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Abstract: As most of the recent high-resolution depth-estimation algorithms are computationally
so expensive that they cannot work in real time, the common solution is using a low-resolution
input image to reduce the computational complexity. We propose a different approach, an efficient
and real-time convolutional neural network-based depth-estimation algorithm using a single high-
resolution image as the input. The proposed method efficiently constructs a high-resolution depth
map using a small encoding architecture and eliminates the need for a decoder, which is typically
used in the encoder-decoder architectures employed for depth estimation. The proposed algorithm
adopts a modified MobileNetV2 architecture, which is a lightweight architecture, to estimate the
depth information through the depth-to-space image construction, which is generally employed in
image super-resolution. As a result, it realizes fast frame processing and can predict a high-accuracy
depth in real time. We train and test our method on the challenging KITTI, Cityscapes, and NYUV2
depth datasets. The proposed method achieves low relative absolute error (0.028 for KITTIL, 0.167 for
CITYSCAPES, and 0.069 for NYUV2) while working at speed reaching 48 frames per second on a
GPU and 20 frames per second on a CPU for high-resolution test images. We compare our method
with the state-of-the-art methods on depth estimation, showing that our method outperforms those
methods. However, the architecture is less complex and works in real time.

Keywords: depth estimation; real-time processing; convolutional neural networks

1. Introduction

In computer vision, depth estimation is one of the key tasks employed in numerous
applications such as 3D scene construction and understanding, medical 3D imaging and
scanning, background/foreground separation, depth perception in self-driving cars and
robots, and 3D graphics. Depth is traditionally estimated using either a stereo camera or an
IR depth camera; however, these systems involve expensive instruments and high-speed
GPU processors for depth determination. Of late, the need for high-speed computer vision
has increased due to the requirement for fast processing in embedded devices and smart
phones, including self-driving cars and real-time 3D reconstruction. Such high-speed
processing requires lightweight and memory-efficient computer-vision algorithms based
on modern convolutional neural networks (CNNs). The latest research on depth estimation
has demonstrated the effectiveness of using CNN-based algorithms for depth estimation
with high accuracy; however, most recent studies [1-16] have not taken into consideration
the processing speed and the optimization of such models to be employed in embedded
systems or low-resource devices with limited memory and processing ability. In this study,
we focus on monocular depth estimation (MDE) , in particular, which involves depth
prediction using a single RGB image, instead of stereo depth estimation (SDE). The latest
depth-estimation CNN models generally depend on encoder—decoder architecture for
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compressing the input image to a deep latent vector and constructing the depth map from
the deep features subsequently. Although this approach is efficient in estimating depth
with high accuracy, it is usually so computationally expensive that it may not be applied
in real time or in limited-hardware-capability devices. Therefore, we address the problem
of expensive computation in depth estimation by adopting the concept of space image
construction [17] of the depth map from numerous small-scale deep feature maps directly
without the need for a decoder network. As eliminating the need for the decoder part that
is generally used to construct the depth map from deep features, we realized high-speed
processing, enabling the proposed network to work in real time on a GPU or even a CPU.
The contributions of this study are summarized as follows:

*  We propose a high-speed CNN approach for single-image depth estimation using
lightweight and fast architecture through which we eliminate the need for the decoder
stage generally used in encoder—decoder depth-estimation architecture and replace it
with fast depth-map construction from low-resolution feature maps.

*  Weefficiently extend the depth-to-space (DTS) module originally used for image super-
resolution tasks to semantic depth-map construction through heatmap aggregation.

*  We prove by experiments that the proposed method can run fast enough for real-
time applications (20 fps) on CPUs which are lower in computational power than
commonly used GPUs.

Figure 1 shows sample depth-estimation results obtained from the proposed method
in different cases of outdoor and indoor scenes.

Figure 1. Example of the output depth predictions of the proposed method. Top-to-bottom, KITTI,
Cityscapes, and NYUV2 RGB images and their corresponding predicted depth maps.

The structure of this paper is as follows. Section 2 summarizes the recent related
work, Section 3 presents the implementation of the suggested method, Section 4 presents
the datasets employed in our experiments, Section 5 shows the details of the experiments
done, the obtained results from them, and the comparisons with other methods of depth
estimation. Section 6 discusses the limitations of the proposed methods and the possible
future work based on this research, and Section 7 gives the conclusions of this paper.
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2. Related Work

Depth estimation is one of the earliest research areas in computer vision. One
of the first methods to estimate depth was proposed by Torralba and Oliva [18], who
demonstrated the relationship between the image spectral magnitude and depth varia-
tion. Chun et al. [19] proposed depth estimation in indoor scenes using ground plane
information. Saxena et al. [20] proposed a depth-estimation method using the textural
features of 3D objects in the scene using Markov random fields (MRF). An early and effi-
cient CNN-based method was proposed by Eigen et al. [1], which involved a deep neural
network model composed of two stages. The first stage predicted a coarse depth map using
CNN architecture, whereas the second stage refined the map for fine depth estimation.
Although the depth prediction was blurry, it was a significant beginning for monocular
depth estimation. Based on their results, depth refinement techniques [2,3] were proposed
to overcome the blurry depth in [1], using conditional random fields (CRF) based on an
encoder—decoder architecture in which they employed superpixel segmentation to refine
the depth prediction. Gan et al. [4] employed the affinity layer in a CNN encoder—decoder
architecture to learn the global and local context of the image efficiently. Xu et al. [5]
proposed a multiple-scale CNN based on cascaded CRF stage architecture to fuse the best
features. Other studies [6—8] employed stereo reconstruction loss to obtain the monoc-
ular depth using the disparity consistency based on unsupervised and semi-supervised
methods. Godard et al. [6] employed a stereo-pair image to estimate the depth using
the consistency loss. Garg et al. [7] applied a simple warping technique to predict the
disparity map using a deep CNN. Kuznietsov et al. [8] proposed the image alignment loss
to improve the depth-map quality. Cao et al. [9] proposed depth estimation applying pixel-
wise classification loss to obtain the pixel-wise confidence depth values in a probability
distribution form. Subsequently, Cao et al. [10] proposed a technique to pre-train a deep
CNN on the relative depth obtained by stereo matching the images, and further fine-tuned
the network to estimate the monocular depth. Fu et al. [11] proposed an architecture based
on atrous spatial pyramid pooling (ASPP) to extract the dense features and applied them to
estimate accurate depth boundaries through regression. Zuo et al. [12] proposed a depth
enhancement technique based on multiscale guidance to local and global residual learning
based on pixel intensity. Mohaghegh et al. [13] presented a mapping technique from the
image patches to the depth predictions by refining a pre-trained model, which learned
the global form of the depth maps. Ma et al. [14] proposed direct 3D reconstruction of
the scene from a 2D image using an attention module based on separated channel-spatial
convolution, which extracted the 3D representation of objects through an adaptive channel
and spatial fusing. Bhat et al. [15] presented a transformer-based encoder-decoder architec-
ture called Adabins, which learned the depth by dividing the depth range into bins whose
center was estimated adaptively per image. Ranftl et al. [16] suggested the application of
vision transformers as the backbone for dense predictions, where tokens from the different
stages of the vision transformer were assembled in an image-like representation using
a convolutional decoder. Liu et al. [21] proposed a similar approach to ours in which
they adopted fully convolutional multiscale dense network based on DenseNet169 [22] for
monocular depth estimation. They also proposed a dense upsampling block that includes
a sequence of convolutional filters followed by a pixel shuffle operation to obtain higher
resolution output. The pixel shuffle operation works in a similar way to DTS but with a
different technique since they apply four 3 x 3 convolutional filters before the pixel shuffle.
Their method showed a poor performance in terms of delta accuracy (47 = 0.836) and speed
(the model’s number of parameters is 52 million parameters so that model cannot realize
real-time processing). Zioulis et al. [23] proposed a CNN with an encoder and a hierarchical
decoder with four different branches that construct the depth at different scales using a
combination of predicted coarse and fine depth features.

Although CNN-based encoder—decoders have successfully performed high-accuracy
depth estimation, some drawbacks in depth construction using the decoder remain. In
most cases, the constructed depth is coarse and has blurry boundaries, and always needs



Sensors 2022, 22,1914

40f 15

extra refining stages to realize accurate depth prediction. These extra stages add more
complexity and cause high latency in the inference step. We propose to directly estimate
the depth from the encoder stage because we can construct a depth map of the same size
as the input image from the small-scale features, using DTS image construction. For per-
formance evaluation, we compare our method with the state-of-the-art methods on depth
estimation and furthermore, we will consider FastDepth [24] which is an encoder-decoder
depth-estimation method based on MobileNet, since it works accurately and efficiently on
embedded devices at high speed. Although our method is slightly slower than FastDepth,
it outperforms FastDepth in terms of the RMSE error and delta accuracy.

3. Proposed Method

The proposed method aims to construct the depth map directly using an encoder
architecture employing DTS image construction, as detailed in the next subsection. The
architecture used is a modified MobileNetV2 architecture, which is small and lightweight
with fewer parameters and multiplication/addition computations (MACs).

3.1. DTS Image Construction Implementation Details

The DTS module (or sub-pixel convolution layer) was first proposed by Shi et al. [17]
in their efficient sub-pixel CNN, which was devised to perform super-resolution for single
images and videos in real time. This method showed highly accurate results in super-
resolution. It could eliminate high complexity in the previous architectures traditionally
used for image super-resolution by reducing the architecture to only three convolutional
layers with a gradual increase in the layer depth, followed by the construction of the high-
resolution output image through low-resolution feature aggregation. In our case, we con-
struct a depth map instead of an image. Low-resolution feature aggregation is performed
by rearranging the elements of tensor H x W X 2 to a tensor of shape rH x rW, where H,
W, and r are the feature map height, width, and depth, respectively. This operation can be
expressed mathematically as in Equation (1):

Dy = T[x/r],[y/r},r.mod(y,r)erod(x,r)l 1

where Dy, is the constructed depth map, T is the feature map at the layer before the DTS
layer, r is the feature map depth, and operation mod is the modulus. Equation (1) maps
the pixel from the low-resolution feature maps to the depth maps when the condition
mod(x,r) = 0 or mod(y,r) = 0 is true through a learnable process. The DTS module is
depicted in Figure 2 in detail. The construction loss function used to learn the final depth
map is the mean absolute error function, as shown below:

W rH

1 T
Lossyy = THW Zl Zl(DS,y _ Dg;nstructed)Z’ o)
X= y:

where Dg; is the ground-truth depth map and Dg‘;,”“”‘md is the constructed depth map.

We used the above-mentioned DTS module to construct the final depth map from
numerous small-scale encoded feature maps, each of which contains detailed features
at a slightly different position. In addition, the encoding architecture was selected to be
small-sized and lightweight for realizing high processing speed.
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Figure 2. The architecture of the proposed method. With the modified MobileNetV2 architecture, the
DTS layer (module) is added after the last convolutional layer to arrange the pixels in the 32 x 16 x
1024 low-resolution heatmaps as a (32 x 32) x (16 x 32) superpixel, which equals 1024 x 512. The
bottleneck and inverted block consists of an expansion module which expanded the depth of input
features by a factor F (an integer number), followed by depthwise separable convolution, and finally,
compression is applied to the features by the projection module with the same factor E. CONV and
DWISE refer to convolutional and depthwise separable convolutional layers, respectively.

3.2. Modified MobileNetV?2 Architecture

MobileNetV2 proposed by Sandler et al. [25] of Google Inc. is a CNN, which has been
well optimized to work on limited-capability devices such as mobile phones. The archi-
tecture is composed of 53 layers employing the so-called linear bottlenecks and inverted
residuals. The linear bottlenecks include an expansion module (1 x 1 convolution with
more output filters), followed by depthwise separable convolution (which is depthwise
spatial convolution acting on each channel separately), and finally, a projection module
(1 x 1 convolution with lesser output filters). Expansion and projection are performed with
a factor, which is an integer multiple of the feature map input channels; the inverted resid-
ual layer is a low-dimensional subspace encoding layer, which enables memory-efficient
implementation. Figure 2 shows the block diagram of the bottleneck and inverted residual
module. MobileNetv2 has fewer parameters (3.4 million parameters) and FLOP count
(0.3 Giga FLOPs), which realize a high accuracy of 0.901 as the Top 5 accuracy on the
challenging ImageNet [26] classification dataset.

We modify the MobileNetV2 architecture by removing the last two layers, which
are the fully connected layer and the global average pooling layer, and then we add a
1 x 1 convolution layer with 1024 filters because the image is spatially downscaled by a
factor of 32. To obtain a depth map of the same size as the input image, the DTS module is
added at the end to aggregate the pixels of the 1024 filters for constructing the final depth
map sized 322. This process is highly efficient with respect to speed and accuracy as it
can rapidly perform pixel arrangement from the heatmaps to the final depth map with
high accuracy. The output of the arrangement process is learnable as it allows a gradient
flowing in the backpropagation during network training. Equation 3 shows the relationship
between the constructed depth maps and the low-resolution heatmaps in the final layer
before the DTS layer:

pConstructed _ Wy % fL—l(HLR) + by, (3)

where Wy and b; are the weights and biases in the DTS layer, H-R are the low-resolution
heatmaps, and f is the activation function for the layer. Figure 3 displays 20 low-resolution
heatmap samples (32 x 16 in the Cityscapes dataset with an input image sized 1024 x 512)
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obtained from MobileNetV2 after the 1 x 1 x 1024 convolutional layer and the recon-
structed high-resolution depth map after the DTS layer. The low-resolution heatmaps are
small depth maps with different depth details of the image, and the DTS layer aggregates
the depth values from the low-resolution maps to form the high-resolution depth map
depending on the learned weights and biases.

Among the lightweight architectures such as MobileNetV1 [27], ShuffleNet1.5 [28],
and NasNet-A [29], MobileNetV2 was selected as the main architecture because its per-
formance is optimal for our application considering the tradeoff between the few pa-
rameters/computations count and the high accuracy, as indicated in [25]. MobileNetV2
outperforms MobileNetV1 [27] in terms of the Top1 classification accuracy on ImageNet,
with fewer parameters and multiplication/addition operations due to the use of linear
bottlenecks and inverted residuals, whereas MobileNetV1 employs depthwise separable
convolution and 1 x 1 convolution for projection with RELU6 activation. Moreover, it
outperforms ShuffleNet1.5 [28] (which has approximately the same complexity as Mo-
bileNetv2) in terms of the Top 1 accuracy; both have the same number of parameters and
multiplication/addition operations approximately. NasNet-A [29] is a NasNet version
architecture with similar performance to MobileNet, ShuffleNet1.5, and MobileNetv2, and
employs a stream of normal (a convolutional network that returns feature maps of the same
input dimension) and reduction cells (a convolutional network that returns feature maps
half the input size). Although NasNet-A [29] outperforms MobileNetV2 in terms of the
Top 1 accuracy by 2%, it is 1.5 times and 1.9 times the number of parameters and multi-
plications/additions, respectively, as MobileNetV2; hence, the frame-processing speed of
MobileNetv?2 is 2.44 times faster than NasNet-A.

a) Input Image c) High resolution Depthmap

Modified

MobileNetV2 SD:E;T: oq;r ‘
Backbone P ver

¥ |

RSN [CREN RN [ —
RSN RN N F— —
RN RN N [ -
RN (RN N [ —

b) Random sample of the low resolution Heatmaps

Figure 3. Visualization of the low-resolution heatmaps learned by the modified MobileNetV2
architecture from a Cityscapes test image: (a) Input image of size 1024 x 512, (b) randomly selected
low-resolution heatmaps after the last 1 x 1 x 1024 convolutional layer of size 32 x 16 and (c) high-
resolution depth map after the low-resolution heatmaps are aggregated in the DTS layer.

Table 1 compares MobileNet, ShuffleNetl.5, NasNet-A, and MobileNetV2 in terms
of the Top 1 classification accuracy on the ImageNet dataset, the number of parameters,
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multiplication/addition count, and CPU processing time. The device used for testing is a
Google Pixel 1 phone and the framework is TF-Lite as mentioned in [25]. According to [25],
MobileNetV2 also attained higher mean average precision (mAP) for the object detection
task than SSDLite (SSD [30] + MobileNetV1) and Yolov2 [31], with considerably fewer
parameters, so that the computations are faster. In addition, MobileNetV2 outperforms
MobileNet and ResNet-101 [32] as feature extractors for Deeplab [33] in semantic segmen-
tation with respect to the mean intersection over union (mIOU), the number of parameters,
and multiplication/addition count.

Table 1. Comparison of MobileNetV1 [27], ShuffleNet1.5 [28], NasNet-A [29], and MobileNetV2 [25]
in terms of the Top 1 classification accuracy on ImageNet, multiplication/addition computations
(MACs), and CPU processing time on Google Pixel 1.

Network Top1 acc. % Params MACs CPU Time (ms)
MobileNetV1 70.6 42M 575M 113 ms
ShuffleNet1.5 71.5 34M 292 M -

NasNet-A 74.0 53M 564 M 183 ms
MobileNetV2 72.0 34M 300 M 75 ms

4. Datasets for Experiments

We trained and tested our proposed method on three different datasets, KITTI,
Cityscapes, and NYUV2, which include depth data for both outdoor and indoor scenes.

4.1. Kitti Dataset

The KITTI dataset [34] is a large annotated dataset for several self-driving vehicle-
related tasks such as object detection, semantic and instance segmentation, stereo depth
estimation, monocular depth estimation, and 3D object detection. The dataset for depth
data is calculated from point clouds acquired by a LIDAR sensor and is highly sparse,
covering only 5% of the depth map. Hence, researchers generally interpolate the depth map
with background interpolation techniques to fill in the depth map for training, whereas
in the evaluation stage, they generally use the original sparse depth maps. We applied
bilateral and median filtering for preprocessing the depth map, in addition to background
interpolation to obtain dense depth maps. The dataset contains 23,297 images and their
corresponding depth maps. We applied Eigen split [1] for splitting the dataset into training,
validation, and test sets. Furthermore, we resized depth maps of 1224 x 375 to 608 x 224,
in which the invalid depth pixels were cropped to accelerate the training process.

4.2. Cityscapes Dataset

The Cityscapes dataset [35] provides data that assists in the semantic understanding of
urban street scenes, and annotations for several computer-vision tasks such as semantic and
instance segmentation, depth estimation, and 3D vehicle detection. The depth is provided
indirectly in the form of a disparity map calculated using a stereo camera. We train the
network directly on the disparity map and then use the form provided along with the
dataset to calculate the depth linearly from the disparity map, as follows:

fx * baseline
Depthy,, = ~———, 4
PHIxy Dispy,, @

where fy and baseline are the focal length in the x-axis and the baseline for the stereo camera
used for capturing the scene, respectively. Dispy., is the disparity value of a given pixel.
The dataset contains 5000 training, validation, and test images as well as 20,000 extra
training stereo-pair images (normal RGB scenes with the corresponding disparity). We
trained our network on the left image of the stereo pair provided in the dataset, as we train
the network for depth estimation using only a single input image. We used 24,500 images
for training and 500 images for validation. The original image and disparity maps of
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Input RGB image

2048 x 1024 were resized to 1024 x 512 to accelerate the training process while maintaining
high-resolution in the depth-estimation task.

4.3. Nyuv2 Dataset

NYUV2 [36] is an indoor scene depth and segmentation dataset provided by a research
group at New York University. It provides numerous indoor scenes collected from different
indoor locations such as bedrooms, kitchens, basements, and bathrooms. The dataset
was acquired by a Kinect sensor, which consists of RGBD images (RGB images and the
depth map). The dataset contains 1449 labeled images and 407,024 raw images with a
resolution of 640 x 480 for the images and depth maps. We trained our network on the
clean labeled data only because the raw data includes many invalid depth pixels and noise
from the shadows, and specular or low albedo surfaces in the scene. The dataset is split
into 795 training and 654 test images. We trained our network without resizing the RGB
images and depth maps to obtain high-resolution depth estimation. Figure 4 depicts sample
depth-estimation results obtained using the proposed method on the KITT]I, Cityscapes,
and NYUV2 depth datasets.

Groundtruth Depth Predicted Depth Input RGB image Groundtruth Depth Predicted Depth

Figure 4. Sample results obtained through the proposed method: (a) results from KITTI test samples,
(b) results from Cityscapes test samples, and (c) results from NYUV2 test samples. Each row has two
samples of test results showing the input RGB image, ground-truth depth, and the predicted depth
by the proposed method.

5. Experimental Results

The proposed method was trained on three datasets, KITTI, Cityscapes, and NYUV2.
The three trained models were evaluated on the test sets of the three datasets.
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5.1. Training and Test Configurations

For training, we used a desktop PC with an Intel Core i7-8700 CPU at 3.2 GHz, NVIDIA
RTX 3090 GPU, and 64-GB RAM. The training and testing image sizes are similar depending
on the dataset as mentioned in the previous sections (608 x 224 for KITTI, 1024 x 512 for
Cityscapes, and 640 x 480 for NYUV2). We tested our approach on different Nvidia GPUs
(GTX1060, Titan xp, RTX2080, Titan RTX, RTX3090) and Intel CPUs (i7-7700, i7-8700, i7-9700,
and i7-10700) to explore the speed capability of our approach. Tensorflow Keras was used to
implement the CNN network, and the training of each model on the three different datasets
was performed for 500~1000 epochs with Adam’s optimizer. In all the training cases, the
modified MobileNetv2 model was initialized with ImageNet [26] weights as we believe it
speeds up the training process because of the prior classification features knowledge.

5.2. Evaluation Metrics

The metrics used for evaluating the depth estimation are as follows: the average
absolute relative error (REL), squared relative difference (Sq_REL), root mean squared error
(RMSE), and threshold accuracy J; of yp,, the mathematical expression of each metric can be
stated such as in Equations (5)—(8):

1 lyp — vl
REL=>-y 2 77 5)
iy
1 & ly =gl
Sqg REL = — ©)
q n; y
1& N2
RMSE = | 13y~ 9) %
4
Delta_accuracy(d;) = ¥ ZA _
— v(6;) —max(y”y) =6 < thr (8)

where y and 7 are the ground truth and predicted pixel values, n is the number of
pixels in the depth map, and thr is a threshold value commonly set to three specific
values (thr = 1.25,1.25%,1.25%).

5.3. Accuracy and Speed

Our model shows very low REL errors of 0.028, 0.167 and 0.069 on KITTI, Cityscapes,
and NYUV?2, respectively, (as reported in Table 2) while estimating a high-resolution depth
map. Figure 4 displays sample results of the proposed method on the KITTI, Cityscapes,
and NYUV2 depth datasets. The proposed method could realize a low frame-processing
time on GPU (NVIDIA GTX1060, Titan XP, RTX 2080, Titan RTX, and RTX 3090) as well
as CPU (Intel i7-7700, i7-8700, i7-9700, and i7-10700). Table 3 depicts the measured values
of the different evaluation metrics and processing time on the different GPUs and CPUs.
The proposed method realizes high speed in frame processing when using high-resolution
images due to the well-optimized small architecture. NVIDIA RTX 3090 and Intel i7-10700
show the lowest processing time as expected, but still, the other GPUs and CPUs also
show an excellent processing time even at high-resolution images. The processing time is
expected to be considerably lower than the values shown in Table 3 if smaller images are
used; however, we target high-resolution depth estimation instead of low-resolution depth,
which contrasts with the latest studies that resize input images to smaller ones.
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Table 2. Comparison of the performances on the KITTI, Cityscapes, and NYUV2 depth datasets. The
original study results are reported.

Method Dataset REL SqRel RMSE 6 52 J3

Eigen et al. [1] KITTI 0.280 0.3012 8.734 0.702 0.898 0.967
NYUV2 0.158 - 0.641 0.769 0950 0.988

Laina et al. [37,38] Cityscapes 0.257 4.238 7.273 0.765 0.893  0.940
NYUV2 0.127 - 0.573 0.811 0953 0.988

Xu et al. [5,38] Cityscapes 0.246 4.060 7117 0.786 0905 0.945

NYUV2 0.121 - 0.586 0.811 0954 0.987

Liu et al. [21] KITTI 0.127 - 4.977 0.838 0.948 0.980
NYUV2 0.127 - 0.506 0.836 0966 0.991

Hao et al. [39] NYUV2 0.127 - 0.555 0.841 0966 0991
Lee et al. [40] NYUV2 0.131 - 0.538 0.837 0971 0.994
Fuetal. [11] KITTI 0.072 0.307 2.727 0932 0984 0.994
NYUV2 0.115 - 0.509 0.828 0965 0.992

SharpNet [41] NYUV2 0.139 - 0.502 0.836 0966 0.993
Hu et al. [42] NYUV2 0.115 - 0.530 0866 0975 0.993
Chen et al. [43] NYUV2 0.111 - 0.514 0.878 0977 0.9%4
Yin et al. [44] KITTI 0.072 - 3.258 0938 0.990 0.998
NYUV2 0.108 - 0.416 0875 0976 0.994

BTS [45] KITTI 0.059 0.245 2.756 0956 0993 0.998
NYUV2 0.110 - 0.392 0.885 0978 0.994

DPT-Hybrid [16] KITTI 0.062 - 2.573 0959 0995  0.999

NYUV2 0.110 - 0.357 0.904 0988 0.998
Zhang et al. [38,46] Cityscapes 0.234 3.776 7.104 0.776 0903  0.949

NYUV2 0.144 - 0.501 0.815 0962 0.992

SDC-Depth [38] Cityscapes 0.227 3.800 6.917 0.801 0913 0.950
NYUV2 0.128 - 0.497 0.845 0.966  0.990

AdaBins [15] KITTI 0.058 0.190 2.360 0964 0.995 0.999
NYUV2 0.103 - 0.364 0903 0984 0997

DTS-Depth(Ours) KITTI 0.028 0.152 2.256 0967 0991 0.997

Cityscapes 0.167 1.639 7.785 0.804 0.921 0.958
NYUV2 0.069 0.245 0.295 0.959 0.994 0.998

Table 3. Evaluation of the speed of the proposed method on the KITTI (at an image size of 608 x 224),
Cityscapes (CS at an image size of 1024 x 512), and NYUV2 (at an image size of 640 x 480) depth
datasets using different NVIDIA GPUs and Intel CPUs. The clock speed, number of cores, number of
threads, and frame-processing time for each GPU or CPU platform are indicated.

Platform Clock #Cores #Threads K.ITTI CS Time NYUVZ
Speed Time Time
NVIDIA GTX1060 1506 MHz 1280 - 53 ms 103 ms 58 ms
NVIDIA Titan XP 1405 MHz 3840 - 50 ms 85 ms 51 ms
NVIDIA RTX 2080 1515 MHz 3072 - 35 ms 74 ms 38 ms
NVIDIA Titan RTX 1350 MHz 4608 - 31 ms 68 ms 35 ms
NVIDIA RTX 3090 1395 MHz 10,496 - 21 ms 68 ms 31 ms
Intel i7-7700 3.6 GHz 4 8 102 ms 231 ms 128 ms
Intel i7-8700 3.2 GHz 6 12 73 ms 173 ms 101 ms
Intel i7-9700 3.0 GHz 8 8 75 ms 201 ms 110 ms
Intel i7-10700 3.8 GHz 8 16 52 ms 155 ms 65 ms

5.4. Comparison with the State-of-the-Art Methods

We compared our results with the state-of-the-art methods with respect to the different
error metrics and ¢ accuracy at different thresholds. The results showed that the proposed
method produces lower depth error values than the other methods. As our model is trained
on relatively high-resolution depth maps, it outperforms all the state-of-the-art methods on
the three datasets in terms of delta accuracy. Table 2 demonstrates the comparison between
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the errors and accuracies obtained from the proposed method and those of several other
recent methods on KITTI, Cityscapes, and NYUV2. Figure 5 shows a quality comparison
between the predicted depth map by our method (DTS-Depth), Chen et al. [43], BTS [45],
and AdaBins [15]. It is obvious that our method has the most similar depth map to that of
the ground truth. Although there is a little blocking effect, which will be addressed in our
future work, it does not have much effect on the accuracy.

Chen et al. AdaBins DTS-Depth (Ours) Ground truth

Figure 5. Quality comparison between the predicted depth by the proposed method (DTS-Depth),
Chen et al. [43], BTS [45] and AdaBins [15], respectively on samples from NYUV2 test dataset.
Our method has a high-quality depth estimation as it can predict the most similar depth map to
the ground-truth depth map while other SOTA methods have some divergence from the ground
truth depth.

5.5. Comparison with FastDepth

We compare our method with FastDepth [24], in particular, because it is a fast depth-
estimation method based on MobileNet. It employs a lightweight encoder—decoder architec-
ture, which is appropriate for embedded devices. The model showed competitive accuracy
and low errors because a low image resolution of 224 x 224 was used. In addition, The
model showed competitive accuracy and low errors at a low image resolution of 224 x 224,
i.e., the model was evaluated using a resized low-resolution ground truth of 224 x 224. In
contrast, we trained and evaluated our method at an image size of 640 x 480. In general,
evaluation at low-resolution results in lower error values and higher accuracy because
the evaluation metrics is depending on the pixel count. Table 4 shows the comparison
to FastDepth. Although the comparison is unfair because we use high-resolution images
(640 x 480), the proposed method outperforms FastDepth in terms of the RMSE and 7 accu-
racy, whereas our method consumes double the GPU and CPU processing time as shown in
Table 4. Our model can achieve the same accuracy as that of a highly optimized model for
embedded systems without requiring a decoder, using space-to-depth construction instead.
FastDepth was evaluated on the NVIDIA Jetson board and CPU, and they proposed a
MobileNetV1 encoder with a decoder configuration of depthwise + skip connections +
feature additions. We compare the proposed method against the FastDepth architecture
with a decoder configuration of depthwise + skip connections + feature additions. For a fair
comparison with FastDepth, we performed it on one of the GPUs and CPUs used (NVIDIA
RTX3090 and Intel Core i7-8700 CPU @ 3.2 GHz) for comparison to our method. Figure 6
demonstrates the quality of the predicted depth by our method and FastDepth.
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Figure 6. Quality comparison between our proposed method and FastDepth. Our method can predict
the depth more clearly and accurately because we train using high-resolution depth maps. (a—d) are
the input RGB, ground-truth depth map, FastDepth predicted depth map, and our predicted depth
mabp, respectively.

Table 4. Comparison between the proposed method and FastDepth with respect to the RMSE, 4y,
NVIDIA RTX3090 GPU time in milli-seconds (ms), and Intel i7-8700 CPU time in milli-seconds (ms).

Method (Image Size) RMSE 1 GPU Time (ms) CPU Time (ms)
FastDepth (224 x 224) 0.604 0.811 17 50
Ours (640 x 480) 0.295 0.959 31 101

6. Limitations and Future Work

Although the obtained results are good in terms of speed and accuracy, there is a
limitation of the method represented by the blocking effect produced in the predicted
depth, especially in the case of NYUV2 images. We believe that this drawback happens due
to the single-stage upsampling process to the features produced by the encoder network;
this process up-samples the features five times their size to achieve a depth map with the
same size of the input image. Performing such large upsampling in a single stage produces
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this kind of artifact or blocking effect. However, the predicted depth values of the pixels
are true and close to the ground-truth values. This problem can be solved in the future
using multiple-upsampling decoder stages which will increase the complexity of the model
and will definitely reduce the frame-processing speed, so the current model in this paper
is still robust in terms of accuracy and speed regardless of the blocking effect, which is
a minor problem. The architecture of our proposed method can be more improved to
obtain higher accuracy and lower error values sacrificing the speed and employing deeper
architectures such as ResNet [32], Xception [47], or EfficientNetB7 [48]. We focused in this
research on keeping the encoder stage light by extracting the fewest possible features to
realize real-time processing. In addition, the proposed model can be extended to perform
semantic segmentation and instance segmentation because these tasks are similar to depth
estimation in predicting image-like dense masks.

7. Conclusions

The proposed method showed that the DTS module originally proposed for the
image super-resolution task could be efficiently extended for depth estimation with high
accuracy, which is proved by the experimental results obtained. Moreover, it demonstrated
that this concept could work well for high-resolution depth estimation, which is the
outstanding merit of our work, considering that conventional depth-estimation methods
are generally performed on low-resolution images. Our proposed method also solves the
major problem of the high complexity of depth-estimation methods represented at the CNN
encoder—-decoder, as our method eliminates the need for the decoder stage and replaces it
with the DTS module. Although the proposed method showed that it can work efficiently
on Nvidia GPUs and Intel CPUs, it can work as well on devices with limited-capability
processors because the architecture is extremely lightweight. Conclusively, our method is a
good solution for fast depth estimation in applications such as self-driving vehicles, robots,
and 3D medical imaging.
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