters are essential factors for the development of a good model; however, ap-
propriate data are equally important for testing and proving the efficacy of the ANN model.

If the dataset is inappropriate and small, even a good model’s result will not be
acceptable. So, to enhance the suitability of the data, different audio data augmentation
or audio deformation techniques are applied without disturbing the semantic labeling of
data, and these techniques are discussed as follows. The study uses audiomentations [46], a
Python library for augmentation. Audio augmentations used in this research are as follows:

• Shift: In this technique, audio samples are shifted backward or forward. This shifting
can be performed with or without rollover. Rollover is of Boolean type; if it is set
to true, then the samples rolled beyond the last or the first position are re-injected
into the audio. Parameters used for shift are min_fraction = −0.7, max_fraction = 0.7,
rollover = ‘True’, p = 0.7. Implementation of shift can be seen in Figure 5d–f.

• Gaussian Noise: In this technique of audio data deformation, Gaussian noise is
added into the raw audio before feeding it into the ANN. Parameters which we used
to add Gaussian noise are min_aplitude = 0.003, max_amplitude = 0.022, and p = 0.7.
Implementation of Gaussian noise can be seen in Figure 5g–i.

3.4. Proposed Methodology

This research uses three deep learning models for experiments including Convolu-
tional 1D (Conv1D), Convolutional 2D (Conv2D), and LSTM, which belong to the RNN
family [47]. RNN and LSTM have proved to be better models as compared to the hidden
Markov Model in different domains, e.g., hand-writing recognition [48], emotion recog-
nition [49], generating music composition [50], and speech recognition [51], etc. LSTM
consists of a connected memory cell to form an artificial neural network. Each cell has
three gates, an input gate, output gate, and forget gate, that are used to perform the read
function, write function, and reset function, respectively. Precisely, the input of the input
cell is multiplied by the input gate. The output of the output cell is multiplied by the output
gate, and previous cell values are multiplied by the forget gate. These functions can be
defined by the equations as follows:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (1)

f t = σ(Wx f xt + Wh f ht−1 + Wc f ct−1 + b f ) (2)

at = tanh(Wxcxt + Whcht−1 + bc) (3)

ct = f t � ct−1 + it � at (4)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (5)

ht = ot � tanh(ct) (6)
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where i is the input gate, f is the forget gate, o is the output gate, a is the cell input activation
vector, c is a self-connected state vector, and all have a size similar to h which is the hidden
vector. Wci, Wco, and Wc f are all peephole connection weights which are diagonal. So,
element m in each gate vector only receives input from element m of the cell vector.

In this research, bidirectional LSTM (BiLSTM) is used, which increases predictions
accuracy as compared to simple LSTM [52]. BiLSTM uses two independent LSTM networks:
one network learns data from start to end, and the second network learns data from end to
start. The following are the building blocks of our proposed state-of-the-art model.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Time domain representation of different classes: (a) Normal class, (b) Superelevation
class, and (c) Wheel burnt class; Time domain representation with shift augmentation: (d) Normal
class, (e) Superelevation class, and (f) Wheel burnt class; Time domain representation with Gaussian
noise augmentation: (g) Normal class, (h) Superelevation class, and (i) Wheel burnt class; Frequency
representation of different classes, cleaned using signal envelope function and without augmentation:
(j) Normal class, (k) Superelevation class, and (l) Wheel burnt class.
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3.4.1. STFT Layer

During the audio recording analog signals are converted into digital signals and the
number of samples, recorded during one second, becomes the sampling rate. To convert the
time-domain signal into a frequency-domain, Discrete Fourier Transform (DFT) is used [53],
which can be represented as:

S[k] =
N−1

∑
n=0

x[n]e−j2πkn/N (7)

where X[k] is the frequency-domain output, x[n] is the nth sample in the time-domain
audio input, N is the length of the window, n is the discrete time index, k is the discrete
frequency index. For real-valued inputs, the frequency domain output X[k] for k ∈ [1, N/2]
is equal to the output X[k] for k ∈ [N/2, N − 1] in reverse order.

Short-Time Fourier Transform (STFT) is a sliding window concept of DFT. Instead
of converting the whole time-domain signal into a frequency domain signal, we cut the
signal into a small window and then perform transformation [54]. It is the standard way to
perform audio analysis-based applications. These segmented signals can be represented as:

xl = w[n]x[n + lL], 0 ≤ n ≤ N − 1 (8)

where l is the index of the frame, N is the length of the window, L is the hop size, and n is
index to local time. The parameters used for the model are (n_ f f t = 512, win_length = 400,
hop_length = 160), and the Hann Window function is used:

w(k) = 0.5
(

1− cos
(

2πk
k− 1

))
, k = 1, 2, . . . , K (9)

By stacking up the STFTs, a spectrogram is formed, which is the representation of
time-frequency intensity [55]. Fast Fourier transform (FFT) is an algorithm that is used
as a quick resource for computing STFT in digital computers [56,57]. We usually obtain
the log-spectrogram, which is not from a human perception, (see Figure 6a) because the
human ear is more sensitive to low frequencies as compared to high frequencies. To convert
log-spectrograms from a human perception, Stevens et al. introduced the Mel frequency
scale in 1937 [58]. It was an attempt to quantify the pitch in a way that reflects the same
differences between Mel-scale pitch and perceived pitch, irrespective of the frequency
in Hertz [58]. Stevens et al. [59] and W. Koening [60] also tried to modify the original
Mel-scale, so there is no single formula available in literature [61]. One of the formulas
mentioned by O’Shaughnessy in his book [62] is given in Equation (10).

m = 2595log10

(
1 +

f
700

)
(10)

After obtaining the Mel scale conversion, Mel filter banks can be constructed, which
are then multiplied with previously obtained spectrograms to obtain Mel-scale spectro-
grams [63]. The obtained Mel filter bank can be seen in Figure 7, and from this Mel filter
bank, we obtain Mel-spectrograms as given in Figure 6.
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(a) (b) (c)

(d) (e) (f)

Figure 6. Log spectrogram representation of different classes: (a) Normal class, (b) Superelevation
class, and (c) Wheel burnt class; Mel spectrograms after applying Mel filter bank: (d) Normal class,
(e) Superelevation class, and (f) Wheel burnt class.

Figure 7. Mel filter bank used for creating Mel-spectrograms.

3.4.2. Batch Normalization Layer

A batch normalization layer is used in the start to normalize data before feeding
them into the network [64]. Equation (11) normalizes the data by using a standard normal
distribution with zero mean and one variance. This normalization is necessary because the
activation function which is used at the first layer of all three models, Conv1D, Conv2D,
and BiLSTM, is a hyperbolic tangent:

αnorm
i = Υi

αi − µ

δi
+ βi (11)

where αi is the actual activation function of a specific neuron, µ is the mean value, δi is the
standard deviation of the inputting neuron, Υi is the expansion factor, βi is the translation
factor, and αnorm

i is the new normalized value.

3.4.3. Maximum (Max) Pooling Layer

The max pooling layer is used after every convolutional layer in the Conv1D and
Conv2D models and the LSTM model to reduce the number of parameters. The total
trainable parameters without the max-pooling layer were 131,092,339, and with yjr max-
pooling layer, they were reduced to 544,627 in the Conv2D model.
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3.4.4. Dense Layer

The dense layer consists of neurons, and the inputs of these neurons are associated
weights; after performing some linear functions, they pass outputs to the next layer [65].
All the neurons of a dense layer are connected to the input and output layers. A dense layer
can be presented as:

X = f (Y× w + b) (12)

where Y is the input layer, w is the weight, b is th ebias vector, f is the activation function,
and X is the output layer [66].

3.4.5. Flatten Layer

The flatten layer is used to convert data into a 1D array, which is the output of
convolutional layers. Finally, the output of the flatten layer is connected to a fully connected
layer, which eventually performs the final classification.

3.4.6. Drop Out Layer

Overfitting is a severe issue in the field of machine learning and deep learning. Over-
fitting is a situation in which the model gives satisfying results during the training process,
but in the testing process, it gives unsatisfactory results. Normally, it happens when multi-
ple neurons detect the same results repeatedly [67] and neurons have to be dropped. The
drop out layer is presented as follows:

z(l+1)
i = w(l+1)

i yl + b(l+1)
i (13)

Consider a network of L hidden layers, where l ∈ 1, . . . , L, z(l) denotes the vector of
inputs into layer l, y(l) denotes the vector of outputs from layer l, (y(0) = x) is the input,
and w(l) and b(l) are the weights and biases, respectively, at layer l.

3.4.7. Softmax Layer

Softmax is the last layer of the deep learning model. It is used for multiclass classifica-
tion in which the output is characterized categorically [67]. It is an activation function and
very much important in ANN. Moreover, it is used to decide whether neurons are active or
otherwise. The primary objective of the Softmax layer is to highlight the maximum value
in the neurons. It assigns one as the maximum weight of neurons and sets other neurons’
weight to zero. The Softmax function can be presented as follows:

S(yi) =
eyi

∑k eyk , k = 1, 2, . . . , k (14)

where y is the input layer, and S is the output layer.

4. Results and Discussion

For experiments, this study uses the Intel Core i3-4010U@1.70 GHz CPU, with 8 GB
RAM and a GTX 550 graphics card. Python 3.8 is selected as the development environment.
Several detailed experiments are performed to find the best-performing deep learning
model to classify the rail track into three different types, i.e., normal, wheel burnt, and
superelevation. For experiments, three deep learning models, Conv1D, Conv2D, and LSTM,
are used and all these models are trained and tested for three different lengths of audio
samples. Detailed scenarios and their performances are compared as below:

• Scenario 1—each audio sample is split into 1.7 s, and Conv1D, Conv2D, and LSTM
are trained and tested against all three classes.

• Scenario 2—each audio sample is split into 3.4 s, and Conv1D, Conv2D, and LSTM
are trained and tested against all three classes.

• Scenario 3—each audio sample is split into 8.5 s, and Conv1D, Conv2D, and LSTM
are trained and tested against all three classes.
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Audio data augmentation is applied to the best-performing model. Augmentation
is performed on both datasets, first on the training dataset, and then on testing data to
validate the model’s generalization. The basic reason for splitting audio into smaller chunks
is not to overload the neural network model during training and to avoid overfitting.

4.1. Results for Scenario 1

By splitting a 17 s audio sample into 1.7 s, we have 10 files for each sample. A total
of 5100 files are used for training in the first scenario. After performing training, the
performance and training time of all three models can be observed in Table 3. All models
are trained for 30 epochs and 10-fold cross-validation. In this scenario, Conv2D performed
better than the other two models, but it took a significantly longer time than the Conv1D
and LSTM models. LSTM took the least time for training.

Table 3. Performance evaluation and training time required by all three models with 1.7 s split time.

Model Accuracy Precision Recall F1 Training (Hours)

Conv1D 0.949 0.932 0.923 0.924 8.66
Conv2D 0.965 0.955 0.947 0.948 16.9
LSTM 0.933 0.911 0.899 0.900 6.80

4.2. Results for Scenario 2

For the second scenario, all 17 s audio samples are split into 3.4 s for the training
purpose. In this scenario, we have 2550 files for training our deep learning models. In this
split time, LSTM proves to be the most efficient model again, and Conv1D proves the most
effective model, with 95% accuracy as shown in Table 4.

Table 4. Performance evaluation and training time required by all three models with 3.4 s split time.

Model Accuracy Precision Recall F1 Training (Hours)

Conv1D 0.959 0.939 0.938 0.938 7.5
Conv2D 0.952 0.930 0.929 0.928 15.08
LSTM 0.930 0.920 0.895 0.893 6.75

4.3. Results for Scenario 3

In this scenario, audio samples are split into 8.5 s in length. This split gives maximum
accuracy among all three time-split experiments. LSTM performed better than Conv1D in
terms of all performance evaluation parameters and almost equally well as Conv2D, but
LSTM proved to be the most efficient model by taking the least time for training, as shown
in Table 5.

Table 5. Performance evaluation and training time required by all three models with 8.5 s split time.

Model Accuracy Precision Recall F1 Training (Hours)

Conv1D 0.972 0.958 0.959 0.958 7.91
Conv2D 0.990 0.985 0.986 0.986 16.25
LSTM 0.990 0.986 0.986 0.986 7.5

So, among all three scenarios, the combination of 8.5 s split time with LSTM proves
the best combination, as LSTM gives 99% accuracy, which is equivalent to the accuracy of
the Conv2D model, but LSTM took about half the training time as compared to Conv2D, as
shown in Tables 5 and 6 shown the results with each augmentation approach.
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Table 6. Performance evaluation using all variants of LSTM with 8.5 s split time.

LSTM Model Accuracy Precision Recall F1

Training augmented, Testing un-augmented 0.997 0.995 0.995 0.995
Training augmented, Testing augmented 0.982 0.973 0.973 0.973
Training un-augmented, Testing augmented 0.933 0.912 0.90 0.900

Now, to deeply examine LSTM’s effectiveness and efficiency, we performed data
augmentation. We performed audio augmentation of the following types:

(a) Gaussian noise;
(b) Shift;

which enhanced the test dataset from 210 to 630 files. Tables 7 and 8 showing the confusion
matrix values with proposed approaches.

Table 7. Confusion matrix of LSTM 8.5 s split, un-augmented training dataset and un-augmented
test dataset.

A
ct

ua
lc

la
ss Normal 70 0 0

Superelevation 0 70 0
Wheel burnt 3 0 67

Predicted class Normal Superelevation Wheel burnt

Table 8. Confusion matrix of LSTM 8.5 s split, augmented training dataset and un-augmented test
dataset.

A
ct

ua
lc

la
ss Normal 69 0 1

Superelevation 0 70 0
Wheel burnt 0 0 70

Predicted class Normal Superelevation Wheel burnt

To prove the effectiveness of our LSTM model, we performed testing on the augmented
dataset using the model which was previously trained on an un-augmented training dataset.
In this case, as the training was performed on an un-augmented dataset, our model made
63 wrong predictions out of 630, as shown in Tables 9 and 10 shown 17 wrong predictions
using augmented training dataset and augmented test dataset.

Table 9. Confusion matrix of LSTM 8.5 s split, un-augmented training dataset and augmented test
dataset.

A
ct

ua
lc

la
ss Normal 201 0 9

Superelevation 9 201 0
Wheel burnt 45 0 165

Predicted class Normal Superelevation Wheel burnt

Table 10. Confusion matrix of LSTM 8.5 s split, augmented training dataset and augmented test
dataset.

A
ct

ua
lc

la
ss Normal 199 0 11

Superelevation 0 210 0
Wheel burnt 6 0 204

Predicted class Normal Superelevation Wheel burnt
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4.4. Discussion

In this section, a detailed analysis of experiments is presented. Three deep learning
models, Conv1D, Conv2D, and LSTM, have been thoroughly experimented with. Deep
learning models allow the flexibility needed for creating an on-the-fly spectrogram as a
layer of the neural network, which is not available in the shallow machine learning models.
For experiments with shallow learning, first, an offline dataset of spectrograms must be
created. Creating an offline dataset of spectrograms is time-consuming and requires large
storage. For the current research, the estimated time required for creating spectrograms
can be seen in Table 11, and tuning the parameters of spectrograms requires a large time.
In Table 11, it can be observed that for all the cases, the time required for the generation
of the Spectrogram dataset is much higher than the training time required by each model,
except for the case of 8.5 s, where the Conv 2D’s training time is very close to spectrogram
generation time. However, due to the slowness of conv2D, it was dropped, and we selected
the LSTM model instead.

Table 11. Time required for signal envelop function.

Split Time Time Required to Generate
Spectrogram Dataset (Hours)

Training Time for
Conv 1D (Hours)

Training Time for
Conv 2D (Hours)

Training Time for
LSTM (hours)

1.7 s 85 8.66 16.9 6.8
3.4 s 42.5 7.5 15.08 6.75
8.5 s 16.66 7.91 16.25 7.5

It is, therefore, better to utilize deep learning models’ flexibility to create on-the-fly
spectrograms and feed them directly into models instead of creating them as a separate
and independent process. Three deep learning models, i.e., Conv1D, Conv2D, and LSTM,
are incorporated in this research, and each model is trained and tested for three different
time splits of the audio dataset, i.e., 1.7 s, 3.4 s, and 8.5 s. LSTM gives the best accuracy
using the 8.5 s split time with the least training time. The LSTM model consists of an LSTM
layer, a dense layer, a dropout layer, and a softmax layer. LSTM memory cells remember
the past data, and it is used for time-series analysis. The percentage of correct predictions
made by different variants of LSTM can be seen in Figure 8.

Figure 8. Percentage of correct predictions made by all variants of LSTM with 8.5 s split time.



Sensors 2022, 22, 1983 15 of 21

Tables 12–14 show the architectural details of Conv1D, Conv2D, and LSTM models
used for experiments.

Table 12. Layers detail of Conv1D model.

Layer Values Output Shape

get_melspectrogram_layer n_mels = 128, n_fft = 512, win_length = 400, hop_length = 160,
sample_rate = 16,000, return_decibel = True (None, 500, 257, 1)

filterbank n_mels = 128, n_fft = 512, win_length = 400, hop_length = 160 (None, 500, 128, 1)
batchNormalization Axis = 2 (None, 500, 128, 1)
Conv1D Activation = Hyperbolic tangent, Filters = 8, Kernel = 4 (None, 500, 125, 8)
maxPooling2D 2 × 2 (None, 250, 62, 8)
Conv1D Activation = ReLU, Filters = 16, Kernel = 4 (None, 250, 59, 16)
maxPooling2D 2 × 2 (None, 125, 29, 16)
Conv1D Activation = ReLU, Filters = 32, Kernel = 4 (None, 125, 26, 32)
maxPooling2D 2 × 2 (None, 62, 13, 32)
Conv1D Activation = ReLU, Filters = 64, Kernel = 4 (None, 62, 10, 64)
maxPooling2D 2 × 2 (None, 31, 05, 64)
Conv1D Activation = ReLU, Filters = 128, Kernel = 4 (None, 31, 02, 128)
globalMaxPooling2D - (None, 128)
Dropout Rate = 0.1 (None, 128)
Dense Activation = ReLU (None, 64)
Dense Activation = Softmax (None, 3)

Table 13. Layers detail of Conv2D model.

Layer Values Output Shape

get_melspectrogram_layer n_mels = 128, n_fft = 512, win_length = 400, hop_length = 160,
sample_rate = 16,000, return_decibel = True (None, 500, 257, 1)

filterbank n_mels = 128, n_fft = 512, win_length = 400, hop_length = 160 (None, 500, 128, 1)
batchNormalization Axis = 2 (None, 500, 128, 1)
Conv2D Activation = Hyperbolic tangent, Filters = 8, Kernel = 7 × 7 (None, 500, 128, 8)
MaxPooling2D 2 × 2 (None, 250, 64, 8)
Conv2D Activation = ReLU, Filters = 16, Kernel = 5 × 5 (None, 250, 64, 16)
MaxPooling2D 2 × 2 (None, 125, 32, 16)
Conv2D Activation = ReLU, Filters = 16, Kernel = 5 × 5 (None, 125, 32, 16)
MaxPooling2D 2 × 2 (None, 63, 16, 16)
Conv2D Activation = ReLU, Filters = 32, Kernel = 3 × 3 (None, 63, 16, 32)
MaxPooling2D 2 × 2 (None, 32, 08, 32)
Conv2D Activation = ReLU, Filters = 32, Kernel = 3 × 3 (None, 32, 08, 32)
Flatten - (None, 8192)
Dropout Rate = 0.2 (None, 8192)
Dense Activation = ReLU (None, 64)
Dense Activation = Softmax (None, 3)

Table 14. Layers detail of LSTM model.

Layer Values Output Shape

get_melspectrogram_layer n_mels = 128, n_fft = 512, win_length = 400, hop_length = 160,
sample_rate = 16,000, return_decibel = True (None, 500, 257, 1)

filterbank n_mels = 128, n_fft = 512, win_length = 400, hop_length = 160 (None, 500, 128, 1)
batchNormalization Axis = 2 (None, 500, 128, 1)
Reshape Value = −1 (None, 500, 128)
Dense Activation = Hyperbolic tangent (None, 500, 64)



Sensors 2022, 22, 1983 16 of 21

Table 14. Cont.

Layer Values Output Shape

BiLSTM Units = 64, return_sequences = True (None, 500, 64)
Concatenate (Skip connection) Axis = 2 (None, 500, 128)
Dense Activation = ReLU (None, 500, 64)
MaxPooling1D - (None, 250, 64)
Dense Activation = ReLU (None, 250, 32)
Flatten - (None, 8000)
Dropout Rate = 0.2 (None, 8000)
Dense Activation = ReLU (None, 32)
Dense Activation = Softmax (None, 3)

4.5. Results Using Log Spectrogram

Experiments are performed using the log spectrogram and the LSTM model with
an 8.5-second sub-sample. The performance of the LSTM model is significant with log
spectrogram as compared to the Mel spectrogram, as it achieves the highest accuracy 100%
with log spectrogram when we used augmentation on training but not on test data. Overall,
the performance with the log spectrogram is better as compared to the Mel spectrogram in
terms of all evaluation parameters, as shown in Table 15. Figure 9 shows the comparison
between the Mel spectrogram (MS) and log spectrogram (LS), while TATU, TATA, and
TUTA indicate training augmented, testing un-augmented; training augmented, testing
augmented; and training un-augmented, testing augmented, respectively. Log spectrogram
took 5.08 h of training, which is less than the Mel-scale spectrograms, which took 7.5 h
of training.

Table 15. Results of LSTM model with log Spectrogram.

LSTM Model (8.5 s) Accuracy Precision Recall F1

Training augmented testing un-augmented (Log Spectrogram) 1 1 1 1
Training augmented testing augmented (Log Spectrogram) 0.995 0.992 0.992 0.992
Training un-augmented testing augmented (Log Spectrogram) 0.96 0.941 0.94 0.94

Figure 9. LSTM comparison using log spectrogram and Mel spectrogram.

We also deploy state-of-the-art deep learning models in comparison with the proposed
approach for a fair comparison. We deploy three pre-trained models including VVG16,
InceptionV3, and ResNet-50. The results given in Table 16 indicate that other deep learning
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approaches do not provide high performance similar to the proposed approach. These
models do not provide better results with our used dataset without an on-the-fly approach.
Apparently, the reason is the complex architecture of the models that need large datasets
to produce better results. The current dataset being with a small feature set is not able to
provide high accuracy with these models.

Table 16. Results using pre-trained deep learning models on the original dataset.

Model Accuracy Precision Recall F1 Score

VVG-16 0.41 0.41 0.51 0.45
InceptionV3 0.35 0.35 0.35 0.35
ResNet-50 0.42 0.42 0.42 0.42

4.6. Statistical Significance Test

We carried out the statistical significance test to show the significance of the proposed
approach LSTM with log spectrogram [68,69]. We deployed the T-test on the results of
LSTM with both the Mel spectrogram and the log spectrogram. In the output of the t-test,
we have null hypotheses and alternative hypotheses as follows:

• Null hypothesis (Ho): There is no significant difference between the result of LSTM
using log spectrogram and LSTM using the Mel spectrogram.

• Alternative hypothesis (Ha): There is a significant difference between the result of
LSTM using log spectrogram and LSTM using the Mel spectrogram.

If the t-test accepts the null hypothesis, it means there is no significant difference
between the result of LSTM using a log spectrogram and LSTM using a Mel spectrogram
and vice versa. The t-test rejects the null hypothesis and accepts the alternative hypothesis
because the t statistic value is greater than the critical value. The t statistic = 4.889 and
critical value = 0.540 on the results of LSTM. This t-test result shows that LSTM with log
spectrogram achieves better results, which are statistically significant.

4.7. Significance of Using Automated Approach for Railway Track Inspection

The proposed approach has several advantages over the current manual inspection
system in Pakistan.

• Railway tracks are vulnerable to damage and deterioration by several extreme events,
such as buckling by heat [70]. Extreme heat in Pakistan leads to buckling, causing
severe accidents. The manual railway track inspection system in Pakistan is unable to
perform efficient and effective inspections, which can be augmented by the current
proposed automated system.

• Every year, Pakistan faces flooding, which may cause cutting slope failures [71].
Additionally, ballasts may be washed away [72]. With an automated system, the fast
and accurate detection of such defects is possible.

• Of the several sensors and methods used for railway track fault detection, such as
cameras, radiography, thermal sensors, and optical-laser-based sensors, a microphone
can provide fault detection at a higher speed [73]. Despite its shortcoming of being
affected by noise, it is still possible to find surface defects, wheel defects, etc., using a
microphone setup.

• This study used an on-the-fly approach, which is appropriate and effective as com-
pared to previous studies on train track fault detection.

• This study outperforms the accuracy of previous study [19] in terms of accuracy. This
study also takes the advantage of on-the-fly extraction of spectrograms, without saving
spectrogram dataset on the disk. On-the-fly approach makes the system flexible, so
we can perform experiments with different lengths of audio with different types of
spectrograms such as the Mel-Spectrogram and the Log-Spectrogram.
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We believe that these features make the current approach suitable enough to be utilized
for real-world railway tracks inspection in Pakistan.

5. Conclusions

Keeping in view the importance of railway track inspection for fault detection in
saving human lives, this study presents an automatic railway inspection approach using
audio data with a novel deep learning LSTM model. In addition, Conv1D and Conv2D
models are also tested for the same task. Each sample of 17 s is split into subsamples of 1.7 s,
3.4 s, and 8.5 s to reduce the processing time and computational complexity. Three deep
learning models, Conv1D, Conv2D, and LSTM, are extensively studied for each variation
of split time. Mel spectrograms and log spectrograms are used for feature extraction
and spectrograms are generated on-the-fly as a layer of the deep learning model. This
research provides a flexible approach compared to the traditional approach in which the
audio dataset is converted into spectrograms’ dataset and stored prior to models’ training
that requires substantial time and space. Several experiments are performed for in-depth
investigation of models’ performance where, firstly, the un-augmented dataset is used
in several experiments with unique combinations of each model with each split time.
Secondly, LSTM with 8.5 s split time proved to be the best performer, and it is further
tested with augmented training and augmented testing datasets. Finally, after performing
augmentation on both training and testing datasets, experiments are performed with 2850
and 630 samples for training and testing, respectively. The results show that LSTM provides
an accuracy of 98.2%, a precision of 97.3%, a recall of 97.3%, and an F1 score of 97.3%.
The model trained on the augmented dataset obtains an accuracy of 99.7% against the
un-augmented test dataset.
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