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Abstract: During its operation, a rotor system can be exposed to multiple faults, such as rub-impact,
misalignment, cracks and unbalancing. When a crack fault occurs on the rotor shaft, the vibration
response signals contain some nonlinear components that are considerably tougher to be extracted
through some linear diagnosis methods. By combining the Nonlinear Output Frequency Response
Functions weighted contribution rate (WNOFRFs) and Kullback–Leibler (KL) divergence, a novel
fault diagnosis method of improved WNOFRFs is proposed. In this method, an index, improved
optimal WNOFRFs (IOW), is defined to represent the nonlinearity of the faulty rotor system. This
method has been tested through the finite element model of a cracked rotor system and then verified
experimentally at the shaft crack detection test bench. The results from the simulation and experiment
verified that the proposed method is applicable and effective for cracked rotor systems. The IOW
indicator shows high sensitivity to crack faults and can comprehensively represent the nonlinear
properties of the system. It can also quantitatively detect the crack fault, and the relationship between
the values of IOW and the relative depth of the crack is approximately positively proportional. The
proposed method can precisely and quantitatively diagnose crack faults in a rotor system.

Keywords: cracked rotor; WNOFRFs; fault diagnosis; nonlinear systems

1. Introduction

Rotor systems can be considered the most common and critical mechanical compo-
nents in rotating machinery. They are widely used in various engineering fields, such as
aerospace, transportation and electric power [1]. However, due to the more demanding
requirements for the mechanical equipment, the structure of the rotor is more complicated,
so it is prone to breakdowns in operation due to assembly errors or failure of its critical
components [2,3]. Crack faults in rotor shafts are a common phenomenon that can lead to
catastrophic failure and great economic loss if not identified in time [4,5]. Therefore, it is
essential to detect and identify crack fault in rotor systems.

Vibration signals play an important role in reflecting the health status of the rotor
system [6–9]. At present, many studies have focused on fault diagnosis methods for
cracked rotor systems through vibration signals. R. Gradzki et al. [10] presented a rotor
fault detection method through the auto-correlation and power spectral density functions
of the rotor response signals and confirmed the sensitivity of this method, as well as its
reliability. L. Xiang et al. [11] employed the orbit morphological characteristics to diagnose
cracks in rotor systems. Its effectiveness at detecting crack information was verified
through the dynamic model analysis and experimental study. Lu et al. [12] proposed a
crack identification method for breathing crack identification of rotors based on the Kriging
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surrogate model by extracting the super-harmonic nonlinear characteristics. The results of
the finite element method and experiments verify that this method is effective, accurate and
robust for breathing crack identification in rotors. A. Hajnayeb et al. [13] created a feature
space including the features of the largest Lyapunov exponent, approximate entropy and
correlation dimension for fault diagnosis in rotors due to cracks. Saeed N. A. et al. [14]
utilized the bifurcation diagram, Poincaré map, frequency spectrum and whirling orbit
to investigate the Jeffcott rotor system. This strategy can not only inspect the existence
of a crack but also predict the crack size based on the qualitative change of the system’s
whirling motions when the crack size increases. Yang et al. [15] proposed the hybrid MVA
method and used the cracked bench rotor to validate its effectiveness. These methods can
identify the crack fault of the rotor system, but all of them cannot quantitatively describe
the crack to detect its depth.

The Frequency Response Function (FRF) is the basic theory in the analysis of a linear
system. The FRF represents the relationship of the input and output for a linear system
in the frequency domain. The theory of the FRF has been widely used in engineering
practice [16]. However, most engineering systems are complicated and nonlinear, so they
cannot be simply described through the linear model. In the late 1950s, the Generalized
Frequency Response Functions (GFRFs) were developed in the nonlinear case based on
the theory of the Volterra series. The GFRFs were defined as the multidimensional Fourier
transformations of the Volterra kernel functions. They are used to represent the nonlinear
characteristics in the frequency domain [17]. However, the calculation of high-order
GFRFs is quite tedious because it will involve a large amount of algebra or symbolic
manipulations [18]. Therefore, the GFRFs actually do not have a broad range of applications
in engineering practice.

To tackle the above problem, Lang put forward the Nonlinear Output Frequency
Response Functions (NOFRFs) on the basis of the Volterra series [19]. NOFRFs are a
significant extension of the FRF theory for linear systems to nonlinear situations. It reveals
the rationale of nonlinear phenomena well and provides a certain theoretical basis for
analyzing nonlinear systems in the frequency domain [20]. One of the most attractive
points of the NOFRFs is its one-dimensional nature, which has many advantages, so it
is extensively used in engineering practice to solve some difficult problems, such as in
the field of structural health monitoring and fault diagnosis [21]. Peng et al. [22] used the
NOFRFs to detect cracks in beams, as well as the nonlinear component’s position of periodic
structures [23]. Based on the Nonlinear Auto Regressive with eXegenous Input (NARX)
model and the NOFRFs, Bayma et al. [24] designed a structural damage detection method
for detecting cracks in beam structures. By introducing the evidence theory to the NOFRFs,
Cao et al. [25] put forward a fault diagnosis method for complicated nonlinear systems by
combining the NOFRFs and evidence theory. This approach was employed to diagnose
the fault of the transmission system of a numerical control machine tool. Zhao et al. [26]
put forward a method for detecting early damage to nonlinear systems by combining the
NOFRFs with the convolutional neural network and long short-term memory network
(CNN-LSTM) model, which was verified through a cantilever beam with a breathing crack.

Some studies are devoted to NOFRF-based indexes to enhance the effect of the NOFRFs
for defect detection and fault diagnosis. Peng et al. [27] put forward an index, Fe(n), to-
ward the Nonlinear Auto-Regressive Moving Average with eXegenous Inputs (NARMAX)
model in damage detection. The experiments of aluminum plates with holes and cracks
indicated that the index Fe(n) of the inspected structure is considerably different from the
damage-free structure. Huang [28] put forward the index Ne, which integrates all orders of
the NOFRFs by introducing information entropy. The experiments of the plate specimens
were conducted to reveal the higher sensitivity of the index Ne. Mao et al. [29] introduced
Kullback–Leibler (KL) divergence to the NOFRFs to propose the index NOFRFs-KL (NKL)
for fatigue damage identification. The effectiveness of NKL was verified by an experiment
on a train wheelset. For improving the sensitivity of the Fe and Ne indexes, Liu et al. [30,31]
put forward the method of the Nonlinear Output Frequency Response Functions weighted
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contribution rate (WNOFRFs). The index of the second-order optimal weighted contri-
bution rate Rm was defined for feature extraction of the rub-impact of the rotor system.
Another index, K, which is based on Rm, was also defined. Its superiority was verified
through the mathematical model and experiments on a cracked rotor system. Li et al. [32]
proposed the index J by introducing the Clenshaw–Curtis numerical integration method
and the minimum mutual entropy principle to the WNOFRFs for diagnosing the rotor
rub-impact.

Further studies on the feature extraction method of the WNOFRFs and the associ-
ated index K indicated that this method can improve the performance of crack detection.
However, in this method, only the second-order WNOFRFs are focused on, rather than
comprehensively considering the other orders of the WNOFRFs. The increments of the
index K are a bit small when the degree of the crack fault increases, so it is not sensitive
enough for crack fault detection. The values of K and the degree of the crack are in a linear
relationship to some extent rather than in a positive proportion, as might be expected. In
the present study, a fault diagnosis method known as the improved WNOFRFs is proposed,
which is employed to diagnose rotor cracks. An associated index denoted as IOW is pro-
posed to represent the nonlinear characteristics of the system. The effectiveness of the
method was verified through a mathematical model of the cracked Jeffcott rotor system
and an experimental rotor system with crack faults.

2. The Principle of Improved WNOFRFs
2.1. NOFRFs Theory

For a stable linear system, its output frequency response can be expressed as

Y(jω) = H(jω)U(jω), (1)

where U(jω) and Y(jω) are the input and output spectra, respectively, which are the
Fourier transforms of the input function u(t) and the output function y(t) of the system.
For linear systems, this expression shows that the possible output frequencies are the same
as the frequencies in the input.

Considering the relationship in the time domain of the input and the output of a
nonlinear system which are stable at zero equilibrium, this can be represented by the
Volterra series:

y(t) =
+∞

∑
n=1

yn(t) =
N

∑
n=1

∫ ∞

−∞
· · ·
∫ ∞

−∞
hn(τ1, . . . , τn)

n

∏
i=1

u(t− τi)dτi, (2)

where u(t) denotes the input function of the nonlinear system at discrete time t, y(t) is the
corresponding output function, hn(τ1, · · · , τn) is the nth discrete time Volterra kernel, N
denotes the maximum order of the system nonlinearity and τ is the time delay.

The output frequency response of the nonlinear system under general excitation can
be represented by

Y(jω) =
N

∑
n=1

Yn(jω), (3)

where Y(jω) represents the out spectrum of the system and Yn(jω) represents the nth order
output frequency response of the nonlinear system, which is defined as

Yn(jω) =
1/
√

n

(2π)n−1 ×
∫

ω1+···+ωn=ω
Hn(jω1, · · ·, jωn)

n

∏
i=1

U(jωi)dσnω, (4)

Equation (4) is a natural extension of the well-known linear relationship (expressed in
Equation (1)) to non-linear cases, which is much more complicated than in linear system
cases. It reveals how the nonlinear mechanisms operate on the input spectra to produce
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the system output frequency response.
∫

ω1+···+ωn=ω Hn(jω1, · · ·, jωn)
n
∏
i=1

U(jωi)dσnω is the

integral of Hn(jω1, · · · , jωn)∏n
i=1 U(jωi) under the condition of ω1 + · · ·+ ωn = ω in the

n-dimensional hyperplane. Hn(jω1, · · · , jωn) is the Fourier transform of hn(jω1, · · · , jωn)
and denotes the nth GFRFs of the nonlinear systems [33]. Its expression is

Hn(jω1, . . . , jωn) =
∫ ∞

−∞
. . .
∫ ∞

−∞
hn(τ1, . . . , τn)× e−(ω1τ1+···+ωnτn)jdτ1 . . . dτn, (5)

Under the condition of Un(jω) =
∫

ω1+···+ωn=ω

n
∏
i=1

U(jωi)dσnω 6= 0, the nth NOFRFs

is defined as

Gn(jω) =

∫
ω1+···+ωn=ω Hn(jω1, · · · , jωn)

n
∏
i=1

U(jωi)dσnω∫
ω1+···+ωn=ω

n
∏
i=1

U(jωi)dσnω

, (6)

This is substituted into Equation (4), and the nth output frequency response of the
nonlinear system can be rewritten as

Yn(jω) =

∫
ω1+···+ωn=ω Hn(jω1,··· ,jωn)

n
∏

i=1
U(jωi)dσnω∫

ω1+···+ωn=ω

n
∏

i=1
U(jωi)dσnω

× 1/
√

n
(2π)n−1

n
∏
i=1

U(jωi)dσnω

= Gn(jω)Un(jω)

(7)

Therefore, the relationship between the output spectrum and the input spectrum can
be rewritten as [34]

Y(jω) =
N

∑
n=1

Yn(jω) =
N

∑
n=1

Gn(jω)Un(jω), (8)

The first four-order NOFRFs are generally sufficient to reflect the nonlinear character-
istics of a nonlinear system, so only the first four-order NOFRFs are considered.

Therefore, Equation (8) can be further expressed as [30]

Y(jω) =
N

∑
n=1

Yn(jω) =
N

∑
n=1

Gn(jω)Un(jω), (9)

Y(j2ω) = G2(j2ω)U2(j2ω) + G4(j2ω)U4(j2ω), (10)

Y(j3ω) = G3(j3ω)U3(j3ω), (11)

Y(j4ω) = G4(j4ω)U4(j4ω), (12)

As shown in Equations (9)–(12), if a nonlinear system was excited twice by two harmonic
input signals that had different amplitudes, the first four-order NOFRFs could be calculated
through the least square algorithm.

The Fourier transforms of these two harmonic inputs are A(1)
i (jωF) and A(2)

i (jωF),
i = 1, 2, 3, 4. The output spectra are expressed as(

Y(1)(jωF)

Y(2)(jωF)

)
=

(
A(1)

1 (jωF) A(1)
3 (jωF)

A(2)
1 (jωF) A(2)

3 (jωF)

)(
G1(jωF)
G3(jωF)

)
, (13)

G1(jωF) and G3(jωF) can be calculated as follows:

(
G1(jωF)
G3(jωF)

)
=

(
A(1)

1 (jωF) A(1)
3 (jωF)

A(2)
1 (jωF) A(2)

3 (jωF)

)−1(
Y(1)(jωF)

Y(2)(jωF)

)
, (14)
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The remaining values of the NOFRFs can be calculated in a similar way.

2.2. The Principle of WNOFRFs

On the basis of the associated index Fe proposed by Peng [27], Liu [30,31] introduced
the weighting coefficient nρ and proposed the feature extraction method known as the
NOFRFs weighted contribution rate (WNOFRFs). Its expression is

Rn(n)(ρ) =

∫ +∞
−∞

∣∣∣Gn(jω)
nρ

∣∣∣dω

N
∑

i=1

∫ +∞
−∞

∣∣∣Gi(jω)
iρ

∣∣∣dω

, 1 ≤ n ≤ N, ρ ∈ (−∞, 0), (15)

where the weighting coefficient nρ amplifies the high-order Gn(jω) of the nonlinear system.
Further studies found that the second-order weighted contribution rate Rn2(ρ) is a

good index for indicating the degree of the fault, and Rn2(ρ) is defined as

Rn2(ρ) =

∫ +∞
−∞

∣∣∣G2(jω)
2ρ

∣∣∣dω

N
∑

i=1

∫ +∞
−∞

∣∣∣Gi(jω)
iρ

∣∣∣dω

ρ ∈ (−∞, 0), (16)

In Equation (16), the maximum value of the curve Rn2(ρ) was denoted as the second-
order optimal WNOFRFs Rm, and the Newton-Raphson iterative method was applied to
solve the x-coordinate corresponding to Rm, which is named as the optimal fitness factor
ρmax. Its expression is as follows:

Rm =

∫ +∞
−∞

∣∣∣G2(jω)
2ρmax

∣∣∣dω

N
∑

i=1

∫ +∞
−∞

∣∣∣Gi(jω)
iρmax

∣∣∣dω

, (17)

On the basis of Rm, an associated index K was defined for solving the problem that the
sensitivity of Rm changes significantly at different stages of crack growth [31]. The index K
can be calculated through

K = Rm1/e, (18)

This index is used to represent the system’s nonlinearity, and the severity of the faults
can be distinguished by Rm to some extent. However, for the index K, only the second-order
WNOFRFs are focused on, rather than comprehensively considering the other orders of the
WNOFRFs. The increments of K are a bit small when the degree of the crack fault increases,
so it is not sensitive enough to crack faults, and the values of K and the degree of the crack
are in a linear relationship to some extent rather than in a positive proportion, as might
be expected.

2.3. Improved WNOFRFs Fault Diagnosis Method

To explore an index that has a high enough sensitivity and its values having a certain
relationship with the degree of faults to precisely and quantitatively diagnose faults, KL
divergence is combined with WNOFRFs.

The matching degree between the referenced probability density distribution f (xi),
i = 1, · · · , N and the target probability density distribution g(xi), i = 1, · · · , N can be
measured by calculating their KL divergence. If the difference between f (xi) and g(xi)
is larger, their KL divergence DKL( f ‖ g) will be larger [29]. The expression of the KL
divergence is given by

DKL( f ‖ g) =
N

∑
i=1

f (xi) log
f (xi)

g(xi)
, (19)
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According to Equation (19), the discrepancy between two WNOFRFs, such as the
WNOFRF of the healthy rotor system and the WNOFRF of the cracked rotor system, can be
represented through calculating the KL divergence. Therefore, to explore a superior fault
diagnosis method, a fault diagnosis method of the improved WNOFRFs is proposed based
on the WNOFRFs and the KL divergence. Its expression is as follows:

IW(ρ) = IW1(ρ) + IW2(ρ) + IW3(ρ) + IW4(ρ) =
4

∑
n=1

∣∣∣∣Rnh(n)(ρ) log
Rnh(n)(ρ)
Rnt(n)(ρ)

∣∣∣∣, n = 1, 2, 3, 4, (20)

In Equation (20), Rnh(n)(ρ) represents the nth-order WNOFRFs of the healthy rotor
system and Rnt(n)(ρ) represents the nth-order WNOFRFs of the target rotor system.

If the target rotor system does not have any crack faults, the curve Rnt(n)(ρ) approx-
imately coincides with Rnh(n)(ρ), so for a specific ρ = ρ0, log Rnh(n)(ρ0)

Rnt(n)(ρ0)
is near zero. At

the same time, the value of IW(ρ0) is close to zero. If the target rotor system contains
crack faults, Rnt(n)(ρ0) is bigger than Rnh(n)(ρ) for a specific ρ = ρ0, so log Rnh(n)(ρ0)

Rnt(n)(ρ0)
< 0.

When the crack fault gets worse, the value of Rnt(n)(ρ0) increases, so for a specific ρ = ρ0,
the value of log Rnh(n)(ρ0)

Rnt(n)(ρ0)
decreases while the value of

∣∣∣Rnh(n)(ρ0) log Rnh(n)(ρ0)
Rnt(n)(ρ0)

∣∣∣ increases.
Therefore, the value of IW(ρ0) gradually increases as the crack fault gets worse.

3. Mathematical Model of the Cracked Rotor System

The mathematical model in this study was considered to employ the Jeffcott rotor
system [35] with a crack fault, which is shown in Figure 1.

Figure 1. The mathematical model of the cracked rotor system.

The rotor shaft contains 11 shaft units, each of which has 2 nodes. The specific
parameters of the units are listed in Table 1.

Table 1. Specific parameters of each unit.

Unit Number 1 2 3 4 5 6 7 8 9 10 11

Radius (mm) 5 5 5 5 5 35 5 5 5 5 5
Length (mm) 50 50 50 40 40 27 40 40 50 50 50

The material of the rotor was 45#steel, the properties of which are as follows. The
Young’s modulus is 210 GPa, the density is 7850 kg/m3, Poisson’s ratio is 0.3, the bearing
stiffness is 2 × 106 and the unbalancing is 167.4 × 10−6 kg·m and 236.7 × 10−6 kg·m.

Each shaft segment of the rotor system is modeled by the Timoshenko beam. Each
shaft segment contains two nodes. Four freedoms of each node are taken into account, and
the displacement vector of the ith node is defined as

qi = [ xi yi θxi θyi ]
T, (21)
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The dynamic equation of the Jeffcott rotor system can be expressed as

M
..
q + (C + G)

.
q + Keq = F, (22)

where M is the mass matrix, C is the damping matrix, G is the gyro matrix, K is the stiffness
matrix and F is the excitation vector.

There is a crack in a certain shaft segment, the radius of which is R and the length of
which is L. The cracked shaft element is illustrated in Figure 2. Figure 2a is a diagram of
the cracked shaft element. Figure 2b is the cross-sectional view of the crack. In Figure 2a,
the element is loaded with axial forces P3 and P9, shear forces P1, P2, P7 and P8, bending
moments P4, P5, P10 and P11 and torques P6 and P12. In Figure 2b, a represents the depth of
the crack, and b is its width. The relative depth of the crack is represented as a/R.

Figure 2. The cracked shaft element. (a) A diagram of the cracked shaft element. (b) The cross-
sectional view of the crack.

The stiffness matrix of the crack-free shaft element is

Ke
u = T


L3/3EI 0 0 L2/2EI

0 L3/3EI −L2/2EI 0
0 L2/2EI L/EI 0

L2/2EI 0 0 L/EI

TT, (23)

where the transition matrix T =


−1 0 0 −L 1 0 0 0
0 −1 L 0 0 1 0 0
0 0 −1 0 0 0 1 0
0 0 0 −1 0 0 0 1

.

According to the Castigliano theorem, the general strain energy of the cracked shaft
element is expressed as

U = U0 + Uc, (24)

where U0 is the strain energy of the crack-free shaft element and Uc is the strain energy of
the cracked shaft element.

Based on the fracture mechanics, Uc can be expressed as

Uc =
∫

A
J(A)dA, (25)

where J(A) is the strain energy function.
According to the Paris theory, the flexibility of the cracked shaft element caused by Pi

can be expressed as

ui =
∂U
∂Pi

=
∂U0

∂Pi
+

∂Uc

∂Pi
= u0

i + uc
i , (26)
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where u0 represents the flexibility of the crack-free shaft element and uc represents the
additional flexibility due to cracking [36].

The flexibility coefficients of the cracked shaft element can be expressed as

cij =
∂ui
∂Pj

=
∂u0

i
∂Pj

+
∂uc

i
∂Pj

=
∂2

∂PiPj

∫
A

U0dA +
∂2

∂PiPj

∫
A

UcdA, (27)

Under the assumption that the direction of the crack is on the same side as the mass
eccentricity, only the mixed situation of a Mode I crack caused by the bending moment P4
and a Mode II crack caused by the shear force P2 is considered, as the direction of P2 and
P4 is the same as the direction of the crack. Based on this, the strain energy of the crack-free
shaft element is expressed as

U0 =
∫ L

0

(P4 + P2)x
2EI

dα =
1

2EI

(
P2

4 L + P4P2L2 +
P2

2 L3

3

)
, (28)

Thus, the flexibility matrix of the crack-free shaft element is given as

c0 =
1
EI

[
L3/3 L2/2
L2/2 L

]
, (29)

The stress intensity factors KI4 and KII4, corresponding to the bending moment P4 and
the shear force P2, are defined as

KI4 = σ4I
√

πzFI(
z
h
), (30)

KII2 = σ2II
√

πzFII(
z
h
), (31)

where σ4I = 2(P2α−P4)h
πR4 , σ2II = P2

πR2 , FI(
z
h ) =

√
2h
πz tan πz

2h
0.923+0.199[1−sin(πz/2h)]4

cos(πz/2h) ,

FII(
z
h ) =

1.122−0.561(z/h)+0.085(z/h)2+0.18(z/h)3

(1−z/h)1/2 and h = 2
√

R2 − w2.
Therefore, the additional strain energy caused by the crack with depth a and width b

in Figure 2b is

Uc =
1− v2

E

∫ b

−b
dw
∫ √R2−w2−(R−a)

0

[
4(P2

2 α2 − 2P2P4α + P2
4 )h

2

πR8 zF2
I

( z
h

)
+

P2
2

π2R4 πzF2
II

( z
h

)]
dz, (32)

Thus, the local additional flexibility coefficients c44 and c22 caused by the bending
moment P4 and the shear force P2 are expressed as

c44 =
∂2Uc

∂P2
4

=
1− v2

E

∫ b

−b

32(R2 − w2)
2

πR8 dw
∫ [
√

R2−w2−(R−a)]/h

0

z
h

F2
I

( z
h

)
d
( z

h

)
, (33)

c22 = ∂2Uc

∂P2
2

= 1−v2

E

[∫ b
−b

128α2(R2−w2)
2

πR8 dw
∫ [
√

R2−w2−(R−a)]/h
0

z
h F2

I
( z

h
)
d
( z

h
)

+
∫ b
−b

8(R2−w2)
2

πR4 dw
∫ [
√

R2−w2−(R−a)]/h
0

z
h F2

II
( z

h
)
d
( z

h
)] , (34)

The additional flexibility matrix caused by the crack is given by

cc =

[
c22 0
0 c44

]
, (35)

Thus, the flexibility matrix of the full-open crack is expressed as

c = c0 + cc =
1
EI

[
L3/3 L2/2
L2/2 L

]
+

[
c22 0
0 c44

]
, (36)
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The stiffness matrix of the full-open crack is

Ke
c = TT

1 c−1T1, (37)

where the transition matrix T1 =

[
−1 −L 1 0
0 −1 0 1

]
.

The flexibility matrix of the semi-open crack is expressed as

ch = c0 +
1
2

cc, (38)

The stiffness matrix of the semi-open crack is

Ke
h = TT

1 c−1
h T1, (39)

The stiffness matrix of the cracked shaft element varies with the time rotation an-
gles due to the opening and closing characteristics of the crack. This variation [37] is
expressed as

K = K0 + K1 cos(wt) + K2 cos(2wt) + K3 cos(3wt) + K4 cos(4wt), (40)

where K4


K0= (5Ke

u + 5Ke
c + 6Ke

h)/16
K1= (9Ke

u − 9Ke
c)/16

K2= (Ke
u + Ke

c − 2Ke
h)/4

K3= (Ke
c −Ke

u)/16
K0= (−Ke

u −Ke
c + 2Ke

h)/16

.

The Newmark-β algorithm is employed to solve the dynamic equation of the Jeffcott
rotor system at different crack faults. The rotor system is excited twice using different
unbalanced forces. The depth of the cracks is set to 1 mm, 2 mm, 3 mm or 4 mm, so the
relative depth (representing the ratio between the crack depth and the radius of the shaft)
is 0, 0.2, 0.4, 0.6 or 0.8, and the dynamic responses at node 8 of the crack-free rotor system
and cracked rotor systems with different degrees of crack faults at the rotation speed of
1600 rpm are shown in Figure 3. The time domain responses are shown in Figure 3a, and
the frequency domain responses of the mathematical model are shown in Figure 3b. It can
be observed from Figure 3a that the domain response of the crack-free rotor system was a
standard sine signal. With the degree of the crack fault getting worse (the relative depth
of the crack ranges from 0 to 0.8), the amplitude of the time domain responses gradually
increased both at the peak and at the trough. This change was not distinct at the peak but
visible at the trough. As crack faults became gradually more serious, the peak values of the
1× component in the frequency domain response increased from 0.0257 mm to 0.02721 mm
(0.0257 mm, 0.02579 mm, 0.02596 mm, 0.02596 mm and 0.02721 mm). The change was
not visible, and the peak values of the 2× component in the frequency domain response
increased from 6.325 × 10−6 mm to 1.196 × 10−3 mm (6.325 × 10−6 mm, 3.54 × 10−5 mm,
1.226 × 10−4 mm, 3.672 × 10−4 mm and 1.196 × 10−3 mm). The relative change was
distinct. In Figure 3b, it is found that the 3×, 4× and 5× components also appeared in the
condition of the most serious crack fault, which was due to changes in the local flexural
stiffness of the cracked rotor [38]. However, these changes were insufficient to recognize the
depth of the cracks through simple spectral analysis and some linear methods. Therefore, a
novel nonlinear method needs to be explored to evaluate the cracked rotor system.
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Figure 3. Time domain and frequency domain responses of the Jeffcott rotor system with different
crack faults: (a) time domain responses and (b) frequency domain responses.

4. Fault Diagnosis of the Cracked Rotor System
4.1. Improved WNOFRFs for the Cracked Rotor System

Dynamic responses from the mathematical model of the cracked Jeffcott rotor system
under different severities of the crack faults and corresponding excitations were used for
the fault diagnosis through the method of improved WNOFRFs. First, the WNOFRFs were
calculated according to Equation (15). The curves of the WNOFRFs (Rn) under different
crack faults are shown in Figure 4.
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Figure 4. The curves of WNOFRFs under different crack faults: (a) Rn1, (b) Rn2, (c) Rn3 and (d) Rn4.

It can be found from Figure 4 that the changing trends of the first four orders of
WNOFRFs were relatively distinct. Rn1 monotonically increased from 0 to 1 with the in-
crease in ρ. By contrast, Rn4 monotonically decreased from 1 to 0. When ρ was constant, the
values of Rn1 only slightly decreased as the crack depth became larger, while Rn4 only had
very small changes. Figure 4b indicates that Rn2 first rose from 0 to the maximum, which
corresponds with the optimal fitness factor. Then, it declined to zero. The maximum values
of Rn2 under different crack fault severities increased from zero, with the crack fault getting
worse. As shown in Figure 4c, Rn3 followed the same trend as Rn2. However, its maximum
values manifested a reverse trend as the relative depths of the crack faults deepened.

Next, IW1–IW4 were further obtained according to Equation (20). The curves of
IW1–IW4 under different crack depths are presented in Figure 5.
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Figure 5. The curves of each order of improved WNOFRFs under different crack faults: (a) IW1,
(b) IW 2, (c) IW 3 and (d) IW4.

It can be seen from Figure 5 that the changing trend of IW1, IW2, IW3 and IW4 was
similar to that of Rn2. The maximum values of each order of improved WNOFRFs under
different conditions were also similar to that of Rn2.

To integrate all orders of WNOFRFs, IW1, IW2, IW3 and IW4 were summed to yield
the IW, the curves of which are shown in Figure 6. It can be obviously observed from
Figure 6 that the changing trend of IW was first from 0 to the maximum. Then, it declined
to zero. The maximum values of IW under different relative depths of crack faults increased
from zero, with the fault getting worse.
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Figure 6. The curves of IW under different crack faults.

4.2. The Index of IOW for the Cracked Rotor System

In this subsection, a novel index representing the nonlinear characteristics of the
system, the improved optimal WNOFRFs (IOW), is proposed. Its expression is

IOW = maxKLRn(ρ) = KLRn(ρopt), (41)

where ρopt represents the optimal fitness factor. In Figure 6, when ρ = ρopt, the correspond-
ing maximum value of every curve is denoted as IOW.

In this paper, the index IOW was used to detect the cracked rotor system. The IOW and
K of the finite element model under different crack conditions were calculated according to
Equations (41) and (18). The values of IOW and K are shown in Figure 7.

Figure 7. The values of IOW and K.

From Figure 7, a conspicuous increasing trend could be found for the values of IOW
and K (IOW was from 0 to 3.410, and K was from 0.160 to 0.604), with the relative depth of
the cracks increasing. These two indexes both can recognize crack faults in the rotor system.
When comparing these two indexes, the values of IOW were larger than K under the same
degree of cracking, so the index IOW was more sensitive.

Then, we explored the relationship between the values of the indexes and cracks. The
relative depths were set from 0 to 0.8 in increments of 0.01. The values of the indexes were
calculated, and then linear fitting was performed on the values. The fitting results of indexes
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IOW and K are illustrated in Figures 8 and 9. Figure 8a is the fitted line of IOW, and Figure 8b
is its corresponding residuals plot. Figure 9a is the fitted line of K, and Figure 9b is its
corresponding residuals plot. The fitted line of index IOW was a/R = 0.229IOW + 0.0301,
the RMSE was 0.01868, and the R-square was 0.9938. Meanwhile, the fitted line of index
K was a/R = 1.772K − 0.3176, the RMSE was 0.02234, and the R-square was 0.9911.
According to the rule that the value of the R-square is closer to one, the better the result is,
it is concluded that the fitting result of IOW is better than that of K. The RMSE of IOW was
smaller than that of K. Therefore, IOW could diagnose crack faults more accurately.

Figure 8. The fitting results of IOW: (a) fitted line and (b) residuals plot.

Figure 9. The fitting results of K: (a) fitted line and (b) residuals plot.

4.3. Process of the Improved WNOFRFs

According to the principle of improved WNOFRFs, the process of the improved
WNOFRFs for diagnosing crack faults of the rotor system is summarized as follows and
shown in Figure 10.
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Figure 10. The flow chart of the improved WNOFRFs.

Step 1: Collect the vibration response signals of the crack-free rotor system being
subjected to different magnitudes of unbalanced excitations.

Step 2: Calculate the NOFRFs of the crack-free rotor system Gh
n(jw), n = 1, 2, 3, 4

through the excitation signals and response signals. Then, calculate its NOFRFs weighted
contribution rate Rnh(n)(ρ), n = 1, 2, 3, 4 through the following:

Rnh(n) =

∫ +∞
−∞

∣∣∣Th
n (jω)

∣∣∣dω

N
∑

i=1

∫ +∞
−∞

∣∣Th
i (jω)

∣∣dω

=

∫ +∞
−∞

∣∣∣Gh
n(jω)
nρ

∣∣∣dω

N
∑

i=1

∫ +∞
−∞

∣∣∣∣Gh
i (jω)
iρ

∣∣∣∣dω

(1 ≤ n ≤ N, ρ ∈ (−∞, 0)), (42)

Step 3: Collect the vibration response signals of the cracked rotor system being sub-
jected to different magnitudes of unbalanced excitations.

Step 4: Calculate the NOFRFs of the inspected rotor system Gt
n(jw), n = 1, 2, 3, 4

through the excitation signals and response signals. Then, calculate its NOFRFs weighted
contribution rate Rnt(n)(ρ), n = 1, 2, 3, 4 through the following:

Rnt(n) =

∫ +∞
−∞

∣∣Tt
n(jω)

∣∣dω

N
∑

i=1

∫ +∞
−∞

∣∣Tt
i (jω)

∣∣dω

=

∫ +∞
−∞

∣∣∣Gt
n(jω)
nρ

∣∣∣dω

N
∑

i=1

∫ +∞
−∞

∣∣∣∣Gt
i (jω)
iρ

∣∣∣∣dω

(1 ≤ n ≤ N, ρ ∈ (−∞, 0)), (43)

Step 5: Calculate the improved WNOFRFs IW(ρ) through Equation (20).
Step 6: Determine the index IOW through Equation (41). Then, conduct fault diagnosis

of the inspected system.

5. Experiment Study

To evaluate the performance of the fault diagnosis method of improved WNOFRFs,
experiments were carried out to diagnose the cracked rotor system. The experimental test
bench of the cracked Jeffcott rotor system is illustrated in Figure 11. Different magnitudes
of unbalanced forces were implemented by installing different numbers of bolts on the
disk. Different degrees of crack faults were implemented by setting different crack depths
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at the same location of the shaft by a fatigue machine. The depths of the crack faults
were 1 mm, 2 mm, 3 mm and 4 mm, as shown in Figure 12. Therefore, the relative
depths were 0.2, 0.4, 0.6 and 0.8. Then, the dynamic responses of the experimental rotor
system operating at 1600 rpm under various degrees of cracked faults were collected by
displacement transducers.

Figure 11. Experimental test bench of the cracked rotor system.

Figure 12. The cracked shafts of the rotor system.

The curves of IW1–IW4 under different crack faults are illustrated in Figure 13. The
improved WNOFRFs (IW) were obtained through summing IW1–IW4. Figure 14 shows the
curves of IW.
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Figure 13. The curves of each order of improved WNOFRFs under different crack faults in the
experiment: (a) IW1, (b) IW2, (c) IW3 and (d) IW4.

Figure 14. The curves of IW under different crack faults in the experiment.
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When comparing Figures 13 and 14 with Figures 5 and 6, it was concluded that the
performance of the improved WNOFRFs in the experimental study was similar to that in
the simulation analysis. It can be seen from Figure 13 that each of IW1–IW4 rose from 0
to the maximum, which corresponded to the optimal fitness factor. Then, they declined
to zero. The peaks of IW1–IW4 were proportional to the crack depths, and the curves of
IW had the same trend with the curves of IW1–IW4. Thus, the changing trend of IW in the
experiment was also similar to that in the simulation.

Figure 15 shows the values of K and IOW. It can be seen that the index K increased from
0.5594 to 0.9138, and the index IOW increased from 0 to 1.9610. Obviously, the index IOW
was greater than the index K when the rotor system was in the same crack fault condition.
Therefore, the result of the experiment was consistent with that of the simulation. It can be
concluded that the index IOW for the crack fault was more sensitive than K. Therefore, the
method of improved WNOFRFs could effectively diagnose the cracked rotor system.

Figure 15. The values of IOW and K in the experiment.

6. Conclusions

A new fault diagnosis method known as improved WNOFRFs was developed by
combining the WNOFRFs and KL divergence. A new index, denoted as IOW, was proposed
to detect a cracked rotor system. The effectiveness of the improved WNOFRFs was proven
through the simulation model and experiments of the Jeffcott rotor system. The following
conclusions can be drawn:

(1) When the relative depth increased from 0 to 0.8, K increased from 0.160 to 0.604, and
IOW went from 0 to 3.410, so IOW had the higher sensitivity to crack faults;

(2) IOW could comprehensively represent the nonlinear properties of the system by
integrating all orders of the WNOFRFs;

(3) IOW could quantitatively represent the crack fault, the minimum relative depth of
which could be detected with increments of 0.01;

(4) In terms of the simulation model used in this study, the relationship between the
values of IOW and relative depths of the crack faults was a/R = 0.229IOW + 0.0301.
Therefore, the values of the index IOW had an approximately positive proportional
relationship with the relative depth of the crack.

Therefore, compared with the original WNOFRFs, which mainly focus on the second
weighted contribution rate, the improved method was superior in the fault diagnosis of the
cracked rotor system. The index IOW manifests many advantages for detecting crack in a
rotor system.

Future studies will be focused on the effectiveness of the improved WNOFRFs in
identifying other kinds of faults of rotor systems, as well as the relationship between the
values of IOW and the degree of the fault. Moreover, fault diagnosis of other nonlinear
engineering systems will be considered.
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