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Abstract: In the last decades, several swarm-based optimization algorithms have emerged in the
scientific literature, followed by a massive increase in terms of their fields of application. Most of
the studies and comparisons are restricted to high-level languages (such as MATLAB®) and testing
methods on classical benchmark mathematical functions. Specifically, the employment of swarm-
based methods for solving energy-based acoustic localization problems is still in its inception and
has not yet been extensively studied. As such, the present work marks the first comprehensive study
of swarm-based optimization algorithms applied to the energy-based acoustic localization problem.
To this end, a total of 10 different algorithms were subjected to an extensive set of simulations
with the following aims: (1) to compare the algorithms’ convergence performance and recognize
novel, promising methods for solving the problem of interest; (2) to validate the importance (in
convergence speed) of an intelligent swarm initialization for any swarm-based algorithm; (3) to
analyze the methods’ time efficiency when implemented in low-level languages and when executed
on embedded processors. The obtained results disclose the high potential of some of the considered
swarm-based optimization algorithms for the problem under study, showing that these methods
can accurately locate acoustic sources with low latency and bandwidth requirements, making them
highly attractive for edge computing paradigms.

Keywords: swarm optimization; acoustic localization; embedded programming; wireless sensor
network; metaheuristic; edge computing

1. Introduction

In the last decade, swarm optimization methods have found their way into the sci-
entific community, where several algorithms have been proposed and applied in real-life
problems. In computer science, swarm optimization assumes a set of sequential operations,
where a candidate population is iteratively improved according to a measure of quality
(the cost/objective/fitness function). As the opposite of gradient-based optimization [1],
these algorithms assume no knowledge of the problem itself, and a candidate population
evolves only according to the evaluation of a given cost function. As such, the method
uses a combination of random choices and historical knowledge of past results to guide
and drive its evolution through the search space, providing a sufficiently good solution,
but without the guarantee of achieving a global solution (metaheuristics). The use of
metaheuristics to solve optimization problems goes back to the 1970s with the work of
J. Holland and the proposal of genetic algorithms (GAs) [2]. The method consisted of a
search heuristic based on Charles Darwin’s theory of natural evolution [3]. The proposed
methodology reflected the process of natural selection where the fittest individuals are
selected for reproduction to produce the next generation. Although still widely applied
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nowadays [4], GAs, together with simulated annealing (SA) [5] or hill-climbing methods [6],
have shown slow convergence towards sub-optimal solutions [7]. Though GA and SA are
related to biological evolution and physical proprieties of materials, respectively, the first
algorithm based on swarm intelligence was proposed to mimic the finding of good paths
by ants [8]. The search technique was inspired by modeling the swarm intelligence of social
ants using a pheromone as a chemical messenger [8]. The Particle Swarm Optimization (PSO)
algorithm followed [9] with the premise of representing the movement of particles in a bird
flock, and it was widely applied and with numerous variants proposed over the years [10].
At the turn of the 21st century, the authors of [11] proposed a music-inspired algorithm
called Harmony Search (HS), and around 2002, K. M. Passino presented a Bacteria Foraging
algorithm [12]. In 2004, S. Nakrani and C. Tovey published the Honey Bee algorithm [13] that
they applied to Internet hosting centers, which was followed by a novel bee algorithm [14]
and the Artificial Bee Colony (ABC) in 2007 [15]. Later, in 2008, the Firefly (FA) algorithm
was published, inspired by the flashing behavior of fireflies. In 2009, the Cuckoo Search
(CS) algorithm [16] was proposed, based on the obligate brood parasitic behavior of some
cuckoo species in combination with the Lévy flight behavior of some birds and fruit flies.
The decade ended with the publishing of the Bat algorithm (BAT), which was inspired by
the echolocation behavior of micro-bats [17].

At this stage, the fundamentals of swarm intelligence had been established. Simple
software agents (or particles) move in the search space of a predetermined optimization
problem, where the position of a particle represents a candidate solution to the problem at
hand. Each particle evolves by updating its position according to rules inspired by their
behavioral models. Those rules rely on the best, current, or past position(s), as well as
some randomly generated variables, combined with simple arithmetic. From this point,
numerous algorithms have been raised in the scientific literature, and most publishers have
created journals dedicated to the subject. As a major feature, the efficiency of a metaheuristic
algorithm relies on the right balance between exploration (also known as diversification)
and exploitation (or intensification), where exploration describes the ability of the algorithm
to leave the current optimum in search of a better candidate, and exploitation is defined as
the ability of the algorithm to improve the best solution it has found so far by searching a
small area around the current solution [18]. In swarm-based optimization, this balance is
archived through the control of a set of parameters with a direct impact on its performance,
making them dependent on accurate parameterization [19]. This situation implies that
different algorithms may have different performances with regard to the same problem.
In addition, since these methods are based on an iterative evolution of the first state of a
population, their initialization plays an important role in the performance achieved, and
may even imply a lack of convergence [20]. Generally, algorithms are evaluated within a
set of mathematical functions considered as representative for a wide range of features,
such as convexity, continuity, differentiability, etc., but where the obtained performance
cannot be conveyed to real-life physical models. This suggests that choosing a specific
algorithm for a certain problem may not be a trivial task, especially due to the large number
of swarm-based methods available.

There are many applications in which efficiently (accurately and promptly) solving
the localization problem is crucial, such as navigation [21], underwater networks [22],
surveillance [23,24], or power systems [25,26]. When considering the fourth industrial
transformation and the fundamental advanced digital changes—known as Industry 4.0—
robust and precise localization can be seen as a key feature in pervasive systems in future
industry and factory applications. More specifically, it is necessary for a wide range
of industrial applications to perform the localization of acoustic sources. In addition,
sound localization may be a valuable instrument for analyzing the workflow of vital
machinery (pumps, motors, electric drives, or fans). Such machinery can be targeted for
noise reduction, where its noise footprint can be analyzed and compared between diverse
workflows or product life spans [27]. In the context of predictive maintenance, one can find
applications for preventing structural failure [28], leak localization [29], or nondestructive
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localization of cracks [30]. In its early stages, the PSO algorithm [9,10] was also used
for solving some acoustic localization problems, namely, those related to the localization
of partial discharge sources in power transformers [31,32]. Both non-linear and binary
forms of the optimization algorithm were successfully applied [25,33]. The PSO algorithm
contributed to the beginning of a new approach to the nonlinear optimization problem. As
one of the most cited works in the scientific literature, it is still applied in several fields due
to its phase-correcting structure for electromagnetic band-gap resonators [34], time-delay
equalizer meta-surface for electromagnetic band-gap resonator antennas [35], or artificial
magnetic conductor design [36].

From a physical point of view, several approaches exist for acquiring the necessary sig-
nals to achieve the localization of an acoustic source. Solutions based on time of arrival [37],
time difference of arrival [38], or direction of arrival [39] are well-known examples in
the literature; however, they depend on high-precision hardware for timing purposes
or on microphone sensor arrays for angle perception, which might drastically raise the
network implementation costs. On the contrary, solutions based on energy measurements
are much more flexible to deploy, but are capable of achieving good performance. For this
reason, only energy-based localization will be under analysis in the present work (how-
ever, the extrapolation to any range-based localization method is straightforward). The
energy decay model was initially proposed by conducting field experiments with the sound
emitted from an engine [40]. The localization approach considers averaging the energy
information of the received acoustic signal data samples, standing out for lower bandwidth,
since it is sampled at a much lower rate [41]. The energy-based acoustic location (EBAL)
problem has traditionally been approached with deterministic algorithms [42,43]. The
least-squares method was applied in [44], considering weighted terms and a correction
technique. Although it offers certain gains, principally due to the correction performed,
its performance might be severely deteriorated in surroundings with high noise powers
because of the neglect of the second-order noise terms. Considering the non-convexity of
the EBAL problem, the authors in [45,46] proposed the use of convex optimization methods,
namely, by applying semi-definite programming relaxations to convert it into a convex
one. By contemplating the solution offered by in [45,46], one understands that it is actually
circumvented by resorting to a set of convex relaxations that result in increased compu-
tational burden. Therefore, more convenient methods were proposed in [47–49], where
the authors had to take recourse to second-order cone programming techniques. Even
though estimators founded on convex optimization render good performance in general,
even in surroundings with large noise powers, their biggest shortcoming was related with
their computational burden, which was a polynomial function of the network size. The
use of a black-box model, namely, a feed-forward neural network, was proposed in [50],
showing equivalent or even improved performance in comparison with state-of-the-art
methods while being computational simpler. Nonetheless, these results were obtained
in a constrained simulated environment whereby it was possible to generate perfect and
abundant training data, something that is not typically available in real scenarios. The use
of metaheuristics to tackle the acoustic localization problem, namely, Elephant Herding
Optimization (EHO) [51,52], was firstly proposed in [53], and its implementation was
validated in [54]. The results in [54] demonstrated that the EHO algorithm could supplant
deterministic methods for high values of the measurement noise, as it is computational
simpler. Ultimately, taking advantage of specific information about the problem layout
to intelligently initialize the population, an improved EHO (iEHO) showed even better
accuracy, with good results over a wide range of measurement noises, network size, and
even in tracking scenarios [55,56]. This is one of the main reasons for why this work studies
swarm-based techniques. Considering (1) the good results obtained by the EHO and iEHO,
as well as the vast range of existent swarm-based algorithms, and (2) the performance
gain in using an intelligent swarm initialization with EHO, the following questions arise:
(1) Can the performances obtained by the EHO be achieved or even exceeded by other swarm-based
algorithms? (2) Can the population initialization proposed for the iEHO improve the performance of
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all swarm-based algorithms? To answer these questions, a total of 10 swarm-based methods
were applied to the EBAL problem and tested in this extensive work.

The biggest advantage of swarm-based methods over deterministic approaches is their
low computational cost, making them highly attractive for edge computing paradigms by
reducing latency and saving bandwidth. When embedded processing is at stake, either
by running the algorithms at the edge of the network or even on the sensors, computa-
tional complexity and processing time play an important role in selecting the appropriate
method [57]. Since its origin in the late 1990s for delivering video content from edge
servers [58], edge computing has shown several advantages concerning the reduction
of bandwidth and payload overlay [59]. Referring to the acoustic localization problem,
running the location algorithm at the edge of the network allows less traffic (since only
calculated coordinates are transmitted) and advantages related to privacy and security
(since the architecture provides computing and memory storage options close to the device
itself) [60]. Secondly, by allocating all of the processing to the edge, the number of sensor
nodes and the covered area can grow without the need for centralized data center process-
ing and networking power to increase. Actually, only the number of edge servers would
grow proportionally. Nevertheless, these are much cheaper devices, and because of the
distributed computing paradigm, networking congestion that could occur on a centralized
data center would be avoided. Finally, to implement the solution on edge devices, it is
crucial (and sometimes the only option) to do it using low-level programming languages,
since the memory and processing are limited. This further increases the importance of the
presented work, where the selected algorithms (with implementations available online, but
only in MATLAB® or Python) were implemented from scratch in the C language and tested
through exhaustive simulations on several embedded devices. It is common that the local-
ization problem is represented through non-linear, non-differentiable, and non-continuous
models, where a metaheuristic supplants its counterparts. Even though these methods
recently gained a lot of attention, to the best of our knowledge, no comprehensive study
about their effectiveness in tackling target localization exists in the literature. Therefore,
this work should be seen as a guide and our initiative to incentivize researchers to tackle
the localization problem by applying metaheuristic tools. Hence, this review also adds
an important contribution to the current state of the art when it comes to computing the
localization problem through swarm-based algorithms on edge platforms.

Based on the above discussion and the results obtained, the main insights and contribu-
tions of the present work are summarized as follows: (1) application of several of the most
significant and up-to-date swarm-based techniques to the EBAL problem and assessing
their performance with regard to convergence and localization error; (2) integration of
the intelligent initialization technique proposed in [55] (but only integrated with EHO)
with all of these swarm techniques to generally validate the improvements in convergence
speed for any swarm algorithm; (3) evaluation of the time efficiency of these methods when
executed on embedded processors, thus proving the feasibility of the approach for any real
edge computing scenario.

The remainder of the paper is organized as follows. Section 2 defines the methodology
adopted for the comprehensive study. Section 3 formulates the theoretical background on
both energy-based acoustic localization and swarm-based optimization. Section 4 presents
a detailed implementation of the testing procedure with regard to the embedded setup and
selected algorithms. Section 5 provides the obtained results and their discussion, and lastly,
Section 6 concludes the paper and provides possible future directions of research.

2. Methodology

On the one hand, when considering the first steps in swarm-based optimization,
algorithms such as Ant System [8] and Particle Swarm Optimization [9] are immediately
noticed. Since they are accepted as the first methods based on swarm intelligence, it
is common to reference them as landmarks. Currently, considering the metrics from
Google Scholar (https://scholar.google.com/, accessed on 10 September 2020), both exceed

https://scholar.google.com/
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several tens of thousands of citations. On the other hand, until the present day, more
than two hundred algorithms have been proposed in the literature, which makes the
process of choosing an algorithm for a given problem somewhat complex. In order to
choose the methods to be implemented in the current study, the databases of several
publishers (MDPI, IEEE, Elsevier, Springer, Sage, IOS Press, Science Open, AIP, Inder-
Science, Wiley and Sons, Emerald, and Taylor and Francis) were searched to collect the
published swarm-based methods, which were ordered by year and number of citations
per year while considering their date of publication and Google Scholar for the citation
metrics. The landmark PSO and ANT algorithms are usually objects of comparison for
new proposals, where novel methods present improvements in relation to the first two;
hence, they were not targeted for implementation. Then, Cuckoo Search (CS) [16] was
considered for implementation, as it was the most cited method published in the first
decade of the current century, with a mean value of 464 citations per year. To reduce
the time grid in recent years, from this point on, the analysis was performed with a five-
year interval. Between 2010 and 2014, three algorithms stood out, namely, the Grey Wolf
Optimizer (GWO) [61] with 4112 citations (685 citations/year), the Bat Algorithm [17] (a
total of 3753 citations or 375 citations/year), and the Teaching–Learning-Based Optimization
(TLBO) algorithm [62] (with a total of 2227 citations or 247 citations/year). As such, the
GWO algorithm was considered for implementation as representative of the 2010–2014 time
window. Then, for the 2015–2019 quinquennium, the methodology was once again refined,
and a year-by-year approach is considered. Based on the metric analysis, in 2015, the
Moth–Flame Optimization algorithm (MFO) [63] was the most cited method, with a total of
1167 citations or 233 citations/year, and it was selected for implementation. Consequently,
the Whale Optimization (WOA) [64] and the Salp Swarm (SSA) [65] algorithms, with 557 and
298 citations/year in 2016 and 2017, respectively, were considered for implementation.
With regard to 2018, two algorithms were considered. Firstly, the Tree Growth Algorithm
(TGA) [66] with 45 citations or 23 citations/year and, secondly, the Coyote Optimization
Algorithm (COA) [67] were considered because they were some of the few methods that
divide a population into groups, similarly to the Elephant Herding Optimization (EHO) [51]
algorithm. Similarly and for the same reasons, in 2019, two algorithms were selected for
implementation. Firstly, the Supply–Demand-Based Optimization (SDO) [68] was chosen
for its novelty, and Enhanced Elephant Herding Optimization (EEHO) [69] was chosen, as
it also considers its population divided and manages it in groups. It should be noted
that this latest publication corrected three important flaws (each regarding unjustified
convergence towards the search space’s origin, unbalanced exploration/exploitation trade-
off, and skewed agent distribution) in relation to its original version, which is why the first
EHO [51] method will not be considered. It is worth mentioning that other methods with a
higher number of citations were published in 2019, e.g., the Squirrel Search [70] or the Harris
Hawks Optimization [71] algorithms. However, they will not be considered here due to their
similarities with other already implemented methods, namely, CS and GWO. Finally, in
2020, several new methods could still be found in various publications. Since considering
the number of citations would be highly influenced by the month of publication, this
criterion was not taken into account. Instead, the Momentum Search Algorithm (MSA) [72]
was considered due to its inspiration from a physical principle instead of the behavior of
living beings. A complete list of the methods selected for analysis is presented in Table 1,
along with the number of citations obtained from Google Scholar (accessed in September
2020). For the citations/year metric, the total number of citations was divided by the
publication year and subtracted from the current year. A more detailed list of all of the
considered algorithms is presented in Appendix B.
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Table 1. Citation metrics of swarm-based algorithms.

Year Acronym (*) (**) Method (Reference)

–1999 1995 PSO 61,839 2474 Particle Swarm Optimization [9]
1996 ANT 14,356 598 Ant System [73]

2000–2009 2009 CS 5100 464 Cuckoo Search via Lévy flights [16]

2010–2014
2010 BAT 3753 375 Bat Algorithm [17]
2011 TLBO 2227 247 Teaching–Learning-Based Optimization [62]
2014 GWO 4112 685 Grey Wolf Optimizer [61]

2015–2020

2015 MFO 1167 233 Moth–Flame Optimization Algorithm [63]
2016 WOA 2227 557 Whale Optimization Algorithm [64]
2017 SSA 894 298 Salp Swarm Algorithm [65]

2018 TGA 45 23 Tree Growth Algorithm [66]
COA 85 43 Coyote Optimization Algorithm [67]

2019 SDO 9 9 Supply–Demand-Based Optimization [68]
EEHO 16 16 Enhanced Elephant Herding Optimization [69]

2020 MSA - - Momentum Search Algorithm [72]
(*) Number of citations in set/2020 [scholar.google.com]. (**) Number of citations per year in set/2020 [scholar.
google.com].

After having stated the criteria for selecting the algorithms to implement, it remains to
define the hardware processing platform and the programming language. As previously
stated, the present work intends to validate decentralized implementations of the acoustic
localization problem (namely, over edge computing), apart from accuracy and feasibility.
In other words, the algorithms must run on low-complexity and low-clock-rate processors.
As such, the obtained results will be closely in line with practical implementations in real
contexts. For that purpose, the completion relies on two main features: (1) all algorithms
are implemented in the C language; (2) the code runs on embedded processors. These
features contrast with the usual testing procedures developed in high-level languages (most
commonly, in MATLAB®) and executed on high-performance computers, where issues
such as floating points, matrix operations, and mathematical functions (e.g., trigonometric
functions) are generally well established. Basically, the fact that good performance and
convergence results are obtained on high-level platforms does not guarantee operation
on computer systems with lower capabilities, namely, embedded systems. On the con-
trary, however, validations carried out in an embedded context guarantee the operation of
algorithms on high-level platforms, taking into account that the change is towards compu-
tational improvement. As such, the present work considers the assessment of the selected
swarm-based optimization algorithms on BroadcomTM BCM series processors based on
ARM® architectures, which are well known for their use on Raspberry Pi FoundationTM

electronic boards.
To comprehensively assess the performance of swarm-based methods applied to the

acoustic source localization problem, a wide range of processors with different memory
capacities and different clock speeds were considered. The set of hardware modules
consisted of several Raspberry Pi modules, which went from 700 MHz to 1.5 GHz clock
frequencies, and they had 512 MB to 4 GB of RAM and CPU buses that were 32 and 64 bits
wide, running the Raspberry Pi Lite operating system. In total, five different modules were
used, and their main features are summarized in Table 2. The applicability of Raspberry Pi
modules for edge computing applications has been considered in the literature for smart
manufacturing [74], smart agriculture [75], and smart surveillance [76]. Nevertheless,
when processing requirements increase, shortcomings in terms of performance have been
reported [77]. Thus, the use of more computationally efficient algorithms (with lesser
computational requirements) is of major importance.

scholar.google.com
scholar.google.com
scholar.google.com
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Table 2. Computational architectures of the swarm-based algorithms’ implementation.

Rasp. Pi 4 B Rasp. Pi ZW Rasp. Pi 3 Rasp. Pi 2 Rasp. Pi B

SOC BCM2711 BCM2835 BCM2837 BCM2836 BCM2835

Core
Cortex-A72

[64-bit] ARM1176JZF-S
Cortex-A53

[64-bit] Cortex-A7 ARM1176JZF-S

Cores 4 1 4 4 1
Clock 1.5 GHz 1 GHz 1.2 GHz 900 MHz 700 MHz
RAM 4 GB 512 MB 1 GB 1 GB 512 MB

To conclude, the selected swarm-based methods were evaluated on the five mod-
ules, seeking: (1) analysis and comparison of convergence and accuracy; (2) validation of
improvements by population initialization; (3) validation and analysis of execution times.

3. Theoretical Background

The current section intends to provide the necessary theoretical background on both
the formulation of the energy-based localization problem and swarm-based optimization.

3.1. Energy-Based Acoustic Source Localization

The energy-based acoustic model, which was initially proposed in [40], implies that
the observation at a given sensor i decays with a ratio inversely proportional to the distance
between the sensor and the acoustic source, according to:

yi =
giP

||x− si||β
(1)

where gi is the gain of sensor i, P is the transmitted power, x and si are the source and
sensor coordinates, and, finally, β is a decay propagation factor that is dependent on envi-
ronmental conditions. For the sake of simplicity, an outdoor scenario without reverberation
or reflections is considered here, and thus, β = 2 [40]. In the case of a two-dimensional
problem, x = xx âi + xyâj and si = six âi + siyâj, where âi and âj are the coordinate unit vec-
tors. The extension to higher-dimensional problems is straightforward. By employing the
observations defined in (1), the maximum likelihood (ML) estimator of x can be formulated
as [53]:

x̂ = arg min
x

N

∑
i=1

(
yi −

giP
||x− si||2

)2

. (2)

ML is one of the most commonly employed estimators [53], since it is asymptotically
efficient (for large enough data records). This estimator, however, depends on the noise
statistics and might produce very different optimal solutions for different noise models
used for the same problem. In general, researchers tend to model the noise according to a
Gaussian model, but it could also be modeled according to non-Gaussian noise, such as
Middleton noise [78] or Alpha-stable noise [79,80]. Moreover, one can see that the estimator
in (2) is highly non-convex, presenting singularities at all of the true sensor positions. The
single-cost-function optimization problem is thus an appropriate candidate for applying
metaheuristic optimization methods, namely, swarm-based optimization.

When considering ideal conditions, the solution of the optimization problem would
be a single point in the two-dimensional plane. This point would be the unique intersec-
tion of the circumferences’ radii, which would be centered on the sensors with distance
d̂i =

√
giP/yi (represented by solid lines in Figure 1). Due to the measurement noise in

the energy observations, an added or subtracted effect will distort the distance estimation,
implying the appearance of two or more intersections, or perhaps even no intersections
at all (represented by dashed lines in Figure 1). Hence, the solution of the optimization
problem (2) lies in the region of interest (please see Figure 1), which is obtained by mini-
mizing the sum of the squared difference between the observations and the measurement
model (Equation (1)).
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Figure 1. Geometry of the search space and measurement uncertainties.

3.2. Swarm Intelligence

In the current section, an overview of swarm optimization is firstly presented by
providing the general sequence of the steps that compose a typical swarm algorithm, with
the specifics of each of the selected algorithms being described afterwards. It is worth
mentioning that a general nomenclature is adopted rather than an algorithm-specific one
(e.g., an agent is simply called an agent rather than coyote, wolf, or elephant, as used within
the original methods). An overview of the nomenclature is provided in Appendix A.

Swarm intelligence algorithms have very similar activity sequences among them. The
common steps are: (1) initializing the population, (2) evaluating the population (testing the
cost function on the existent solutions of the population), (3) testing the stopping criterion,
(4) updating the population (updating the position of the search agents in the search space),
and cyclically repeating steps (2), (3), and (4) until a stopping criterion is met (please see
Figure 2).

Initialize Population Evaluate Population

[stopping criterion
is not met]

[stopping 
criterion is met]

Update Population

Problem Specific Algorithm SpecificDesigner Specific

Figure 2. Activity sequence in swarm-based optimization.

The population initialization can be considered a crucial step, since starting the
search far away from the global optimum might prevent a method from finding the global
solution [81]. In addition to generic methods, such as the pseudo-random number gener-
ator [82] or the chaotic number generator [83], initialization strategies specific to certain
applications were also considered for particular problems, i.e., acoustic localization [55].
Random initialization is done by randomly spreading the agents throughout the search
space. Typically, this process follows a uniform distribution bounded by the physical limits
of the search space, such that each search agent has a random initial position x0 ∼ U (lb, ub),
and lb and ub are vectors with the lower and upper bounds, respectively, for each dimen-
sion of the search space. This initialization method is used when no information about the
problem is available at the initial phase or when that information should be ignored (e.g., in
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benchmarking when well-known functions are used (including their optimal solution(s)).
However, when approaching a specific problem, it is common to have information that can
be used to our advantage to initialize the agents. Smart or intelligent initialization means
the determination of the areas of the search space where the best solution or solutions are
expected to be and then initializing the search agents within those areas. For instance, for
the EBAL problem, this can be done as explained in [55].

Once the agents in the population are initialized, their positions in the search space
should be evaluated against the cost function so that in the end of the evaluation step, all
agents have a cost value associated with them. After this, a stopping criterion is tested to see
whether the obtained solutions are good enough, the algorithm has converged, a maximum
number of function evaluations has been reached, or a combination of the three. If the
stopping criterion is not met, the agents are moved within the search space in search of
better solutions. The way the movement, position update, or walk is done is one of the features
that should distinguish a swarm-based algorithm. The great diversity of nature is typically
the inspiration for a wide variety of new update strategies. However, the mathematical
models can be considered quite similar when cross-referencing some methodologies.

A transition of an agent’s position from iteration t to t + 1 is usually defined by its
current position xt, a step direction s, and a step scale factor α, such that:

xt+1 = xt + α� s, (3)

where � is the element-wise multiplication. The way α and s are calculated depends on
the algorithm itself and involves some stochastic variables and the position of other agents.
Each agent’s position is typically updated once or twice per iteration, following some
variation of Equation (3).

In the following, we present the main particularities of each of the considered algorithms.

3.2.1. Cuckoo Search

The CS algorithm, which was initially proposed by [16], arises from brood parasite
species of cuckoos that lay their eggs in the nests of other specimens, expecting that other
birds will take care of them.

At each iteration, there are two operations applied to all agents: random update
(exploration) and discovery (exploitation).

From (3), the random updating operator can be defined as

xt+1 = xt + α · s, with α = 0.01 and s = (xt − xt
∗)� R0 � R1,

where R0 and R1 are vectors of random values, such that R0 ∼ N (0, 1), R1 ∼ L(1.5, 1),
and xt

∗ is the best search agent in the population at iteration t. The value of α is intended to
avoid large flights that could easily make the agents jump outside the search space [84],
whereas (xt − xt

∗) reduces the step length for agents closer to the best one, causing the best
agent to stay at the same position.

After this updating operator, the discovery of fraction pa of the agents is done with

xt+1 = discovery(xt) = xt + α · s� H(pa − ε)� (xt
r1
− xt

r2
),

where s is a vector of random values drawn from a standard normal distribution, such that
s ∼ N (0, 1), H is the Heaviside function, pa = 0.25, ε ∼ U (0, 1), and xt

r1
and xt

r2
are two

different agents selected randomly through random permutation [84].
Actually, both updates persist only if the new solution is better than the current

one, i.e.,

xt+1 =

{
xt + α · s, if f (xt + α · s) < f (xt)

xt, otherwise
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for the random update operator, and

xt+1 =

{
discovery(xt), if f (discovery(xt)) < f (xt)

xt, otherwise

for the discovery operator, where, in this case, f denotes the cost function, which should
be minimized.

The CS then has an implicit strategy of greedy elitism for both updating operators,
where the quality of an agent never degrades.

3.2.2. Grey Wolf Optimizer

The GWO algorithm was proposed in [61] and was inspired by the hunting behavior of
gray wolfs and their social hierarchy. In this optimization procedure, the agents are wolves
chasing the prey (optimal solution); however, because the optimal solution is unknown,
it is considered that the wolves at the top of the hierarchy have better knowledge about
the location of the prey and are closer to it [61]. Thus, the procedure is based on a simple
updating operator that considers the position of the three best agents (the agents whose
positions correspond to the best solutions), which are known, respectively, as alpha, beta,
and delta (in descending order of the solution quality).

The updating operator in GWO is different from the general concept of (3), and the
next location of each agent is given by

xt+1 =
sα + sβ + sδ

3
,

where the se vectors are calculated as

se = xt
e − R0 � (

∣∣R1 � xt
e − xt∣∣), ∀e ∈ {α, β, δ}, (4)

where xt is the agent’s current position; xt
α, xt

β, and xt
δ are the positions of the alpha, beta,

and delta wolves, respectively, R0 ∼ U (−a, a), and a is linearly decreased from 2 to 0
over the course of the iterations such that R0 ∼ U (−2 + t/tmax, 2− t/tmax), where t is the
current iteration, tmax is the maximum number of iterations, and R1 ∼ U (0, 2).

The goal of the decrease in a over the course of the iterations is to control the trade-off
between exploration and exploitation. As a decreases, R0 tends to assume values closer to 0,
which diminishes

∣∣R1 � xt
e − xt

∣∣ in (4), which, in turn, forces the new solution to converge
to xt

α, xt
β, and xt

δ. As such, exploration is favored in the initial iterations, while exploitation
is favored in the latter.

3.2.3. Enhanced Elephant Herding Optimization

The EHO method, which was originally proposed in 2015 [51], was inspired by elephants’
herding behavior, where a group of elephants, mainly calves and females, follow a matriarch,
thus forming a clan of elephants. The algorithm also considers the fact that male elephants
may leave the clan to live alone when they reach adulthood. Accordingly, the paper in [51]
presents a multi-population algorithm where the population is divided into several groups
of agents by applying two operators: a clan updating operator, in which the agents tend to
move towards the best agent of their group, and a separating operator, where some agents are
repositioned randomly in the search space, mimicking desertion from the group.

Aside from the inspiration, three major drawbacks in the EHO algorithm were iden-
tified in [69]—unjustified convergence towards the search space’s origin in the matriarch
update operator, unbalanced exploration/exploitation trade-off in the group updating
operator, and skewed agent distribution in the separating operator. Hence, the evolution of
the EHO into the EEHO was proposed in [69] with better performance in benchmarking
than that of the EHO. The EEHO algorithm is not just an improvement over the EHO, but a
rectification of relevant problems that cannot be ignored.
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In the EEHO method, the clan updating operator updates each agent xt
c of each group

c with a combination of three steps:

xt+1
c = xt

c + αs1 + βs2 + γs3, with s1 = xt
c∗ − xt

c and s2 = ct
c − xt

c, (5)

where xt
c∗ is the best agent in the group c; ct

c is the center of group c, which is obtained by
averaging the position of the agent in group c; s3 ∼ U (−(ub− lb), (ub− lb)); α, β, and γ,
are, respectively, the best agent, the group center, and the randomized influence factors,
respectively. The position of the best agent in group c, xt

c∗, is not updated as in (5), but
instead as:

xt+1
c∗ = xt

c∗ + βs2, with s2 = ct
c − xt

c∗,

where, once again, β is the influence factor of the group center.
After the clan updating operator is executed, the worst agents in each group are

randomly repositioned in the search space with

xt+1
c = R, R ∼ U (lb, ub),

with the possibility of finding new local optimums (exploration).

3.2.4. Moth–Flame Optimization

The MFO algorithm was proposed in [63] in 2015. Its inspiration comes from a
navigational strategy that some flying insects use to move in a straight line over a given
time. In particular, at night, moths fly by maintaining a fixed angle with respect to a source
of light [63]. This strategy only works if the source of light is a further distance away than
the traveled distance, since it will otherwise lead to circular flying around the source of
light. Before human-made artificial lights, the moon was the reference that moths used to
guide their flying, and the result was a straight path. However, nowadays, moths easily get
trapped in artificial sources of light, such as lamps, and fly around them indefinitely. This
circular behavior around a source of light is actually what is mimicked.

In the MFO, the light sources are considered plausible optimum solutions, and the
moths search around them. To improve exploration and to avoid falling into one local
optimum, several light sources are considered, and each moth updates its position with
regard to one of these lights at each iteration. Thus, the position update of each search
agent (moth) between iterations t and (t + 1) is defined as

xt+1 = xt
ls +

∣∣xt
ls − xt∣∣� exp(bR)� cos(2πR), (6)

where b is the spiral-shape constant; xt
ls is the position of a chosen light source; R ∼ U(−r, 1) is

a vector of random numbers; r decreases linearly from−1 to−2 over the course of iterations.
The light sources represent the best solutions found up to a moment and are updated

in every iteration if new and better solutions are found. In order to increase exploitation
over the course of the iterations, the number of light sources is also reduced, forcing the
agents to update their positions with respect to the same sources of light, i.e., forcing the
algorithm to converge. Let Nls be the number of light sources; then, at iteration t,

Nls = bN0
ls −

t
tmax

(N0
ls − 1)e,

where b•emeans rounding to the nearest integer, N0
ls is the initial number of light sources

(typically equal to the number of agents), and tmax is the maximum number of iterations.
The value r, which decreases linearly from −1 to −2 over the course of the iterations,

can also be defined in a similar way with

r = −1− t
tmax

.
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It can be seen from (6) that when R assumes negative values, the agent gets closer to
the light source, whereas when it assumes positive values, the agent moves away from
the light source. Therefore, while Nls controls the number of local search areas, r tries to
control the scattering of the search agents around those areas. With different strategies, they
both try to control the trade-off between exploration and exploitation over the iterations
(favoring exploration initially and exploitation afterwards).

3.2.5. Whale Optimization Algorithm

The WOA (proposed in 2016 [64]) was inspired by the bubble-net hunting behavior
of humpback whales. The WOA applies to each agent’s (whale’s) position one of three
possible updating operators at each iteration. Two of these operators are very similar to the
one used by the GWO algorithm (Section 3.2.2). These are

xt+1 = se, for e = ∗ (7)

and
xt+1 = se, for e = rand (8)

where se is calculated exactly as in (4), xt
∗ is the position of the best agent in the current

iteration, and xt
rand is the position of a random agent from the current population.

The third operator, called the spiral updating operator, is borrowed from the MFO
algorithm (Section 3.2.4, (6)), but, instead of using a light source as a reference, the best
whale is used, such that

xt+1 = xt
∗ +

∣∣xt
∗ − xt∣∣� exp(bR2)� cos(2πR2), (9)

where b is once again the spiral-shape constant; R2 is a vector of random values such that
R2 ∼ U (−1, 1); xt

∗ is the position of the best agent.
As previously mentioned, at each iteration, each agent updates its position with

only one of these three operators. Hence, for each agent, the choice is made as shown in
Algorithm 1, where a decreases linearly over the course of the iterations, with the same
goal as in GWO (to control exploration and exploitation).

Algorithm 1 Selection of the updating operator.

Generate p ∼ U (0, 1)
if p < 0.5 then

Generate R0 ∼ U (−a, a) (Section 3.2.2)
if |R0| < 1 then

Update agent with (7). (exploitation)
else

Update agent with (8). (exploration)
end if

else
Update agent with (9)

end if

As a concluding remark, it is clear that the WOA is a conjunction of both the GWO
and MFO, i.e., it can be considered as an integration of the two algorithms.

3.2.6. Salp Swarm Algorithm

The SSA was proposed in [65], and its inspiration came from the collective behavior of
salps that group together alongside another, arranged in a chain.

To simulate the salp chain, the SSA proposes a food source as the search goal, a chain
leader that guides the movement towards the food, and the salp followers, who follow one
after the other after the leader. The food source is the best solution found so far, x∗, and
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the leader is the best search agent in the current iteration t, xt
∗. Then, Ref. [65] proposed

updating the leader’s position as

xt+1
∗ = x∗ + α · R0 � (R1 � (ub− lb) + lb), (10)

where R0 is a vector of values equal to−1 or 1 with equal probabilities, i.e., P(R0 j = −1) =
P(R0 j = 1) = 0.5 for each dimension j of R0, R1 ∼ U (0, 1) is a vector of random values, ub
and lb are vectors with the upper and lower bounds of the search space, respectively, and
α is a coefficient that balances exploration and exploitation by decreasing its value over the
course of the iterations according to

α = 2 exp(−(4t/tmax)
2),

where t is the current iteration and tmax the maximum number of iterations.
Because each agent in the followers’ group should follow one after the other, the ith

agent in the population is updated with:

xt+1
i =

1
2
(xt

i + xt
i−1), for i = 2, 3, . . . , n, (11)

where n is the population size and xt
1 is the position of the best agent at iteration t.

The facts that (1) only one of the n individuals in the population updates its position
using stochastic values and (2) all the others just follow the leader one after the other might
suggest that the algorithm does not perform very well. Indeed, to improve the performance,
the original MATLAB® implementation updates one half of the population according to (10)
and the other half according to (11). The same was done in the developed implementation.

3.2.7. Tree Growth Algorithm

The TGA was proposed in 2018 and was inspired by the way that trees grow depending
on their prioritized needs (light or soil resources) [66]. The TGA presents four operators
to be applied on four groups in the population (Table 3). After sorting the search agents
according to their quality (with the best agent first) to the best N1 trees (search agents), a
local search operator is applied, where the new position of the search agent only depends
on its current position and on stochastic variables. The best N2 trees after the best N1 trees
are called competition trees, and for these, the updating operator considers the position
of some trees in the best tree group, the current position of the tree to be updated, and
some stochastic variables. After the competition group, the N3 search agents are randomly
repositioned in the search space. The same happens to the N4 search agents after these, but
after the repositioning, their position-vector dimensions are mixed with the ones in the
position vector of the best tree in the population.

Table 3. TGA operators.

Target Agents Operator Goal

xi for i = 1, 2, . . . , N1
(Best Trees) (12) Exploitation

xi for i = N1 + 1, N1 + 2, . . . , N1 + N2
(Competition Trees) (13) Exploration, exploitation

xi for i = N1,2 + 1, N1,2 + 2, . . . , N1,2 + N3,
where N1,2 = N1 + N2

(Remove Trees)
(14) Exploration

xi for i = N1,2,3 + 1, N1,2,3 + 2, . . . , N1,2,3 + N4,
where N1,2,3 = N1,2 + N3

(Reproduction Trees)
(15) Exploration, exploitation
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The first operator, applied to the trees in the best tree group, is defined as:

xt+1 =
xt

θ
+ R� xt, (12)

where R ∼ U (0, 1) is a vector of random values, and θ is a constant value.
The second updating operator, which is applied to the competition trees, is defined as:

xt+1 = xt + R0 � (λx0 + (1− λ)x1), (13)

where R0 ∼ U (0, 1) is a vector of random values, λ is also a constant value, and x0 and x1
are the positions of the two search agents from the best tree group closest to xt.

The third updating operator, which is applied to the removed trees, is defined as

xt+1 = R, (14)

where R ∼ U (lb, ub) is a vector of random values.
The fourth updating operator, as stated above, results in new trees, where each

dimension value is either equal to a dimension value of the best tree in the population or
equal to a random value within the search space’s bounds. This operator is applied to the
reproduction group, and it can be defined as:

xt+1 = R1 � R0 + (1− R1)� xt
∗, (15)

where R0 ∼ U (lb, ub) is a vector of random values within the search space, R1 is a bit
vector of values equal to 0 or 1 with equal probability, and xt

∗ is the position of the best
search agent in all of the population in the current iteration t.

3.2.8. Coyote Optimization Algorithm

The COA is a swarm-based algorithm that was proposed in 2018 and was inspired
by coyotes’ social behavior [67]. Similarly to the EHO, it is a multi-population method,
meaning that the entire population is divided into independent sub-populations or groups,
which are called packs, referring to coyote groups.

Once the coyotes (search agents) are divided into packs, each agent of pack p is
updated by following a variation of (3):

xt+1
p = xt

p + R1 � s1 + R2 � s2, with s1 = xt
p∗ − xt

p and s2 = Mp − xt
p,

where R1 ∼ U (0, 1) and R2 ∼ U (0, 1), xt
p∗ is the best agent in pack p, and Mp is the median

of the search agents’ positions in pack p.
After all agents in a pack are updated, a new search agent (called a pup) is generated

by a random combination of dimension values of other agents or random values in the
search space. If some agents in the group have higher costs than the pup, the oldest of these
is replaced by the new pup; otherwise, the pup dies.

After this, a last operator is applied before the iteration ends; it exchanges agents
between groups with some probability of increasing the diversity inside the groups. Finally,
the ages of all agents are incremented and the iteration is concluded.

3.2.9. Supply–Demand Optimization

The SDO algorithm, which was proposed in [68], gained its inspiration from a set of
fundamentals in economic theory concerning commodity prices and quantities in markets,
and it states that these two values might have periods of instability (where they tend to
fluctuate) and stability (where they tend to an equilibrium point) [68].

Based on this, SDO divides the initial population into two sub-populations (or groups)
of equal sizes, which are called the quantities (Q) and the prices (P). Each quantity has an
associated price (and vice-versa), such that each search agent in Q has a corresponding
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search agent P. At each iteration t, the “equilibrium” quantity (xt
Qeq

) and price (xt
Peq

) are

defined based on the current solutions. The value of xt
Qeq

is defined by roulette-wheel
selection [68] from the search agents in population Q, and the best search agents have a
higher probability of being selected. The price xt

Peq
is defined by roulette-wheel selection

half of the time (from population P), and in the other times, it is defined by the average of
the positions of the search agents in P.

Once xt
Qeq

and xt
Peq

are defined, the search agents from Q (quantities) are updated:

xt+1
Q = xt

Qeq
+ α · (xt

P − xt
Peq

),

where xt
P is the corresponding search agent in P (price), and α is defined as:

α = 2 · tmax − t− 1
tmax

· sin(2πr),

where t is the current iteration, tmax is the maximum number of iterations, and r ∼ U (0, 1) is a
random number.

The agents in group P are updated with:

xt+1
P = xt

Peq
+ β · (xt+1

Q − xt
Qeq

),

where xt+1
Q is the corresponding search agent in group Q, and β is defined as:

β = 2 · cos(2πr),

where r ∼ U (0, 1) is a random number redefined at each iteration.
The original paper states that whenever the new price xt+1

P is better than the quantity
xt+1

Q , the quantity should be replaced by the price. However, this causes a loss of diversity
without a gain in intensification, and it is just doubling a solution. Instead of that, the
original MATLAB® implementation (as well as the implementation used in this work)
does not replace the quantity with the price if the latter is better, but only updates the
new solutions (either xt+1

P and xt+1
Q ) if it means an improvement regarding the objective

function, meaning that the costs of the solutions never get worse, as it is for the CS algorithm
(Section 3.2.1).

3.2.10. Momentum Search Algorithm

The MSA was published in the year 2020. Inspired by the momentum conservation
law [72], it can be considered as both a physical and a swarm-based algorithm. In the MSA,
each solution, or search agent, is a body with a mass m proportional to its quality, such that,
at each iteration t,

mt =
f (xt)− f (xt

worst)

f (xt
best)− f (xt

worst)
.

Then, at each iteration, an external body collides once against each of the search agents,
moving each towards the heaviest body (the best solution).

The momentum of this external body is the key point in the MSA for controlling
the trade-off between exploration and exploitation. When the external body collides at a
higher momentum, the other bodies will change their positions more radically. When the
momentum is lower, the other bodies will experience small position updates.

The momentum p of a body depends on its mass and velocity, and it is defined as:

p = mv.
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As such, to calculate the momentum of the external body, its mass and velocity need
to be known. The mass of the external body at iteration t is defined as:

mt
ext = 1− t− 1

tmax − 1

and its velocity before each collision against a search agent xt is defined as:

vt
ext = (1− t− 1

tmax − 1
) · R� vmax · sgn(xt

best − xt),

where tmax is the maximum number of iterations, R ∼ U (0, 1) is a vector of random
values, sgn is the sign function, and vmax is a constant value representing the maximum
possible speed.

Finally, by the momentum conservation law (more details in [72]), the velocity of each
search agent after the collision at iteration t can be calculated as:

vt =
2mt

ext
mt + mt

ext
vt

ext.

Then, the position xt is updated with:

xt+1 = xt + R� vt.

3.2.11. Summary

Having seen the algorithms individually and in detail, it is possible to recognize
some common features and others that might differentiate them. As a major difference in
this group of methods, one can see that some methods divide the whole population into
independent sub-groups, while others do not; this property improves the exploration phase
over exploitation. As such, this property might be of great importance when searching for
more complicated, highly non-convex spaces. Another feature concerns the distribution of
random variables employed in the algorithms. From the presented methods, only Cuckoo
Search relies on non-uniform stochastic variables, namely, on normal and Lévy ones. In
unbounded search spaces, the Lévy flight behavior might offer outstanding exploration
capacities to algorithms; however, when the space’s bounds are known, it might be sufficient
(and more efficient) to rely only on uniform random variables. Starting from the Grey
Wolf in 2014, many algorithms have started to use an exploration/exploitation strategy
that depends on a predefined maximum number of iterations. This feature allows the
algorithms to begin with a strong stage of exploration of the search space that transitions to
a strong exploitation stage in the last iterations. This feature should always be considered
if one wants an algorithm to run a fixed and known number of iterations. Lastly, there is a
property related to how the population’s quality can evolve over iterations or generations.
Most algorithms use an elitism strategy, where only the k best individuals are preserved and
passed directly to the next generation. At the same time, the remaining ones are subject to
operators that might improve their fitness, but might also deteriorate it. Other algorithms,
however, have a much greedier behavior where the operators are applied to every search
agent, but the resulting mutations are only preserved if the agent improves its quality and
are reverted otherwise. This greedy behavior favors exploitation by clearly sacrificing the
exploration capacity. Table 4 summarizes these four properties in the selected algorithms.
Please note that the presented properties are not general indicators of the performance
of the algorithms, since performance is always dependent on the problem to which the
algorithms are applied.
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Table 4. Comparison of the algorithms’ properties.

Method Sub-Groups Random Variable
Distributions

Exploitation/Exploration
Balance over Iterations Quality Evolution

CS No 7 U , N , L Constant Greedy

GWO No 7 U Variable Elitist

EEHO Yes 3 U Constant Elitist

MFO No 7 U Variable Elitist

WOA No 7 U Variable Elitist

SSA No 7 U Variable Elitist

TGA No 7 U Constant Elitist

COA Yes 3 U Constant Elitist

SDO No 7 U Variable Greedy

MSA No 7 U Variable Elitist

U—Uniform distribution; N—Normal distribution; L—Lévy distribution.

3.3. Population Initialization

A common feature of the analyzed algorithms is the fact that they all depend on
the computation of an initial population. Over recent years, initialization techniques
have attracted much attention in the research community, which is in search of constant
improvements [85]. One of the simplest and most widely used methods is randomization,
the aim of which is to produce evenly distributed populations [81]. The initialization step is
critical in population generation because it not only because it can improve the convergence
rate of an algorithm, but unsatisfactory preliminary guesses can also possibly lead the
search away from optimal solutions. Apart from generic techniques, such as a pseudo-
random number generator [86] or chaotic number generator [87], there are initialization
schemes that are particularly designed for a specific type of problem, such as the ones for
antenna design [81] or image segmentation [88].

Since, most commonly, the agents are deployed adrift over the search region with
no prior consideration of any particularities of the problem of interest, it is very hard to
achieve any kind of progress. Therefore, it is better that one bears in mind all additional
information about the problem, such as knowledge about the employed observation model,
and that one uses it as leverage to produce better starting points. This could be done, for
instance, by taking advantage of the acoustic decay model in (1), from which a distance
estimate between a sensor si and the source can be obtained from yi according to

d̂i =

√
giP
yi

, i = 1, . . . , N. (16)

The distance obtained from (16) represents an ML estimate of the distance between
the source and the i-th sensor. This simply tells us that the source lies within the circle (in
2-D) centered at the ith sensor with a radius equal to d̂i. Since, as mentioned in Section 3.1,
there will not be a unique intersection point, when considering a pair of measures, several
situations can arise, namely, secant circumferences and external or internal circumferences.
The methodology for creating the initial population of agents considers the center of the
convex hull formed by the intersection of pairwise measures [55] for secant circumferences
or the middle point of the straight-line segment between pair-wise sensors. For further
details, please refer to [55].

4. Testing Procedure and Experimental Setup

Regarding the implementation, the selected algorithms were implemented in the C
language, with the original publications and associated MATLAB® source code (when
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available) serving as the basis. In the end, since the algorithms have several similarities be-
tween them and, in the optimization procedure, only parts are algorithm-specific (Figure 2),
most of the code written—cost function, mathematical operations, main data structures,
and initialization and stopping criteria—was shared between the different algorithms.
The test script for obtaining the simulation results shown in this work was conceptually
equal to the one published in [89], which was based on a MATLAB® script that repeatedly
sends energies to an embedded device and receives the estimated location and associated
statistics. However, as the Raspberry boards had more persistent memory than the ones
used in [89], here, it was possible to preload a batch of energies on the board and then have
a C-language script doing the testing of the control flow. Since this was done on-board with
compiled code, the simulations could be done in a reduced time. The testing procedure
on the board is detailed in Algorithm 2, where the input datasets and file results (both in
JSON format) were generated and analyzed, respectively, in the MATLAB® environment.

As already stated, in this study, three main goals were considered: (1) comparing
the performance of the selected algorithms in solving the EBAL problem, (2) validating
whether the smart/intelligent initialization improved their accuracy, and (3) analyzing the
feasibility of the selected methods for running on computationally low-power devices. For
the first two goals, the cost and the error (||x− x̂||) of the best agent found so far over the
algorithms’ iterations were analyzed. For the third goal, the simulation execution time was
considered. Thus, for each simulation, t agents/solutions and the simulation execution
time were recorded (where t is the number of iterations necessary for the algorithm to reach
the maximum number of function evaluations).

Algorithm 2 Testing procedure on the Raspberry boards.

N = {6, 9, 12, 15} . Number of sensors
V = {−80,−75,−70,−65,−60,−55} . Noise variances
I = {Random, Intelligent} . Types of swarm initialization
A = {CS, GWO, EEHO, MFO, WOA, SSA, TGA, COA, SDO, MFO}
for all (n, v, i, a) ∈ N ×V × I × A do

data = LOADDATASET(n, v) . Energies, sensors’ positions, etc.
results = [ ]
for m = 1, 2, 3, . . . , 10.000 do

startTime = CLOCK()
X̂ = EXECUTE(a, n, i, data[m]) . Location estimation by algorithm a. X̂ contains

the best solutions found so far at each iteration of the algorithm
executionTime = CLOCK() − startTime
results = [results; X̂ executionTime]

end for
SAVETOFILE(results)

end for

The energies generated (yi) were corrupted by white Gaussian noise, ν, of variance
σ2

ν to approximate real situations. With the purpose of the extrapolation of the obtained
results, different sets of sensors (N = 6, N = 9, N = 12, and N = 15) and variances (from
σ2

ν = −80 dB to σ2
ν = −55 dB in intervals of 5 dB) were considered in a virtual search

space with dimensions of 50 m × 50 m. For more reliable results, for each combination
of the number of sensors, variance, algorithm, and initialization procedure, 10,000 Monte
Carlo runs were executed, meaning that a total of 4,800,000 simulations were carried out. It
should be noticed that, for each combination of sensors sets and variances, only one input
dataset with 10,000 testing scenarios was generated and used by all different algorithms.
This means that all algorithms were subject to the exact same scenarios. The transmitted
power, gains, and decay propagation factor considered were set to P = 5, gi = 1, and
βL = 2, respectively. With the purpose of providing a benchmark for the comparison of the
implemented algorithms, an exhaustive Grid Search method with 0.1 m of grid spacing
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was implemented (also in the C language) and tested in the same simulation conditions.
Table 5 summarizes the model and the testing scenario parameters considered in the tests.

Table 5. Test parameters.

Search Space 50 m × 50 m
P 5
gi 1
βL 2
Noise Variance σ2

ν ∈ {−80,−75,−70,−65,−60,−55} (dB)
Number of Sensors N ∈ {6, 9, 12, 15}

A fixed maximum number of function evaluations was used as the stopping condition
for all tests. For all algorithms to evaluate the cost function exactly the same number times
without interrupting any iterations, it was necessary to find the least common multiple of
Evaluations

Iteration between all of them. This value, or a multiple of it, could be used as the maximum
number of evaluations. In the tests employed, 6000 function evaluations were performed in
every test. The chosen value was sufficient for the convergence analysis (as will be shown
in the next section, the optimization should not exceed one or two thousand function
evaluations if a good algorithm and stopping criterion are used). Table 6 summarizes the
overall parameters used for each method.

Some algorithms rely on random numbers that follow normal or Lévy symmetrical
stable distributions. To generate those values, the Box–Muller method [90] and Mantegna’s
algorithm [91] were used, respectively.

Table 6. Algorithms’ parameters.

Population
Size (PS)

No. of Groups
(GN )

Groups Size
(GS)

Evaluations
Iteration

Specific
Parameters

CS 25 n.a. n.a. 2× PS, i.e., 50 Pa = 0.25

GWO 30 n.a. n.a. PS, i.e., 30 n.a.

EEHO 120 (3, 4, 5, 6) (40, 30, 25, 20) PS, i.e., 120
α = 0.7
β = 0.1

γ = 0.015

MFO 30 n.a. n.a. PS, i.e., 30 b = 1

WOA 30 n.a. n.a. PS, i.e., 30 b = 1

SSA 30 n.a. n.a. PS, i.e., 30 n.a.

TGA 100 n.a. n.a.
PS + N4,
i.e., 150

N1 = N2 = 20
N3 = 60
N4 = 50
θ = 1.2
λ = 0.5

COA 100 20 5
PS + GN ,

i.e., 25 Pe = 0.005× GS
2

SDO 50 n.a. n.a. PS, i.e., 50 n.a.

MSA 60 n.a. n.a. PS, i.e., 60 Umax = 2.5

n.a.—not applicable.

5. Results and Discussion

Two important performance metrics are the function cost, which is calculated with (2),
and the error, i.e., the distance between the estimated location and the real (unknown)
location. The correlation between these two variables is central in the approach to the EBAL
problem used here, where the true goal is to reduce the error, but, because it is unknown,
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an estimated cost is considered and minimized. In ideal conditions, this correlation would
be perfect, such that

if cost(x′) < cost(x′′) then error(x′) < error(x′′), for all x′,x′′ ∈ R2

With this, a minimum value of the estimated cost would always mean a minimal
error; however, there are two other independent variables that influence this correlation.
The main one is the noise: As noise increases, the correlation between the estimator cost
and the corresponding true error becomes unreliable, since noise perverts the measured
energies considered in the estimator. Another variable, which is not as relevant as noise,
is the number of measured energies (or sensors) considered in the estimator. Because the
expected noise mean is null, considering more energies in the cost function might improve
the correlation in a way in which individual errors might cancel each other out. Obviously,
in a situation where the noise variance would be null, the number of energies would not
matter. However, as the variance increases, the number of energies considered becomes
more important. As such, caution should be taken when analyzing the correlation between
the cost and the error in tests with higher noise values, mainly when a low number of
sensors is considered.

Before analyzing the convergence plots in the next subsections, something should be
clarified about the difference in the starting points of these convergence curves. The tested
swarm algorithms have different population sizes, which means that the initialization also
generates different numbers of initial solutions. When more solutions are generated, more
diversity exists; thus, the best solution from those is likely to be better than the best one
from a smaller set of generated solutions (the same applies to the worst solution: It is
expected to be worse than the worst from a smaller set). That is why the convergence plots
start at different cost values—methods with higher population sizes tend to have a better
best initial solution, as well a worse worst solution, but, because the convergence plots only
consider the best solution found so far, the convergences of these methods are expected to
start at lower cost values. The CS algorithm, for instance, which has the lowest population
size of all methods, is expected to have a convergence plot that starts above all of the plots
of the other methods.

Bearing this in mind, the next three subsections compare the algorithms’ conver-
gences (Section 5.1) and analyze the performance gains with smart/intelligent initialization
(Section 5.2), as well as the computational times obtained on several embedded processors
(Section 5.3).

5.1. Algorithm Comparison

The cost convergence and respective error while using different algorithms with
smart/intelligent initialization for different combinations of the number of sensors and
noise are shown in Figures 3–6. The plotted lines are the result of averaging 10,000 Monte
Carlo runs. The continuous lines represent the averaging cost of the best solution in the cur-
rent iteration, and the dashed lines represent the averaging error of that best solution. Since
all of the tested optimization methods have some elitism strategy, the best solution in the
current iteration is also the best solution found so far over all iterations in the optimization
procedure (the reason for why the cost convergence curves are all always decreasing).
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Figure 3. Cost convergence and respective error for each algorithm when N = 6.
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Figure 4. Cost convergence and respective error for each algorithm when N = 9.



Sensors 2022, 22, 1894 22 of 37

0 2000 4000 6000

Number of Function Evaluations

10
-7

10
-6

10
-5

10
-4

B
e

s
t 

C
o

s
t 

s
o

 f
a

r

10
-2

10
-1

10
0

E
rr

o
r 

(m
)

(a) σ2
ν = −80 dB

0 2000 4000 6000

Number of Function Evaluations

10
-7

10
-6

10
-5

10
-4

B
e

s
t 

C
o

s
t 

s
o

 f
a

r

10
-2

10
-1

10
0

E
rr

o
r 

(m
)

(b) σ2
ν = −75 dB

0 2000 4000 6000

Number of Function Evaluations

10
-6

10
-5

10
-4

B
e

s
t 

C
o

s
t 

s
o

 f
a

r

10
-2

10
-1

10
0

E
rr

o
r 

(m
)

(c) σ2
ν = −70 dB

0 2000 4000 6000

Number of Function Evaluations

10
-5

10
-4

B
e

s
t 

C
o

s
t 

s
o

 f
a

r

0.2

0.3

0.4

0.5

0.6

E
rr

o
r 

(m
)

(d) σ2
ν = −65 dB

0 2000 4000 6000

Number of Function Evaluations

0.5

1

1.5

B
e

s
t 

C
o

s
t 

s
o

 f
a

r
10

-4

0.4

0.6

0.8

1

E
rr

o
r 

(m
)

(e) σ2
ν = −60 dB

0 2000 4000 6000

Number of Function Evaluations

3

4

5

6

B
e

s
t 

C
o

s
t 

s
o

 f
a

r

10
-4

0.8

1

1.2

1.4

1.6

1.8

E
rr

o
r 

(m
)

(f) σ2
ν = −55 dB

Best Cost Error (m) COA CS EEHO MFO MSA GWO SDO SSA TGA WOA

Figure 5. Cost convergence and respective error for each algorithm when N = 12.
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Figure 6. Cost convergence and respective error for each algorithm when N = 15.

Because noise distorts the correlation between the cost and true error, the fact that the
cost plots are always decreasing does not imply that the error plots are as well. In fact,
it is possible to see in some plots (mainly the ones with higher noise values) that even
the average error can increase at some moments. Nonetheless, in most cases, a strong
correlation between the cost and the error can be seen, where the decrease in the cost
is reflected by an error decrease, resulting in the methods that better minimize the cost
function being the ones that get lower errors.
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Observing the continuous lines, the three methods that converge the fastest towards
the optimum are MFO, SDO, and EEHO, while methods such as the TGA, GWO, and
SSA present the worst performances. Looking at the dashed lines (and as expected), it
is possible to see that MFO, SDO, and EEHO are also the ones that achieve lower errors,
while the TGA, GWO, and SSA present higher errors. For comparison, the mean error
of the Grid Search in Table 7 shows that, while being an exhaustive search method that
evaluates the cost function 501× 501 = 251,001 times, it achieves very similar accuracy to
that of the swarm algorithms, which only evaluate the cost function 6000 times (with some
convergence much before the 6000 function evaluations).

Table 7. Mean error (in meters) of the Grid Search (0.1 m interval).

σ2
ν = −80 dB σ2

ν = −75 dB σ2
ν = −70 dB σ2

ν = −65 dB σ2
ν = −60 dB σ2

ν = −55 dB

N = 6 0.083 0.134 0.222 0.394 0.798 2.844
N = 9 0.056 0.076 0.130 0.204 0.402 1.980
N = 12 0.051 0.078 0.100 0.161 0.328 0.533
N = 15 0.048 0.062 0.086 0.140 0.215 0.476

It should be noted that the late convergence of methods such as GWO and SSA is
due to their native exploration and exploitation control strategies, which depend on the
maximum number of iterations. In GWO, this is even more problematic with lower noise
because, as the end of the curve in Figure 6a shows, it reaches the stopping criteria before
fully converging (increasing the maximum number of iterations does not change this issue).

5.2. Smart/Intelligent vs. Random Initialization

The present section intends to provide an understanding of the impact of the smart/
intelligent initialization proposed in [55] on the performance of the different algorithms
that were implemented. It was already shown that it improves the performance of the EHO
in terms of both cost and localization error [55]. Now, it will be shown whether or not this
initialization can be generalized to any swarm-based optimization algorithm.

For this purpose, the same tests that were performed in the previous section were car-
ried out, but using random initialization. Since it is already known that, generally, there is
a strong correlation between the cost and the error, the focus will just be on the cost conver-
gence of the different methods when using both types of swarm initialization. Figures 7–10
compare the cost convergences of the different methods when using smart/intelligent
initialization (continuous lines) and when using random initialization (dashed lines) for
different combinations of numbers of sensors and noise.

Since the smart/intelligent initialization generates the initial solutions in a reduced search
area in which it is believed that the global optimum lies, it is obvious that, when using smart
initialization, the best initial costs are, on average, much lower than when using random
initialization. Because of this, it is possible to see that the dashed lines (random initialization)
all start above the continuous lines (smart/intelligent initialization). Moreover, no dashed
line of any algorithm crosses the respective continuous line at any moment throughout the
iterations, which means that, on average, using smart initialization is always better than or
equal to using a random initialization. The term “equal” is justified because, as can be seen,
for example, in Figure 10a, SDO and EEHO using random initialization can reach, on average,
the same optimums that they reach when using smart initialization (their dashed lines join the
respective continuous lines at around 2000 function evaluations). Nevertheless, these are the
only methods where the benefits of smart initialization stop before 6000 function evaluations.
At 6000 function evaluations, none of the other algorithms have yet (on average) reached the
same optimums as when using the smart/intelligent initialization. With this, it can be seen
that smart/intelligent initialization not only works for any swarm algorithm, but it is even
more relevant for most of them than it is for EEHO.
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Figure 7. Cost convergence when using smart and random initialization for each algorithm when
N = 6.
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Figure 8. Cost convergence when using smart and random initialization for each algorithm when
N = 9.
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Figure 9. Cost convergence when using smart and random initialization for each algorithm when
N = 12.
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Figure 10. Cost convergence when using smart and random initialization for each algorithm when
N = 15.

It is interesting to see that with random initialization, in contrast with what happens
when using smart/intelligent initialization, methods with stronger initial exploration
phases, such as GWO, the WOA, and the SSA, outperform methods such as the COA and
CS, which do not employ special care for the initial exploration techniques. Nonetheless,
with the exception of SDO and EEHO, it possible to see a tendency for the methods to
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stagnate in sub-optimal solutions when using random initialization. These two facts imply
that smart/intelligent initialization, by initializing the population in a restricted area in
which the global optimum is believed to be, not only facilitates the optimization task
for methods that have weak exploration operators, but also avoids that methods with
strong initial exploration phases get trapped in sub-optimums that are far away from
the global optimum, as seems to happen with MFO, the MSA, and the SSA when using
random initialization.

5.3. Time Efficiency

It is known that a key feature of swarm-based algorithms is their low computational
complexity. However, this low complexity is not sufficient for knowing a priori exactly how
time-consuming these algorithms are when solving the EBAL problem in real applications.
In the same way, the widely available test benches implemented in MATLAB® and executed
on powerful computational platforms are not sufficient, since it is impossible (or not
very feasible) to have those processing cores as nodes in wireless sensor networks. As
such, to understand how time efficient these algorithms are, several simulations were
performed on different embedded boards. It should be noted that the goal is not to compare
the algorithms against each other, since they all have the same (linear) computational
complexities regarding the number of function evaluations. The goal here is to evaluate
whether swarm-based algorithms, in general, are feasible in embedded devices and for use
in constrained-time applications.

For this effort, we present the execution times of each swarm algorithm on different
embedded devices averaged over 10,000 Monte Carlo runs, giving as a reference the
execution times of the Grid Search algorithm with a 0.1 m spacing interval. The average
computational times (in milliseconds) of the Grid Search algorithm are presented in Table 8
for the different boards and numbers of sensors. For the swarm algorithms, Table 9 shows
the average execution times (also in milliseconds) that they take to reach 1000 function
evaluations and the respective standard deviations. (One thousand function evaluations are
a value sufficient for convergence, as shown by the previous sections. However, if desired,
the estimation of the execution times for a different number of function evaluations is
straightforward, since time is linearly proportional to the number of function evaluations).

The obtained results demonstrate that while the swarm algorithms have very similar
performance to that of the Grid Search in terms of accuracy, they are very superior in
terms of time efficiency, with computational times that are 100 times faster than that of
the Grid Search. If the small grid space of 0.1 m allows the Grid Search to accurately
locate the acoustic target, it demands a time-consuming computational burden, which is
avoided in the swarm-based algorithms. Knowing the average time superiority of the
swarm, it is also important to see if that superiority is constant or volatile considering
the stochastic nature of the algorithms in their operations and the execution flow of their
subroutines. The computational times’ standard deviations (σt) in Table 9 show that the
obtained times are very constant, which also allows the application of these methods in
systems where determinism and reliability are important issues. The execution times
presented in Table 9 can be seen as a reference for the time that it takes to estimate the
source location of an acoustic event in devices with processors ranging from 1.5 GHz (Rasp.
Pi 4 B) to 0.7 GHz (Rasp. Pi B) clock rates. The processing time is not just dependent on
the clock rates, but also on the device architecture itself, whereby the presented reference
time may vary slightly for other devices, even with the same clock rates. Nonetheless,
the obtained times show that the localization estimation can be performed in dozens of
milliseconds, which can be considered as being on a real-time scale. Thus, after analyzing
the accuracy of the methods in the previous sections and the execution time performance
in this section, the following claim is demonstrated: Through swarm-based optimization
with smart/intelligent initialization, acoustic source localization can be done at the edge on
embedded devices with good accuracy and in real time.
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Table 8. Average execution time (in milliseconds) of the Grid Search (0.1 interval).

N = 6 N = 9 N = 12 N = 15

Rasp. Pi B 1999 2983 4032 5057
Rasp. Pi ZW 1347 2013 2719 3404
Rasp. Pi 2 946 1411 1895 2368
Rasp. Pi 3 589 880 1171 1477
Rasp. Pi 4 B 241 358 477 595

Table 9. Average execution time (t̄) ± standard deviation (σt) to reach 1000 function evaluations
(in milliseconds).

N = 6 N = 9 N = 12 N = 15

Rasp. Pi B

CS 16.258± 0.094 20.537± 0.095 28.714± 0.107 29.561± 0.116
GWO 12.282± 0.051 16.731± 0.057 20.913± 0.059 29.264± 0.073
EEHO 10.223± 0.122 14.251± 0.150 18.541± 0.187 22.764± 0.406
MFO 14.346± 0.568 18.620± 0.435 22.442± 0.381 26.406± 0.386
WOA 10.894± 0.051 15.459± 0.063 19.696± 0.068 28.098± 0.087
SSA 9.688± 0.062 15.086± 0.131 19.412± 0.132 27.809± 0.125
TGA 10.888± 0.295 15.082± 0.400 21.949± 0.589 24.133± 0.773
COA 11.500± 0.098 15.760± 0.128 20.159± 0.169 24.464± 0.187
SDO 16.813± 0.258 24.475± 0.314 32.263± 0.246 39.731± 0.294
MSA 10.613± 0.350 14.702± 0.685 18.793± 0.586 23.076± 0.956

Rasp. Pi ZW

CS 10.849± 0.046 13.840± 0.055 16.725± 0.049 19.608± 0.061
GWO 8.270± 0.027 11.462± 0.059 14.457± 0.078 20.220± 0.087
EEHO 6.930± 0.188 9.615± 0.079 12.630± 0.491 15.300± 0.159
MFO 10.060± 0.398 12.821± 0.375 15.444± 0.366 18.874± 0.533
WOA 7.502± 0.027 11.678± 0.038 15.155± 0.062 20.633± 0.044
SSA 6.448± 0.041 9.259± 0.049 11.938± 0.028 18.016± 0.050
TGA 7.541± 0.082 10.352± 0.098 13.322± 0.248 16.062± 0.120
COA 7.505± 0.081 10.378± 0.101 13.524± 0.127 16.488± 0.141
SDO 11.461± 0.154 16.652± 0.198 21.932± 0.147 27.163± 0.174
MSA 6.845± 0.106 9.541± 0.168 12.599± 0.313 15.362± 0.562

Rasp. Pi 2

CS 7.875± 0.020 9.752± 0.020 11.697± 0.019 13.612± 0.028
GWO 6.171± 0.024 8.090± 0.034 10.000± 0.016 11.848± 0.017
EEHO 4.813± 0.017 6.659± 0.020 8.613± 0.022 10.513± 0.023
MFO 6.568± 0.163 8.478± 0.086 10.351± 0.049 12.262± 0.038
WOA 5.156± 0.017 7.063± 0.019 8.971± 0.017 10.889± 0.018
SSA 4.538± 0.022 6.446± 0.015 8.278± 0.010 10.189± 0.014
TGA 4.957± 0.024 6.849± 0.024 8.784± 0.024 10.689± 0.033
COA 5.493± 0.016 7.441± 0.017 9.429± 0.020 11.389± 0.021
SDO 8.454± 0.027 12.117± 0.061 15.890± 0.025 19.603± 0.028
MSA 4.923± 0.017 6.784± 0.016 8.695± 0.027 10.583± 0.030

Rasp. Pi 3

CS 4.783± 0.016 5.927± 0.017 7.155± 0.016 8.348± 0.017
GWO 3.748± 0.011 4.944± 0.011 6.163± 0.011 7.405± 0.012
EEHO 2.986± 0.016 4.137± 0.020 5.367± 0.022 6.594± 0.027
MFO 4.079± 0.115 5.275± 0.058 6.434± 0.039 7.637± 0.029
WOA 3.167± 0.014 4.379± 0.013 5.569± 0.013 6.787± 0.014
SSA 2.799± 0.011 3.980± 0.019 5.162± 0.008 6.373± 0.012
TGA 3.068± 0.016 4.252± 0.016 5.475± 0.017 6.668± 0.019
COA 3.359± 0.013 4.628± 0.016 5.841± 0.029 7.059± 0.020
SDO 5.201± 0.024 7.482± 0.051 9.807± 0.023 12.150± 0.028
MSA 3.023± 0.015 4.200± 0.016 5.403± 0.019 6.595± 0.022
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Table 9. Cont.

N = 6 N = 9 N = 12 N = 15

Rasp. Pi 4 B

CS 2.284± 0.016 2.782± 0.020 3.277± 0.030 3.771± 0.025
GWO 1.868± 0.008 2.350± 0.010 2.829± 0.018 3.313± 0.013
EEHO 1.329± 0.015 1.862± 0.014 2.291± 0.022 2.769± 0.025
MFO 2.067± 0.104 2.557± 0.065 3.033± 0.038 3.511± 0.037
WOA 1.439± 0.009 1.926± 0.011 2.407± 0.013 2.888± 0.017
SSA 1.231± 0.011 1.698± 0.013 2.160± 0.016 2.628± 0.016
TGA 1.413± 0.009 1.904± 0.010 2.381± 0.010 2.863± 0.011
COA 1.692± 0.012 2.181± 0.014 2.672± 0.018 3.164± 0.021
SDO 2.173± 0.040 3.091± 0.047 4.033± 0.056 4.964± 0.072
MSA 1.341± 0.015 1.811± 0.018 2.285± 0.022 2.753± 0.024

6. Conclusions

The comprehensive study presented here extends and expands previous work on
swarm optimization for energy-based acoustic source localization by applying some of the
most popular and novel swarm-based algorithms to the EBAL problem. Three main goals
guided the present work.

Considering the simulations performed, three algorithms, namely, MFO, SDO, and
EEHO, showed great performance. While the former slightly overcame the other two in
cost convergence, the average errors of the three methods were very similar. In addition,
considering the features of the different algorithms tested and the obtained results, it was
shown that when using smart/intelligent initialization, the algorithms that rely more on
the local space perform better than the ones with stronger initial exploration phases.

The second goal was to see whether the intelligent initialization that was previously
proposed and validated for the EHO method could also work for any swarm-based algo-
rithm. Overall, the algorithms used in the simulations all had their average performance
improved when using intelligent initialization. As such, it is now possible to claim that this
initialization technique should always be considered when implementing any swarm-based
algorithm for the EBAL problem.

After widely studying the accuracy of the swarm-based methods in solving the EBAL
problem, it remained to analyze their computational time performance. To that end,
the algorithms were implemented, and a large set of simulations were executed on five
different boards that could be used in real edge computing scenarios. The obtained results
demonstrated the value of the mathematical simplicity of swarm-based algorithms. As such,
it is possible to locate acoustic sources in units of milliseconds or dozens of milliseconds,
depending on the processors used or the number of sensors considered, allowing the use
of the presented approach in real-time edge computing applications.

With the completion of these three goals, the present work is a crucial milestone in
acoustic source localization through swarm intelligence, breaking barriers towards its real
implementation in demanding edge computing scenarios. The typical physical architecture
of these systems relies on a powerful centralized machine and complex algorithms to
process the acoustic signals obtained at the edge of the architecture by acoustic sensors.
The low computational complexity of the approach considered in this work allows for the
localization to be calculated at the edge of the architecture itself, where a central processor
would receive only the estimated location coordinates, which are what is required in most
applications. The benefits of this are obvious, and, as proved by the present work, both
accuracy and real-time performance can be guaranteed.

One of the major shortcomings of the presented methods is that they depend on a
noise model, given that they are based on evaluating an objective function whose form is
determined by the noise statistics. A possible direction for our future work will include the
derivation of a new objective function that does not depend on noise statistics, but is a valid
cost criterion for evaluating the quality of the particles. Another drawback of swarm-based
methods is that they usually require a training phase to optimize some of the parameters
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used in their operation. Although the impact of these parameters is not crucial in terms of
their functioning, they do have a tuning effect on their performance.

While the present work focused on a solution based on energy measurements, the same
work can be applied or extended to any other range-based localization method. As future
work, different research challenges exist, such as the development of noise mitigation tech-
niques to improve the accuracy (e.g., by considering variables other than energy measures),
the application of this approach to other range-based localization methods, or the integra-
tion and implementation of this solution on real edge computing localization systems.
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Appendix A. Definitions and Notation

Definition A1. An agent, search agent, or individual is an entity with a position in the search
space and an associated quality. Its position at iteration t represents a solution for the problem, and
it will be denoted by a D-dimensional vector xt, where D is the number of dimensions of the problem.
Its quality can be obtained by applying the cost function f on its position: f (xt).

Notation A1. Bold symbols should be interpreted as vectors.

Notation A2. R ∼ U (a, b) means that R is a vector of random values Ri drawn from a uniform
distribution between a and b, such that Ri ∼ U (a, b), for i = 1, 2, . . . , D, where D is the dimension
of the vector. If R ∼ U (a, b), where a and b are both vectors, then it should be considered that
each value Ri follows a uniform distribution between ai and bi, such that Ri ∼ U (ai, bi), for
i = 1, 2, . . . , D. This also applies to the distributions described below.

Notation A3. R ∼ N (µ, σ2) means that R is a vector of random values drawn from a normal
distribution with mean µ and variance σ2.

Notation A4. R ∼ L(α, γ) means that R is a vector of random values drawn from a Lévy
symmetric alpha-stable distribution, with α as the index of stability and γ as a scale factor (the
symmetric alpha-stable distribution is a specific case of alpha-stable distribution, where the skewness
parameter β = 0 and the location parameter δ = 0).

Notation A5. lb and ub represent the upper- and lower-bound vectors of the search space, respec-
tively, so that any valid xt must satisfy lb ≤ xt ≤ ub.
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Appendix B. Swarm Algorithm Listing

Table A1. Swarm algorithm listing.

Year 1 Acronym (*) (**) Method (Reference)

–1999
1995 PSO 61,839 2474 Particle Swarm Optimization [9]

1996 ANT 14,356 598 Ant System [73]

2000–2010

2001 HS 5315 280 Harmony Search [11]

2002 BF 3214 179 Bacterial Foraging [12]

2004 HB 323 20 Honey Bees [13]

2006

SOA 152 11 Seeker Optimization Algorithm [92]
GSO 211 15 Glowworm Swarm Optimization [93]
HBMO 361 26 Honey Bee Mating Optimization [94]
CSO 502 36 Cat Swarm Optimization [95]
BA 1339 96 Bee Algorithm [14]

2007

MS 228 18 Monkey Search [96]
IWD 325 25 Intelligent Water Drops [97]
ICA 2228 171 Imperialist Competitive Algorithm [98]
ABC 5045 388 Artificial Bee Colony [15]

2008 BBO 2821 235 Biogeography-Based Optimization [99]

2009

DS 38 3 Dialectic Search [100]
GSO 681 62 Group Search Optimizer [101]
GSA 4354 396 Gravitational Search Algorithm [102]
CS 5100 464 Cuckoo Search [16]

2010–2015

2010

SO 112 11 Spiral Optimization [103]
FWA 729 73 Fireworks Algorithm for Optimization [104]
CSS 900 90 Charged System Search [105]
FA 3112 311 Firefly Algorithm [106]
BAT 3753 375 Bat Algorithm [17]

2011

GSA 160 18 Galaxy-Based Search Algorithm [107]
DS 368 41 Differential Search [108]
BSO 414 46 Brain Storm Optimization Algorithm [109]
FOA 1126 125 Fruit Fly Optimization Algorithm [110]
TLBO 2227 247 Teaching–Learning-Based Optimization [62]

2012

ACROA 66 8 Artificial Chemical Reaction Optimization Algorithm [111]
ACS 105 13 Artificial Cooperative Search [112]
MBO 198 25 Migrating Bird Optimization [113]
RO 396 50 Ray Optimization [114]
MBA 412 52 Mine Blast Algorithm [115]
BH 622 78 Black Hole [116]
KH 1214 152 Krill Herd [117]

2013
LCA 132 19 League Championship Algorithm [118]
DE 293 42 Dolphin Echolocation [119]
SSO 338 48 Social Spider Optimization [120]

2014

OIO 97 16 Optics-Inspired Optimization [121]
VS 175 29 Vortex Search [122]
ISA 241 40 Interior Search Algorithm [123]
SFS 255 43 Stochastic Fractal Search [124]
SMO 266 44 Spider Monkey Optimization [125]
PIO 274 46 Pigeon-Inspired Optimization [126]
WWO 285 48 Water Wave Optimization [127]
CSO 314 52 Chicken Swarm Optimization [128]
CBO 388 65 Colliding Bodies Optimization [129]
SOS 713 119 Symbiotic Organism Search [130]
GWO 4112 685 Grey Wolf Optimizer [61]
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Table A1. Cont.

Year 1 Acronym (*) (**) Method (Reference)

2015–2020

2015

VOA 34 7 Virus Optimization Algorithm [131]
WSA 40 8 Weighted Superposition Attraction [132]
MBO 163 33 Monarch Butterfly Optimization [133]
LSA 171 34 Lightning Search Algorithm [134]
EHO 227 45 Elephant Herding Optimization [51]
DA 877 175 Dragonfly Algorithm [135]
SCA 1016 203 Sine–Cosine Algorithm [136]
ALO 1161 232 The Ant Lion Optimizer [137]
MFO 1167 233 Moth–Flame Optimization [63]

2016

SWA 53 13 Sperm Whale Algorithm [138]
MS 192 48 Moth Search [139]
CSA 689 172 Crow Search Algorithm [140]
WOA 2227 557 Whale Optimization Algorithm [64]

2017

KA 58 19 Kidney-Inspired Algorithm [141]
SHO 65 22 Selfish Herd Optimizer [142]
TEO 126 42 Thermal Exchange Optimization [143]
SHO 166 55 Spotted Hyena Optimizer [144]
GOA 700 233 Grasshopper Optimization Algorithm [145]
SSA 894 298 Salp Swarm Algorithm [65]

2018

TGA 45 15 Tree Growth Algorithm [66]
FF 59 20 Farmland Fertility [146]
COA 85 28 Coyote Optimization Algorithm [67]
BOA 172 57 Butterfly Optimization Algorithm [147]
EWA 174 58 Earthworm Optimization Algorithm [148]

2019

NRO 6 6 Nuclear Reaction Optimization [149]
SDO 9 9 Supply–Demand-Based Optimization [68]
PRO 12 12 Poor and Rich Optimization Algorithm [150]
EEHO 16 16 Enhanced Elephant Herding Optimization [69]
FDO 20 20 Fitness Dependent Optimizer [151]
BWO 20 20 Black Widow Optimization Algorithm [152]
PFA 32 32 Pathfinder Algorithm [153]
EO 56 56 Equilibrium Optimizer [154]
SOA 60 60 Seagull Optimization Algorithm [155]
SSA 150 150 Squirrel Search Algorithm [65]
HHO 323 323 Harris Hawks Optimization [71]

2020

BOA 1 1 Billiards-Inspired Optimization Algorithm [156]
WSA 5 1 Water Strider Algorithm [157]
DGCO 7 7 Dynamic Group-Based Cooperative Optimization [158]
TSA 12 12 Tunicate Swarm Algorithm [159]
MPA 38 38 Marine Predators Algorithm [160]
WFS - - Wingsuit Flying Search [161]
AOA - - Archimedes Optimization Algorithm [162]
MSA - - Momentum Search Algorithm [72]

1 Year of online publication (may be different from issue year). (*) Number of citations in set/2020 [scholar.google.
com]. (**) Number of citations per year in set/2020 [scholar.google.com].
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132. Baykasoğlu, A.; Akpinar, Ş. Weighted Superposition Attraction (WSA): A swarm intelligence algorithm for optimization

problems—Part 1: Unconstrained optimization. Appl. Soft Comput. 2017, 56, 520–540. [CrossRef]
133. Wang, G.G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2015, 31, 1995–2014. [CrossRef]
134. Shareef, H.; Ibrahim, A.A.; Mutlag, A.H. Lightning search algorithm. Appl. Soft Comput. 2015, 36, 315–333. [CrossRef]
135. Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and

multi-objective problems. Neural Comput. Appl. 2015, 27, 1053–1073. [CrossRef]
136. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
137. Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [CrossRef]
138. Ebrahimi, A.; Khamehchi, E. Sperm whale algorithm: An effective metaheuristic algorithm for production optimization problems.

J. Nat. Gas Sci. Eng. 2016, 29, 211–222. [CrossRef]
139. Wang, G.G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput.

2016, 10, 151–164. [CrossRef]
140. Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm.

Comput. Struct. 2016, 169, 1–12. [CrossRef]
141. Jaddi, N.S.; Alvankarian, J.; Abdullah, S. Kidney-inspired algorithm for optimization problems. Commun. Nonlinear Sci. Numer.

Simul. 2017, 42, 358–369. [CrossRef]
142. Fausto, F.; Cuevas, E.; Valdivia, A.; González, A. A global optimization algorithm inspired in the behavior of selfish herds.

Biosystems 2017, 160, 39–55. [CrossRef]
143. Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017,

110, 69–84. [CrossRef]
144. Dhiman, G.; Kumar, V. Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications.

Adv. Eng. Softw. 2017, 114, 48–70. [CrossRef]
145. Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47.

[CrossRef]
146. Shayanfar, H.; Gharehchopogh, F.S. Farmland fertility: A new metaheuristic algorithm for solving continuous optimization

problems. Appl. Soft Comput. 2018, 71, 728–746. [CrossRef]
147. Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23,

715–734. [CrossRef]
148. Wang, G.G.; Deb, S.; Coelho, L.D.S. Earthworm optimisation algorithm: A bio-inspired metaheuristic algorithm for global

optimisation problems. Int. J. Bio-Inspired Comput. 2018, 12, 1–22. [CrossRef]

http://dx.doi.org/10.1016/j.asoc.2012.11.026
http://dx.doi.org/10.1016/j.ins.2012.08.023
http://dx.doi.org/10.1016/j.cnsns.2012.05.010
http://dx.doi.org/10.1016/j.advengsoft.2013.03.004
http://dx.doi.org/10.1016/j.eswa.2013.05.041
http://dx.doi.org/10.1016/j.cor.2014.10.011
http://dx.doi.org/10.1016/j.ins.2014.08.053
http://dx.doi.org/10.1016/j.isatra.2014.03.018
http://www.ncbi.nlm.nih.gov/pubmed/24785823
http://dx.doi.org/10.1016/j.knosys.2014.07.025
http://dx.doi.org/10.1007/s12293-013-0128-0
http://dx.doi.org/10.1108/IJICC-02-2014-0005
http://dx.doi.org/10.1016/j.cor.2014.10.008
http://dx.doi.org/10.1016/j.compstruc.2014.04.005
http://dx.doi.org/10.1016/j.compstruc.2014.03.007
http://dx.doi.org/10.1080/0305215X.2014.994868
http://dx.doi.org/10.1016/j.asoc.2015.10.036
http://dx.doi.org/10.1007/s00521-015-1923-y
http://dx.doi.org/10.1016/j.asoc.2015.07.028
http://dx.doi.org/10.1007/s00521-015-1920-1
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1016/j.advengsoft.2015.01.010
http://dx.doi.org/10.1016/j.jngse.2016.01.001
http://dx.doi.org/10.1007/s12293-016-0212-3
http://dx.doi.org/10.1016/j.compstruc.2016.03.001
http://dx.doi.org/10.1016/j.cnsns.2016.06.006
http://dx.doi.org/10.1016/j.biosystems.2017.07.010
http://dx.doi.org/10.1016/j.advengsoft.2017.03.014
http://dx.doi.org/10.1016/j.advengsoft.2017.05.014
http://dx.doi.org/10.1016/j.advengsoft.2017.01.004
http://dx.doi.org/10.1016/j.asoc.2018.07.033
http://dx.doi.org/10.1007/s00500-018-3102-4
http://dx.doi.org/10.1504/IJBIC.2018.093328


Sensors 2022, 22, 1894 37 of 37

149. Wei, Z.; Huang, C.; Wang, X.; Han, T.; Li, Y. Nuclear reaction optimization: A novel and powerful physics-based algorithm for
global optimization. IEEE Access 2019, 7, 66084–66109. [CrossRef]

150. Moosavi, S.H.S.; Bardsiri, V.K. Poor and rich optimization algorithm: A new human-based and multi populations algorithm. Eng.
Appl. Artif. Intell. 2019, 86, 165–181. [CrossRef]

151. Abdullah, J.M.; Ahmed, T. Fitness dependent optimizer: Inspired by the bee swarming reproductive process. IEEE Access 2019,
7, 43473–43486. [CrossRef]

152. Hayyolalam, V.; Kazem, A.A.P. Black widow optimization algorithm: A novel meta-heuristic approach for solving engineering
optimization problems. Eng. Appl. Artif. Intell. 2020, 87, 103249. [CrossRef]

153. Yapici, H.; Cetinkaya, N. A new meta-heuristic optimizer: Pathfinder algorithm. Appl. Soft Comput. 2019, 78, 545–568. [CrossRef]
154. Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based

Syst. 2020, 191, 105190. [CrossRef]
155. Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering

problems. Knowl.-Based Syst. 2019, 165, 169–196. [CrossRef]
156. Kaveh, A.; Khanzadi, M.; Moghaddam, M.R. Billiards-inspired optimization algorithm; A new meta-heuristic method. Structures

2020, 27, 1722–1739. [CrossRef]
157. Kaveh, A.; Eslamlou, A.D. Water strider algorithm: A new metaheuristic and applications. Structures 2020, 25, 520–541. [CrossRef]
158. Fouad, M.M.; El-Desouky, A.I.; Al-Hajj, R.; El-Kenawy, E.S.M. Dynamic group-based cooperative optimization algorithm. IEEE

Access 2020, 8, 148378–148403. [CrossRef]
159. Kaur, S.; Awasthi, L.K.; Sangal, A.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm

for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [CrossRef]
160. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine predators algorithm: A nature-inspired Metaheuristic.

Expert Syst. Appl. 2020, 152, 113377. [CrossRef]
161. Covic, N.; Lacevic, B. Wingsuit Flying Search—A Novel Global Optimization Algorithm. IEEE Access 2020, 8, 53883–53900. [CrossRef]
162. Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new

metaheuristic algorithm for solving optimization problems. Appl. Intell. 2020, 51, 1531–1551. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2019.2918406
http://dx.doi.org/10.1016/j.engappai.2019.08.025
http://dx.doi.org/10.1109/ACCESS.2019.2907012
http://dx.doi.org/10.1016/j.engappai.2019.103249
http://dx.doi.org/10.1016/j.asoc.2019.03.012
http://dx.doi.org/10.1016/j.knosys.2019.105190
http://dx.doi.org/10.1016/j.knosys.2018.11.024
http://dx.doi.org/10.1016/j.istruc.2020.07.058
http://dx.doi.org/10.1016/j.istruc.2020.03.033
http://dx.doi.org/10.1109/ACCESS.2020.3015892
http://dx.doi.org/10.1016/j.engappai.2020.103541
http://dx.doi.org/10.1016/j.eswa.2020.113377
http://dx.doi.org/10.1109/ACCESS.2020.2981196
http://dx.doi.org/10.1007/s10489-020-01893-z

	Introduction
	Methodology
	Theoretical Background
	Energy-Based Acoustic Source Localization
	Swarm Intelligence
	Cuckoo Search
	Grey Wolf Optimizer
	Enhanced Elephant Herding Optimization
	Moth–Flame Optimization
	Whale Optimization Algorithm
	Salp Swarm Algorithm
	Tree Growth Algorithm
	Coyote Optimization Algorithm
	Supply–Demand Optimization
	Momentum Search Algorithm
	Summary

	Population Initialization

	Testing Procedure and Experimental Setup
	Results and Discussion
	Algorithm Comparison
	Smart/Intelligent vs. Random Initialization
	Time Efficiency

	Conclusions
	Definitions and Notation
	Swarm Algorithm Listing
	References

