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Abstract: In view of the poor performance of traditional feature point detection methods in low-
texture situations, we design a new self-supervised feature extraction network that can be applied to
the visual odometer (VO) front-end feature extraction module based on the deep learning method.
First, the network uses the feature pyramid structure to perform multi-scale feature fusion to obtain a
feature map containing multi-scale information. Then, the feature map is passed through the position
attention module and the channel attention module to obtain the feature dependency relationship of
the spatial dimension and the channel dimension, respectively, and the weighted spatial feature map
and the channel feature map are added element by element to enhance the feature representation.
Finally, the weighted feature maps are trained for detectors and descriptors respectively. In addition,
in order to improve the prediction accuracy of feature point locations and speed up the network
convergence, we add a confidence loss term and a tolerance loss term to the loss functions of the
detector and descriptor, respectively. The experiments show that our network achieves satisfactory
performance under the Hpatches dataset and KITTI dataset, indicating the reliability of the network.

Keywords: feature point detection; attention module; multi-scale feature fusion; deep learning

1. Introduction

The detection of feature points and the establishment of descriptors are important
steps in image matching. In computer vision-based applications such as simultaneous
localization and mapping (SLAM), structure-from-motion (SFM), and image retrieval, the
processing of image feature points determines the correspondence between different images.
Accurate extraction of feature points can improve the matching accuracy of images. With the
wide applications of computer vision and the more complex environment faced by image
processing, it is particularly important to find a stable feature point detection method.

At present, the processing methods for image feature points can be divided into
traditional methods and deep learning-based methods. Traditional feature extraction
methods are difficult to achieve satisfactory performance in challenging situations. The
scale invariant feature transform (SIFT) algorithm [1] was scale invariant but not real-time.
Rubele et al. [2] proposed the oriented fast and rotated brief (ORB) algorithm, which was
improved on the basis of the features from accelerated segment test (FAST) algorithm [3] to
make the feature points have rotation invariance and real-time performance. Mair et al. [4]
proposed the adaptive and generic corner detection based on the accelerated segment test
(AGAST) algorithm, which can maintain consistent angular responses without training
and has the same reusability as the FAST algorithm. However, the above algorithms
cannot extract a sufficient number of feature points in low texture scenes and cannot
keep the accuracy of feature point extraction stable. Samuele [5] proposed a feature point
detection method based on the wave equation, which can maintain a certain accuracy
on low-texture objects with symmetry, but was not suitable for irregular scenes with
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large changes. The feature point detection method based on deep learning still has high
stability in a low texture environment. [6] proposed a novel deep network structure for
end-to-end differentiability. It can realize the complete feature point processing process,
but the network structure was complex. [7] proposed a learning-based method to detect
repeated feature points, which can still maintain good accuracy under the challenge of
complex environments, but the detection of feature points was not extended to the scale
space. References [8–10] proposed different network structures for feature point detection.
Among them, the feature maps used to detect feature points in [8,10] lose part of the
information. Although the feature maps used for feature point detection in [9] were rich
in information, the network structure was complex and cannot meet the requirements of
real-time performance. In feature extraction, the balance between accuracy and real-time
performance of deep learning-based methods has always been a focal issue.

Aiming at the above issue, we propose a deep learning-based self-supervised feature
point detection network with an attention mechanism that can be applied to feature extrac-
tion modules in VO. First, the feature pyramid networks (FPN) [11] is used to extract feature
maps of different scales for multi-scale feature fusion. Then, the obtained feature maps
through the spatial attention module and the channel attention module [12] to establish
spatial correspondence and channel correspondence, respectively. Finally, the weighted
feature maps are output for the training of detectors and descriptors. Our method can
replace traditional feature point detectors in VO, taking advantage of the high stability of
deep learning to improve the accuracy of the system. In addition, we design loss functions
for detector and descriptor training. In the detector head, we add softargmax to improve
the prediction accuracy of feature points and add a confidence loss term to ensure the
reliability of feature points. We add a prediction tolerance loss term based on dense feature
descriptors to speed up the convergence of the network. The feature descriptor generated
by the network is the same as the descriptor format of the ORB_SLAM2 system [13], and
the network can be directly applied to the SLAM system instead of the original feature
extraction module.

The rest of the article is organized as follows. Section 2 is a review of related work.
Section 3 introduces our designed network structure and loss function. Section 4 is the ex-
perimental results and analysis of our network on different datasets after training. Section 5
is the discussion part of the article. Section 6 is the conclusion of the article.

2. Related Work
2.1. Local Feature Learning

The feature point detection method based on deep learning improved the stability of
feature point detection. Due to the unclear definition of feature points, adding effective
labels to images became a difficulty in the detector training process. Therefore, most meth-
ods only work on local descriptors of image patches [14,15]. However, Quad-networks [16]
used an unsupervised learning two-layer neural network on patches to learn to define a
good feature point to effectively address this issue, but did not provide corresponding
descriptors for each patch. LF-Net [17] is an end-to-end differentiable network similar
to [6]. It can quickly learn on full images but did not share computation during the training
of network feature points and the use of image patches limits the network’s training of
descriptors. Geometric correspondence network (GCN) [9] combined convolutional neural
networks (CNN) and recurrent neural networks (RNN) for detector and descriptor training.
It had better motion estimation compared to related deep learning methods and hand-
crafted methods. However, the network structure is too large, which made the network
computation heavy and cannot meet the requirement of real-time performance. GCNv2 [10]
proposed a network that can run on low-performance devices. However, it cannot improve
itself online. The self-supervised framework of SuperPoint [8] can effectively solve this
issue, similar to [18] using a self-supervised way to generate a synthetic dataset for training,
and obtained the same comparable results with the SIFT method. Li et al. [19] proposed a
multi-task framework for training feature point detectors and descriptors for the complex
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network structure of [8,9]. It sacrificed some precision while increasing speed. Unsuper-
Point [20] improved on [8] so that the network only needs one round of training to meet
the prediction requirements and does not need to generate labels for ground truth points,
but did not embed the network into SLAM for testing. The feature detection network
proposed by [21] can directly optimize the geometric pose targets after completing feature
extraction and has better generalization ability to unknown datasets compared to existing
learning-based methods. However, the network framework integrates multiple modules,
which put forward higher requirements on computing power compared with other meth-
ods. Luo et al. [22] proposed a network for precise shape localization using D2-Net [23] as
the backbone structure to learn detector and descriptor. It improved localization accuracy
through three lightweight but effective optimizations. R2D2 [24] jointly learned feature
point detector and descriptor in high-confidence regions. It effectively avoided the effect of
ambiguous regions to enhance the detection and description of feature points. In addition,
in order to further improve the accuracy of feature point detection, Key.Net [25] combined
hand-made filters with learned filters and determine the search range of feature points
through a multi-scale index layer. It significantly reduced the complexity of learnable
parameters and detector structure.

2.2. The Combination of Feature Extraction and Attention Mechanism

The combination of deep learning-based feature point detection methods and attention
mechanisms had achieved good results. Non-local neural networks [26] enable a single fea-
ture at any location to capture long-range dependencies through a self-attention mechanism
to perceive contextual information. It can be combined with existing architectures to signifi-
cantly improve network accuracy. The successful application of Transformer [27] in various
natural language processing (NLP) tasks inspired scholars to explore computer vision
tasks. A two-stage local image feature matching method based on transform (LoFTP) [28]
had great advantages on public datasets. The combination of coarse pixel-level dense
matching and fine refined matching enables the method to still produce dense matching in
low-texture regions. However, the two-stage processing method increased processing time
while maintaining accuracy. Wang et al. [29] proposed a new soft point-wise transformer
model (SPTD2) for the training of descriptor and detector. The model focused on the
intrinsic correlation and multi-scale correlation of local features, which was advantageous
for high-resolution feature mapping. Although the model reduced the computational
complexity and GPU memory compared to the original attention module [12,26,30,31], its
memory was still too large at hundreds of megabytes.

In this work, we train in a self-supervised manner and add a dual attention network.
First, the feature map is obtained through the FPN structure. Then, feature dependencies
are captured through a spatial attention mechanism and a channel attention mechanism.
Finally, the detectors and descriptors are trained using the weighted feature maps. The
descriptor output by our network is 256-bit, which is the same as the traditional ORB
feature descriptor format and can be easily replaced.

3. Method

We design a self-supervised feature extraction network with a dual attention mecha-
nism. The network framework adopts the current mainstream feature extraction network
structure, as shown in Figure 1.

The network is designed as a common encoder, feature pyramid structure, dual atten-
tion network, and two different decoders. Among them, the feature map P2 is weighted
by the dual attention network to obtain the feature map P3. The network can not only
realize the sharing of parameters at runtime but also realize the simultaneous operation of
multiple tasks by different decoders working at the same time.
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Figure 1. The overall framework of the network. I has been processed by the Encoder, FPN, Position
Attention Module, and Channel Attention Module successively, and then the training is completed
by decoding the Detector and the Descriptor, respectively. H and W represent the height and width
of the image, respectively. HS, WS, HZ, and WZ represent the height and width of different feature
maps in the encoding process, respectively. I represents the input image. F1, F2, and F3 are feature
maps of different sizes output by the encoder. The feature map P2 is obtained after convolution of
the feature map P1 fused by F2 and F3. Wsa, Hsa, Csa are the width, height, and channel of the input
feature map O of the attention mechanism. The feature map P2 is weighted by the attention network
to obtain the feature map P3. IZ and Idc represent the feature maps output after Conv1 and Conv2
operations, respectively. Ise and Ide represent the feature maps output by the detector and descriptor
after decoding.

3.1. Network Structure

BackBone: The backbone of the network adopts the VGG [32] structure, which consists
of blocks with the same structure. Each block contains two convolutional layers, bn layers,
and nonlinear activation functions. Where each block uses 3× 3 convolution kernel as
shown in Figure 2a. The size of our commonly used convolution kernel is shown in Figure 2.
The 3× 3 convolution kernel is the smallest size capable of capturing pixel-eight neighbor-
hood information. Although a large convolutional kernel can achieve a large receptive field,
we can achieve the same receptive field by stacking small convolutional layers to replace
large convolutional layers. More importantly, stacking multiple convolutional layers has
more nonlinearities and fewer parameters than one large convolutional layer. In order to
ensure the efficiency of the network operation, we use a 6-layer convolutional structure, and
the number of channels of the convolutional layer is set to 32-32-64-64-128-128. The input
image is IH×W×1, and the multi-scale feature map F is obtained by convolution operation
on the input image.
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Figure 2. Processing of different convolution kernels. The purple area in the figure is the size of the
convolution kernel. (a) represents a 3 × 3 convolution kernel. (b) represents a 5 × 5 convolution
kernel. (c) represents a 7 × 7 convolution kernel.

Feature pyramid structure: First, we reduce the dimension of feature map F3 to
64 channels and obtain feature map IHs×Ws×64

in through bilinear interpolation. Then, the
multi-scale feature fusion of the image is performed to obtain the feature map PHs×Ws×64

1 .
Finally, the feature map PHs×Ws×64

1 is convolved again to obtain a feature map PHz×Wz×128
2 .

We use PHz×Wz×128
2 for subsequent decoding work.

Attention network: In order to enhance the global features of the feature maps after
multi-scale fusion, we model the dependencies on the spatial and channel dimensions
of PHz×Wz×128

2 through the location attention module and the channel attention module,
respectively. The location attention module determines the spatial dependencies between
any two locations. The channel attention module captures the channel dependencies
between any two-channel maps and updates them using the weighting of all channel maps.
The outputs of the two attention modules are fused to enhance the feature representation.

Detector head: Conv1 contains two 3× 3 convolutional layers. The second layer is
a dimensionality reduction layer with a stride of 1. First, the feature map PHz×Wz×128

3 is
converted into a feature map IHz×Wz×65

z with 65 channels after Conv1 operation. We get the
coordinates XPosition and YPosition of the feature points through IHz×Wz×65

z . Then, we adjust
the resolution back to the original image by upsampling through the Reshape operation to
obtain IH×W×1

se . Finally, the calculation of feature points is performed on the full-resolution
map IH×W×1

se .
Descriptor head: Similar to the processing process of the detector, the input feature

map PHz×Wz×128
3 needs to be output through the Conv2 operation. Conv2 contains two

convolutional layers. The parameters of the first layer are the same as those of Conv1. The
second layer is still a dimensionality reduction layer, but the number of output channels
is set to 256, which is also to facilitate subsequent transplant operations. The feature map
IHz×Wz×256
dc output by Conv2 is first restored to full resolution by bilinear interpolation.

Then, normalized to unit length by L2-Norm. Finally, output the feature map IH×W×256
de

with the same size as the original image and the number of channels is 256.

3.2. Dual Attention Network Weights

The location attention module adds contextual information to local features to enhance
their representation. As shown in Figure 1, the fused feature map PHz×Wz×128

2 needs to un-
dergo a dimensionality reduction operation in the attention module to obtain OHsa×Wsa×Csa .
OHsa×Wsa×Csa is processed by the convolution layer to obtain three mappings of B, C, and
D, {B, C, D} ∈ RHsa×Wsa×Csa . We multiply C and the transposed matrix of B and compute
the spatial attention map A through the softmax layer. We perform a matrix multiplication
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operation of D with the transpose of A, and then perform an element-wise addition with O.
The calculation process of spatial attention map and output feature map is as follows:

amn =
exp(Bn · Cm)

N
∑

n=1
exp(Bn · Cm)

, A ∈ RG×G (1)

Jm = αsa

N

∑
n=1

(amnDn) + Om (2)

where amn represents the correlation between the nth position and the mth position, and the
larger the value, the greater the similarity, αsa represents the scaling factor, G = Hsa ×Wsa.

The channel attention module improves feature representation by establishing in-
terdependencies between channels. Unlike the positional attention module, the channel
attention module utilizes the feature map OHsa×Wsa×Csa to be multiplied by its own trans-
posed matrix. Then, the channel attention map K ∈ RC×C is obtained through the softmax
layer. Finally, we perform a matrix multiplication operation of K with the transpose of O,
and then perform an element-wise addition with O. The calculation process is as follows:

kmn =
exp(On ·Om)

C
∑

n=1
exp(On ·Om)

(3)

Jm = ℘sa

C

∑
n=1

(kmnOn) + Om (4)

where kmn represents the correlation between the nth channel and the mth channel. ℘sa
represents the scaling factor.

3.3. Loss Functions

The overall loss computation consists of the detector loss L f and the descriptor loss
Ld, as shown in (5). We adopt a training form that optimizes both parts of the loss
simultaneously. In order to balance the two-part loss, we also set two additional weight
parameters to ensure the correct convergence of the loss function.

Lsum = α fL f + αdLd (5)

where L f is the detector loss function, Ld is the descriptor loss function, α f is the weight
coefficient of L f , and αd is the weight coefficient of Ld.

3.3.1. Detector Head Loss

The loss calculation of the detector is divided into two parts. The first part is to
calculate the scores of the two frames of images after the homography transformation. The
second part is to calculate the error and confidence between the predicted value of the
feature point and the true value. The loss of the detector is calculated as follows:

L f = L f t(xor, yor) + L f t(xwr, ywr) + L f a(xpr, ypr) + L f a(xpw, ypw) (6)

where L f t represents the score loss, and L f a represents the position error loss of the feature
points. (xor, yor) represents the original image, (xwr, ywr) represents the transformed image,
(xpr, ypr) represents the predicted value of the original image, and (xpw, ypw) represents
the transformed predicted value.

Feature point detection can be regarded as a binary classification problem. Most of the
previous work is based on the cross-entropy loss function. However, it is easy to deviate
when the sample distribution is not balanced. Therefore, we apply the loss function focal
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loss [33] during model training to improve the convergence speed in feature point detection.
The loss is calculated as follows:

L f t(x, y) =
1

UωVω

Uω ,Vω

∑
u = 1
v = 1

Ff t, x ∈ IHz×Wz×65
z (7)

PF(xuv; y) =
exp

(
xuvy

)
∑65

d=1 exp(xuvd)
(8)

Ff t = −αθ(1− PF)λ log(PF) (9)

where Uω = H
8 , Vω = W

8 , y is the label of the ground truth value of the feature point, αθ is
used to suppress the unbalanced number of positive and negative samples, and λ is used
to control the unbalanced number of difficult and easy samples.

In order to further improve the estimation accuracy of feature points, we are inspired
by the literature [21], adding the softargmax function to the patch of 5× 5 in the neighbor-
hood of each feature point to further refine the coordinate position of each feature point,
and update the coordinates with sub-pixel accuracy. The calculation process is as follows:

Tpi = To + (∆x, ∆y) (10)

∆x =

∑
i

∑
j

eTg j

∑
i

∑
j

eTg
, ∆y =

∑
i

∑
j

eTg j

∑
i

∑
j

eTg
(11)

L f at =
∥∥Tpi − Tt

∥∥
2 (12)

where Tpi represents the updated predicted value coordinates, To represents the center
pixel coordinate value, Tg represents the pixel value at the position of the heat map g, and
Tt represents the true value.

The error loss of the feature point coordinate value includes error accumulation, error
mean and confidence. The error accumulation part is to ensure the overall accuracy of
feature point prediction. The error mean and the confidence loss term are to ensure the
stability of the accuracy of the extracted feature points of the trained network.

L f a = L f at1 + L f at2 + L f at3 (13)

L f a1 = ζ log

(
N

∑
i=1
L f at

)
(14)

L f a2 =

N
∑

pi=1
L f at

N
(15)

L f a3 = φ∑
(
L f at −L f a2

)
(16)

where L f a1 represents the cumulative sum of errors, ζ is the weight coefficient, L f a2
represents the mean value of the error, L f a3 represents the confidence, and φ is the
weight coefficient.

3.3.2. Descriptor Head Loss

The two image frames for which the descriptor loss is calculated are the image pairs
after homography transformation. We obtain the final descriptor loss by computing the
homography corresponding point pairs between the two images. At the same time, in order
to improve the network training accuracy and the network convergence speed, we set the
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error loss term of the descriptor. The descriptor from the original image is d ∈ IHz×Wz×256,
and the descriptor in the transformed image is dh ∈ IHz×Wz×256

h . We set the matching
threshold S to 4-pixel values during training. The specific calculation process is as follows:

Z =

{
1, i f M ≤ S
0, otherwise

(17)

M = ‖N − Nh‖ (18)

L = ‖N − Nh‖2 (19)

where M represents the interval between two pixels, N represents the coordinates of the
center coordinates of a pixel in a unit after homography transformation, Nh is the center
pixel coordinates of the corresponding unit in the image after homography transformation,
L Represents the 2 norm of the spacing between pixels.

Since the number of corresponding points between frames is significantly less than
the number of non-corresponding points, we reduce the impact of the high loss of non-
corresponding points on the overall descriptor loss function by setting a modulation factor
=. At the same time, a hinge loss function is applied to add upper and lower bounds for
prediction. rp and rn are the upper and lower boundaries, respectively.

Ld =
1

(KKh)
2

K

∑
k=1

Kh

∑
kh=1

Fm + ψ∑ L (20)

Fm = = · Z ·max(0, rp − dTdh) + (1− Z) ·max(0, dTdh − rn) (21)

where K and Kh represent the number of corresponding points and non-corresponding
points in the original image and the two frames of images after homography transformation,
respectively. ψ is the weight coefficient of the descriptor cumulative error loss term.

4. Experiments and Analysis

Our experiments are carried out under the pytorch [34] framework. The network
training is divided into two steps. The first training is 200,000 iterations on the synthetic
dataset. The second training is 200,000 times on the COCO dataset [35] or KITTI dataset [36]
annotated with the network parameters of the first training. Then, it is tested with the
trained network model under the Hpatches dataset [37]. Finally, a total of 10 image
sequences from 01 to 10 under the Odometry dataset provided by the KITTI dataset are used
in VO to test the effect of the proposed algorithm. We perform data augmentation on the
training data to improve the robustness of the network to illumination and pilot changes.

The descriptor size is set to 256 bits in our experiments. We found that the descriptor
loss is much larger than the detector loss during network training. Therefore, we balance
the two-part loss by the weight parameter to make the network converge correctly. First,
we set the initial values to α f = 1, αd = 0.1. Then, we resize αd by a factor of 10. Finally, we
set the α f and αd value to α f = 1, αd = 0.0001, respectively, through pre-training debugging
and referring to the setting of this parameter in [8,21]. During the training of the network,
L f a2 determines the overall accuracy of the detector, while L f a1 and L f a3 are further
optimizations for the detector. Therefore, we set the appropriate initial values of ζ and
φ after determining the magnitude of L f a1 and L f a3 by a simple calculation. Then, we
set ζ = 0.0001 and φ = 0.001 through the pre-training debugging method. According to
the application environment and [33], we set the parameters of the focal loss function
to αθ = 0.25, λ = 2. According to the experience of [8,19] and our training results, the
relevant parameters in the descriptor loss function are adjusted. We set = = 250 to keep
the descriptors balanced. We guarantee the accuracy of descriptor learning by setting a
positive threshold rp = 1 and a negative threshold rn = 0.2. We set ψ = 0.0001 to ensure the
convergence speed of the network. When the value of ψ is increased, the network training
effect is poor. Conversely, when decreasing the value of ψ, this term has little effect on the
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network. To ensure the convergence of the loss function, we set the learning rate of the
ADAM optimizer to 0.0001. The system used in our experiment is Ubuntu18.04, the CPU is
IntelCoreTM i9-10980XE produced by Intel Corporation of America, the GPU is NVIDIA
RTX3080TI produced by NVIDIA in the United States, and the memory is 128 GB.

4.1. Feature Point Detection and Matching

The ability of our network and other algorithms to extract feature points in different
environments is tested on the Hpatches dataset. Figure 3 shows the effect of applying
different algorithms to extract feature points and complete matching in the image pair after
homography transformation. The red line is the wrong match. It can be seen from Figure 3
that the network we trained has the best matching effect in the three sets of experiments.
Although our network has more false matches in some images than SuperPoint algorithm,
our network has more matches. The SIFT algorithm has the largest number of matches, but
it has a large number of false matches, which will reduce the system accuracy in subsequent
pose estimation. Therefore, our network performance is reliable.

Figure 3. Matching performance of different algorithms. The red lines represent incorrect results.
The green lines represent the correct results. We marked a large number of incorrect results with
yellow boxes in the results of the SIFT algorithm. The SIFT algorithm performs poorly compared to
learning-based methods. Compared with superpoint, our method can produce denser matches with
guaranteed matching accuracy.

The data in Table 1 are obtained by computing 1000 feature points at 480 × 640
resolution. It can be seen from Table 1 that our network homography estimation score is the
highest when the tolerance threshold is 1 and 3, and slightly lower than SuperPoint when
the tolerance threshold is 5. Among them, the ORB algorithm has the highest repeatability
of feature points, but the matching effect of homography estimation is poor. It is worth
noting that our network is much higher than other algorithms at a threshold of 1, which
indicates that our network performs better in pixel localization accuracy. Figure 4 shows
the test results of the feature point detection ability of different algorithms under the
Hpatches dataset. Combining the repeatability of the feature points with the matching
score estimated by the homography, our network performs the best.
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Table 1. Homography estimation.

HomoGraphy Estimation
Repeatability Time (ms)

Epsilon = 1 3 5

Superpoint 0.331 0.684 0.829 0.581 103
LIFT 0.284 0.598 0.717 0.449
SIFT 0.424 0.676 0.759 0.495 80
ORB 0.150 0.395 0.538 0.641 125

BRISK 0.300 0.653 0.746 0.566
Ours 0.505 0.729 0.788 0.586 170

Figure 4. Feature point repeatability detection. On the left is the original image. On the right is the
image after applying the homography transformation. rep is the repeatability of feature points.

We tested the running time of different algorithms under Opencv. Table 1 shows the
running speed of different algorithms to extract 1000 points on an image with a resolution of
1242× 376. Due to performing multi-scale fusion of feature maps and adding a dual-channel
attention module to improve the accuracy of network feature extraction, our network is
slower than other algorithms. We improve accuracy at the expense of some time.

4.2. KITTI Dataset Test

We select the 01~10 image sequence with ground truth values from the odometry
dataset under the KITTI dataset for testing. The feature point extraction ability and the
estimation accuracy of the camera trajectory of our network and the three traditional
algorithms of SIFT, ORB, and FAST and the deep learning based SuperPoint algorithm are
evaluated in different scenarios.

Figure 5 is a screenshot of the five algorithms in different sequences when tested under
the VO framework. As can be seen from Figure 5, the number of feature points detected
by our network on shadowed parts and irregular objects such as flowers, plants, and trees
significantly exceeds that of other algorithms. We applied non-maximum suppression
during the training of the network to make the extracted feature points evenly distributed.
On the contrary, because the ORB algorithm does not apply non-maximum suppression,
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the feature points are clustered obviously, which also affects the overall tracking effect.
SIFT and FAST algorithms have good feature point detection performance in general
scenarios. However, they do not perform as well as learning-based algorithms in poor
lighting conditions. Compared with the Superpoint algorithm, our network extracts more
feature points and performs more stable in low-texture scenes.

Figure 5. Feature points extracted by different algorithms in the Kitti dataset. (A) represents ours,
(B) represents SuperPoint, (C) represents ORB, (D) represents SIFT, (E) represents FAST.

Figure 6 shows the complete camera trajectories estimated by different algorithms
under two different sequences of the KITTI dataset, where Our-VO represents our network
and Ground Truth represents the ground truth of the camera trajectory. As can be seen
from the trajectory in Figure 6, the complete camera trajectory we estimated fits best with
the true value of the camera trajectory, and the accuracy of our estimated camera trajectory
is significantly improved compared with other algorithms.

Figure 6. Camera trajectory. (a) represents the 09 sequence. (b) represents the 10 sequence.

Figure 7 is a graph of absolute trajectory error curves of different algorithms under
different sequences. From Figure 7, we can clearly see that our estimated camera trajectory
has the smallest error compared to others. Compared to other algorithms in terms of
accuracy and stability, our network achieves satisfactory results.

Figure 8 shows the number of feature points extracted by different algorithms under
the 04 sequence. It can be seen from the graph in Figure 8 that the feature extraction stability
of the learning-based method is higher than that of the classical method, and the number of
features extracted on each frame of the entire image sequence fluctuates less. The number
of features extracted by us exceeds the SuperPoint algorithm while ensuring stability. In
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addition, it is worth noting that the number of features extracted by the ORB algorithm
and the SIFT algorithm fluctuates significantly. This is because they have a stronger ability
to extract feature points when the complexity of the environmental conditions is small, so
the number of extracted feature points is higher than ours. However, they extract a small
number of feature points in low-texture scenes, and deep learning-based algorithms have a
stable ability to extract feature points even in low-texture scenes. Looking at the overall
curve, our network is more stable than other algorithms. Besides, we have a stronger ability
to extract feature points compared to them.

Figure 7. Absolute trajectory error. (a) represents the 09 sequence. (b) represents the 10 sequence.

Figure 8. Number of extracted features.

Table 2 is the absolute trajectory error data of different algorithms under different
sequences under the KITTI dataset. The data in Table 2 show that our network performs the
best overall among the 10 sequences. Among them, compared with SuperPoint and FAST
in the 03 sequence, the error of our network is reduced by 80.13% and 79.78%, respectively.
Compared with the improved SuperPoint algorithm PC-SuperPoint algorithm [38] in the
04 sequence, the error of our network is reduced by 70.87%, and the error is reduced by
74.93% compared with the best performing SIFT algorithm in the traditional algorithm.
In the 05, 08, 09, and 10 sequences, the errors of our network are significantly reduced
compared with other algorithms. Although our network is not the best in some sequences,
it is the most stable by the error performance of all sequences.
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Table 2. Absolute trajectory errors of different algorithms in different sequences.

Dataset Ours SuperPoint ORB SIFT FAST PC-SuperPoint

01 88.082 85.587 875.248 199.891 326.547 63.743
02 58.625 25.647 214.623 43.423 78.519 34.829
03 0.493 2.481 42.648 12.341 2.438 7.257
04 0.573 2.573 6.775 2.286 2.382 1.967
05 5.380 6.415 96.519 41.629 23.065 21.698
06 11.837 7.696 17.509 7.270 2.883 9.577
07 10.911 9.100 25.138 9.346 8.592 8.072
08 12.529 16.729 325.808 79.576 16.878 33.347
09 5.562 16.785 31.988 16.006 31.190 14.703
10 4.677 22.755 28.935 9.474 11.387 11.057

Table 3 shows the relative trajectory error performance of different algorithms under
different sequences. The relative trajectory error of camera trajectories estimated by our
network is lower than other algorithms in most sequences. Even though it is not the best in
the partial sequence, our error is small compared to other algorithms. The data in Table 3
demonstrate that our network has high stability in estimating camera poses.

Table 3. Relative trajectory errors of different algorithms under different sequences.

Dataset Ours SuperPoint ORB SIFT FAST

01 0.317 0.357 1.869 0.861 0.906
02 0.275 0.1455 0.808 0.157 0.260
03 0.102 0.073 0.180 0.111 0.090
04 0.061 0.056 0.172 0.085 0.057
05 0.057 0.059 0.469 0.135 0.120
06 0.125 0.084 0.163 0.072 0.058
07 0.083 0.093 0.168 0.092 0.082
08 0.109 0.122 0.796 0.243 0.148
09 0.120 0.139 0.183 0.153 0.153
10 0.145 0.168 0.136 0.092 0.145

5. Discussion

Figures 3 and 4, and Table 1 are the experimental results of our network and other
algorithms under the Hpatches dataset. Compared with traditional algorithms and related
deep learning-based algorithms, our network has a significant improvement in accuracy
due to the addition of FPN and attention modules to optimize feature maps. However,
the increase in processing increases the processing time of the network accordingly. In
terms of time, our network is not dominant. Figures 5–8 and Tables 2 and 3 are the
qualitative and quantitative analysis of our network and other algorithms under the KITTI
dataset. In the VO test, our network meets the requirements for camera tracking in all
10 image sequences under the KITTI dataset. In addition, the test results in the 03, 04,
05, 08, 09, 10 sequences are significantly improved compared with other algorithms. The
lighting conditions and environments in different image sequences are different, which
puts forward higher requirements for the detection algorithm of feature points. The feature
point detection capability of deep learning-based algorithms is more stable than traditional
algorithms. Therefore, it can still maintain high detection accuracy in scenes with complex
environments and poor lighting conditions. The number of extracted feature points is
stable during the tracking process of the entire image sequence. The traditional algorithm
has a strong ability to extract feature points when the detection conditions are good, but
is poor when the detection conditions are poor, which leads to the large fluctuation in
Figure 8. The optimization of feature maps by our network has a stronger detection ability
than other learning-based algorithms. Therefore, both the detection number of feature
points and the tracking of camera trajectories have achieved satisfactory results.
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It should be noted that we improve the detection accuracy by refining the processing
of feature maps while increasing the computational time of the network. Although we take
into account both accuracy and efficiency when designing the network, we still have a gap
compared with traditional feature point detection methods.

6. Conclusions

In this paper, we propose a new self-supervised feature extraction network to address
the poor performance of traditional feature point detection methods in low-texture situ-
ations. First, we achieve feature map fusion through the FPN to enhance the multi-scale
detection of the network. Then, in order to improve the accuracy of feature point detection
in the network, we propose to use a dual attention mechanism to achieve spatial weighting
and channel weighting for a fused feature map. Finally, we set the descriptor output chan-
nel to 256 to facilitate subsequent transplantation and design the loss function to improve
the prediction accuracy of feature point locations and speed up network convergence.
Experimental results show that our proposed network is effective and accurate.

In future work, our research direction is to further optimize the network structure to im-
prove the real-time performance of the network under the condition of ensuring accuracy.
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