
����������
�������

Citation: Liao, S.-w.; Hsu, C.-H.; Lin,

J.-W.; Wu, Y.-T.; Leu, F.-Y. A Deep

Learning-Based Chinese Semantic

Parser for the Almond Virtual

Assistant. Sensors 2022, 22, 1891.

https://doi.org/10.3390/s22051891

Academic Editor: Carina

Soledad González González

Received: 31 December 2021

Accepted: 25 February 2022

Published: 28 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Deep Learning-Based Chinese Semantic Parser for the
Almond Virtual Assistant
Shih-wei Liao 1, Cheng-Han Hsu 1, Jeng-Wei Lin 2,* , Yi-Ting Wu 2 and Fang-Yie Leu 3,*

1 Department of Computer Science and Information Engineering, National Taiwan University,
Taipei 10617, Taiwan; liao@csie.ntu.edu.tw (S.-w.L.); gogameboy11@gmail.com (C.-H.H.)

2 Department of Information Management, Tunghai University, Taichung 407224, Taiwan;
a0927313523@gmail.com

3 Department of Computer Science, Tunghai University, Taichung 407224, Taiwan
* Correspondence: jwlin@thu.edu.tw (J.-W.L.); leufy@thu.edu.tw (F.-Y.L.);

Tel.: +886-4-2359-0121 (ext. 35906) (J.-W.L.)

Abstract: Almond is an extendible open-source virtual assistant designed to help people access Inter-
net services and IoT (Internet of Things) devices. Both are referred to as skills here. Service providers
can easily enable their devices for Almond by defining proper APIs (Application Programming
Interfaces) for ThingTalk in Thingpedia. ThingTalk is a virtual assistant programming language, and
Thingpedia is an application encyclopedia. Almond uses a large neural network to translate user
commands in natural language into ThingTalk programs. To obtain enough data for the training of
the neural network, Genie was developed to synthesize pairs of user commands and corresponding
ThingTalk programs based on a natural language template approach. In this work, we extended
Genie to support Chinese. For 107 devices and 261 functions registered in Thingpedia, 649 Chinese
primitive templates and 292 Chinese construct templates were analyzed and developed. Two models,
seq2seq (sequence-to-sequence) and MQAN (multiple question answer network), were trained to
translate user commands in Chinese into ThingTalk programs. Both models were evaluated, and
the experiment results showed that MQAN outperformed seq2seq. The exact match, BLEU, and F1
token accuracy of MQAN were 0.7, 0.82, and 0.88, respectively. As a result, users could use Chinese
in Almond to access Internet services and IoT devices registered in Thingpedia.

Keywords: semantic parsing; Genie; Chinese; deep learning; multiple question answer network;
ThingTalk; virtual assistant

1. Introduction

Internet services are becoming more and more mature, and fast evolving ICT (In-
formation and Communication Technologies) consistently enhance our user experiences.
Today, people can use smartphones to not only access various Internet services, such as
news websites and social networks, but also to control smart appliances in the home, such
as air conditioners, TVs, refrigerators, and so on. It was estimated that the number of
online IoT (Internet of Things) devices was more than 27 billion in 2016 [1]. With help from
virtual assistants, people can use natural language to access Internet services and control
IoT devices. By simply saying a command to a smartphone, such as “get a picture of cat,”
people expect that virtual assistants will understand the command, process the request,
and finally respond to the user.

Virtual assistants have been researched and developed in many domains, such as
education [2], health care [3], entertainment [4,5], etc. At the time this paper was written,
most virtual assistants were closed, i.e., designed and developed for only a specific use case,
and thus not extendable by others. Dixon et al. proposed HomeOS, an operating system
for smart devices in the home, and a set of interfaces for them [6]. Gordon and Breazeal
proposed a car entertainment assistant [4]. It aimed to help drivers interact with their

Sensors 2022, 22, 1891. https://doi.org/10.3390/s22051891 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22051891
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8599-5083
https://orcid.org/0000-0002-7746-7800
https://doi.org/10.3390/s22051891
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22051891?type=check_update&version=1

Sensors 2022, 22, 1891 2 of 12

children in the back seats and prevent them from distraction. It was designed specifically for
children’s entertainment in a car. Several giant companies have developed IoT assistants for
their own smart devices and cloud services, such as Amazon Alexa [7,8], Apple Homekit [9],
OpenWeave (Google Weave previously) [10], and Samsung SmartThings [11]. Usually,
users have to use multiple virtual assistants to access different services. It is not uncommon
that virtual assistants have compatible issues. Amazon Alexa, based on the Alexa Meaning
Representation Language (AMRL) [8], can integrate third-party devices. It works with
an ontology of about 20 manually tuned domains. This is very labor-intensive. It is not a
simple task for ordinary users to extend the ability of these virtual assistants.

Almond [12–14] is an open-source virtual assistant that takes several important issues
into consideration, such as privacy, extensibility, and programmability. It can execute codes
written in ThingTalk, a high-level declarative domain-specific programming language
designed to access Internet services and IoT devices that are both referred to as skills in
this article. It uses a semantic parser to translate user commands in natural language into
ThingTalk programs. The parser is a very large artificial neural network (ANN). To train
such a network, a large amount of user commands and corresponding ThingTalk programs
are needed. Genie [14] has been proposed to synthesize many possible user commands.
Genie provides a template language for ThingTalk. From a small set of Primitive templates
and Construct templates, Genie can generate an exponential number of possible user
commands so that virtual assistant developers can train the semantic parser.

Our Contribution

The original Genie only supports user commands in English. This puts a restriction
on non-English users. In this research, we extended Genie to support Chinese. Our
contributions are as follows:

• The building of a Chinese dataset for all devices registered in Thingpedia;
• The design of Primitive and Construct templates of Chinese user commands for

Genie;
• The building of a machine learning model that can convert Chinese user commands

into ThingTalk programs.

To the best of our knowledge, this is the first Chinese compatible semantic parser
based on Genie that enables user commands in Chinese to be accepted by Almond.

In the following sections, we introduce Almond and Genie in Section 2. We explain
the details of Chinese Primitive and Construct templates in Section 3, and the machine
learning models we tested are explained in Section 4. The experiment results are presented
in Section 5. The conclusions and future works are given in Section 6.

2. Related Works
2.1. Almond, Thingpedia, and ThingTalk

Almond [12–14] is an open-source virtual assistant. It addresses issues such as Privacy,
Extensibility, and Programmability. Almond stores all personal information and private data
locally, such as user accounts and passwords for various Internet services and IoT devices.
Almond can execute user commands represented as ThingTalk programs. ThingTalk is
a high-level declarative domain-specific language designed to access Internet services
and IoT devices, which are both referred to as skills in this article, via their Application
Programming Interface (API) for ThingTalk. These APIs are registered in Thingpedia [15]
by skill developers. Thingpedia is a skills library, or an application encyclopedia. When
this article was written, it was an open API repository of 128 skills and 270 functions. It
creates an interoperable web of skills. Service providers can add their own skills. They can
either use built-in APIs to customize new skills, or upload packages of ThingTalk codes for
their APIs registered in Thingpedia.

Figure 1 shows two class examples in Thingpedia. To be concise, we have omitted
the grammar details for classes in Thingpedia. Classes in Thingpedia have two kinds
of functions: query and action. A query is a read-only operation. It returns results to

Sensors 2022, 22, 1891 3 of 12

users with no side effects. Some queries are monitorable, which means the results can be
monitored for changes. An action does not return results to users. It will change things,
such as modifying users’ data. Data are passed into and out of the functions through named
parameters, which can be required or optional.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 12

skills. They can either use built-in APIs to customize new skills, or upload packages of
ThingTalk codes for their APIs registered in Thingpedia.

Figure 1 shows two class examples in Thingpedia. To be concise, we have omitted
the grammar details for classes in Thingpedia. Classes in Thingpedia have two kinds of
functions: query and action. A query is a read-only operation. It returns results to users
with no side effects. Some queries are monitorable, which means the results can be moni-
tored for changes. An action does not return results to users. It will change things, such
as modifying users’ data. Data are passed into and out of the functions through named
parameters, which can be required or optional.

Figure 1. Snapshots of class examples in Thingpedia.

Users can communicate with Almond in natural language. Almond uses a semantic
parser to translate user commands in natural language into ThingTalk programs. Table 1
shows some command examples in English and their corresponding ThingTalk program.
Again, we have omitted ThingTalk grammar details to be concise. ThingTalk is data fo-
cused and not control-flow focused. It has a single construct:

s [⇒ q]? ⇒ a; (1)

There are three types of clauses: stream (s), query (q), and action (a) clauses. The
stream clause (s) determines when the rest of the program runs. It specifies the evaluation
of the program as a continuous stream of events. It can be immediate or at a specified
time, it can be a periodic timer, such as “once a week,” “two times per hours,” etc., or it
can monitor the result of a monitorable query function defined in Thingpedia for changes.
The optional query clause (q) specifies what data should be retrieved when the events
occur. Query results can be optionally filtered with a boolean predicate. They can be used
as an input parameter in a subsequent function invocation. The action clause (a) specifies

Figure 1. Snapshots of class examples in Thingpedia.

Users can communicate with Almond in natural language. Almond uses a semantic
parser to translate user commands in natural language into ThingTalk programs. Table 1
shows some command examples in English and their corresponding ThingTalk program.
Again, we have omitted ThingTalk grammar details to be concise. ThingTalk is data focused
and not control-flow focused. It has a single construct:

s [⇒ q]? ⇒ a; (1)

There are three types of clauses: stream (s), query (q), and action (a) clauses. The
stream clause (s) determines when the rest of the program runs. It specifies the evaluation
of the program as a continuous stream of events. It can be immediate or at a specified
time, it can be a periodic timer, such as “once a week,” “two times per hours,” etc., or it
can monitor the result of a monitorable query function defined in Thingpedia for changes.
The optional query clause (q) specifies what data should be retrieved when the events
occur. Query results can be optionally filtered with a boolean predicate. They can be
used as an input parameter in a subsequent function invocation. The action clause (a)
specifies what the program should do. It may show the data to the user or invoke an action
function defined in Thingpedia. Table 2 shows some examples of user commands and
their corresponding ThingTalk clause in relation to the three types, where placeholders for
parameters are prefixed with $.

Sensors 2022, 22, 1891 4 of 12

Table 1. User command examples in English and their corresponding ThingTalk program.

User Command ThingTalk Program

Call the ambulance now => @org.thingpedia.builtin.thingengine.phone.
call_emergency()

Turn off the heater now => @thermostat.set_hvac_mode
param:mode:Enum(heat, cool, heat_cool, off) = enum:off

Turn on the air conditioner now => @thermostat.set_hvac_mode
param:mode:Enum(heat, cool, heat_cool, off) = enum:cool

Post a picture on Facebook now => @com.facebook.post_picture()

Notify me when my location changes monitor (@org.thingpedia.builtin.thingengine.phone.
get_gps()) => notify

Notify me when I receive a text monitor (@org.thingpedia.builtin.thingengine.phone.
sms()) => notify

Table 2. ThingTalk clause examples.

Fragment of User Command ThingTalk
Clause Type ThingTalk Clause

texts I received today
sms I received today
sms from today

query (@org.thingpedia.builtin.thingengine.
phone.sms()), date >= start_of(day)

when I receive a sms from ${p_sender}
when I get at text from ${p_sender}
when ${p_sender} sends me a text
when ${p_sender} texts me
when ${p_sender} sms me
when ${p_sender} sends me an sms]

stream
monitor (
(@org.thingpedia.builtin.thingengine.
phone.sms()), sender == p_sender)

call ${p_number}
make a call to ${p_number}
dial ${p_number}

action @org.thingpedia.builtin.thingengine.
phone.call(number = p_number)

turn the heating off
turn off the heater
turn off the ac
switch off the heater
switch the aircon off

action @thermostat.set_hvac_mode
(mode = enum(off))

set the temperature on my thermostat
to ${p_value}
set my thermostat to ${p_value}
set the temperature to ${p_value} on
my thermostat

action @thermostat.set_target_temperature
(value = p_value)

2.2. Semantic Parsing and Genie

Almond uses a semantic parser to translate user commands in natural language
into ThingTalk programs. Specifically, semantic parsing here means the translation from
natural language to a normal form, i.e., a machine understandable representation [16–20].
Zhong et al. designed a model for converting a natural language into a structure query
language (SQL) [21]. They used reinforcement learning to train a sequence-to-sequence
(seq2seq) model [22] consisting of a two-layer, bidirectional Long Short-Term Memory
(LSTM) network [23]. We note that some SQL queries have no canonical forms, and the
query equivalence is undecidable [24]. On the other hand, ThingTalk is designed to have a
canonical form. User commands of the same semantic should be converted to the same
ThingTalk program.

The semantic parser used by Almond is a very large artificial neural network (ANN).
To train a large network, a huge amount of data are required. For example, for a better
object classification, large image datasets such as ImageNet [25] have been built for the
construction of machine learning models. It usually takes a lot of resources to collect
and annotate such large datasets. The development of virtual assistants requires complex
and expensive manual annotations by experts to gather enough training data as there are

Sensors 2022, 22, 1891 5 of 12

many different utterances of the same semantic. [26,27]. For an open-source project such as
Almond, it is not easy to obtain training data at such a scale.

To help virtual assistant developers acquire enough training data, Genie [14] was
designed to synthesize a large amount of user commands in natural languages for large
machine learning model training. Figure 2 shows the working flow of Genie. Genie takes
advantage of natural language compositionality: an exponential number of possible user
commands can be generated from a limited set of primitives. Based on the ThingTalk
construct, Genie provides a template language so that users can generate synthetic user
commands. It factors user command synthesis into primitive templates for skills, and
construct templates for a natural language.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 12

a canonical form. User commands of the same semantic should be converted to the same
ThingTalk program.

The semantic parser used by Almond is a very large artificial neural network (ANN).
To train a large network, a huge amount of data are required. For example, for a better
object classification, large image datasets such as ImageNet [25] have been built for the
construction of machine learning models. It usually takes a lot of resources to collect and
annotate such large datasets. The development of virtual assistants requires complex and
expensive manual annotations by experts to gather enough training data as there are
many different utterances of the same semantic. [26,27]. For an open-source project such
as Almond, it is not easy to obtain training data at such a scale.

To help virtual assistant developers acquire enough training data, Genie [14] was
designed to synthesize a large amount of user commands in natural languages for large
machine learning model training. Figure 2 shows the working flow of Genie. Genie takes
advantage of natural language compositionality: an exponential number of possible user
commands can be generated from a limited set of primitives. Based on the ThingTalk con-
struct, Genie provides a template language so that users can generate synthetic user com-
mands. It factors user command synthesis into primitive templates for skills, and con-
struct templates for a natural language.

Figure 2. GENIE working flow.

Skill designers should provide of a list of primitive templates. Each primitive tem-
plate consists of the code of a skill, an utterance describing it, and its grammar category.
The syntax of primitive templates follows, where utterance u, belonging to category cat,
maps to a ThingTalk clause, i.e., stream (s), query (q), or action (a). The utterance u may
include placeholders, each of which is prefixed with $ and used as a parameter pn of type
t in ThingTalk code.

cat:= u → λ([pn: t]∗) → [s|q|a] (2)

Table 3 shows some examples of primitive templates. VP, NP, and WP refer to three
grammar categories: verb phrase, noun phrase, and when phrase, respectively.

Table 3. Utterances in English and their ThingTalk clause examples.

Utterance Cat ThingTalk Clause
My photos on Facebook NP @com.facebook.list_photos()
My posts on Facebook NP @com.facebook.list_posts()
When I post on Facebook WP monitor @com.facebook.list_posts()
Post a picture on Facebook VP @com.facebook.post_picture()
Post $x on Facebook VP @con.facebook.post($x)

Skills designers should also provide a set of construct templates, and to some extent
rules of sentences, to map natural language compositional constructs to formal language
operators. A construct template has the following form:

lhs:= [literal|vn: rhs]+ → sf (3)

Figure 2. GENIE working flow.

Skill designers should provide of a list of primitive templates. Each primitive tem-
plate consists of the code of a skill, an utterance describing it, and its grammar category.
The syntax of primitive templates follows, where utterance u, belonging to category cat,
maps to a ThingTalk clause, i.e., stream (s), query (q), or action (a). The utterance u may
include placeholders, each of which is prefixed with $ and used as a parameter pn of type t
in ThingTalk code.

cat:= u→ λ([pn: t]∗)→ [s|q|a] (2)

Table 3 shows some examples of primitive templates. VP, NP, and WP refer to three
grammar categories: verb phrase, noun phrase, and when phrase, respectively.

Table 3. Utterances in English and their ThingTalk clause examples.

Utterance Cat ThingTalk Clause
My photos on Facebook NP @com.facebook.list_photos()
My posts on Facebook NP @com.facebook.list_posts()

When I post on Facebook WP monitor
@com.facebook.list_posts()

Post a picture on Facebook VP @com.facebook.post_picture()
Post $x on Facebook VP @con.facebook.post($x)

Skills designers should also provide a set of construct templates, and to some extent
rules of sentences, to map natural language compositional constructs to formal language
operators. A construct template has the following form:

lhs:= [literal|vn: rhs]+→ sf (3)

It specifies that the derivation of a non-terminal category lhs can be constructed by
combining the literals and variables vn of non-terminal category rhs, and then the semantic
function sf is applied to compute the formal language representation. For example, the
following construct templates describe a When-Do user command, “when something
happens, do something.”

COMMAND:= s: WP ‘,’ a: VP→ return s⇒ a;
COMMAND:= a: VP s: WP→ return s⇒ a;

Sensors 2022, 22, 1891 6 of 12

When the following primitive templates are applied,

WP:= ‘when I post on facebook’→monitor (@com.facebook.list_posts())
VP:= ‘notify me’→ notify

Genie would generate the following two When-Do commands,
“when I post on facebook, notify me.”
“notify me when I post on facebook.”
Both map to the following ThingTalk program:

monitor (@com.facebook.list_posts())⇒ notify

Please refer to Genie for more detail.

3. Chinese Compatible Genie

For Chinese users, Almond needs a semantic parser that can translate user commands
in Chinese into ThingTalk programs. To train such a parser, a large amount of training data
are required, i.e., pairs of user commands in Chinese and their corresponding ThingTalk
programs. However, original Genie is designed for English.

To extend Genie for Chinese, based on the template approach described above, we
carefully built primitive templates in Chinese for skills registered in Thingpedia, and
construct templates for Chinese.

User command examples in English for skills registered in Thingpedia are first trans-
lated into Chinese and then segmented carefully into atomic elements in terms of their
semantics. Proper sets of utterances of every atomic element are made up. In primitive
template design, it is important to choose a suitable category so that any utterance can
naturally be used as a component in a user command, as well as have a corresponding
ThingTalk clause. In general, noun phrases (NP) are chosen for the query clause, verb
phrases (VP) for the action clause, and when phrases (WP) for the stream clause. Table 4
shows some examples of primitive templates in Chinese designed for Genie toolkit. The
utterance in each line is a translation from the corresponding utterance in Table 3.

We built a Chinese primitive template dataset for all 107 skills devices and 261 func-
tions registered in Thingpedia. There were 649 Chinese primitive templates in the dataset.

Table 4. Utterances in Chinese and their ThingTalk clause examples.

Utterance * Cat ThingTalk Clause
我臉書上的照片 NP @com.facebook.list_photos()
我的臉書貼文 NP @com.facebook.list_posts()
當我貼文的時候 WP monitor @com.facebook.list_posts()
貼圖到臉書上 VP @com.facebook.post_picture()
po $x到臉書 VP @con.facebook.post($x)

* The utterances are the translation of Table 3. 臉書 refers to Facebook.

Once the primitive templates have been built, the grammar and structures for possible
user commands in Chinese for skills registered in Thingpedia are further analyzed, similar
to the When-Do construct template examples in English as shown above.

There are four types of construct templates, which are aggregation, timer, filters,
constants, and parameters passing.

Construct templates for aggregation operations, such as the sum, maximum, mini-
mum, and average of the data, correspond to the specific calculation of the data retrieved
from query commands. It is similar to the concept of operations on tables in a SQL database.

There are monitor, timer, and edge monitors for the stream clause in ThingTalk, such
as “當 $x更新時 (when $x is updated)” for the monitor, “每星期一次 (twice a week)” for
the timer, and “當 $a超過 $b (when $a is larger than $b)” for the edge monitor. For example,

Sensors 2022, 22, 1891 7 of 12

for an utterance such as “每天t點 (at t o’clock everyday),” the following timer construct
templates are:

每天 t: constant_time點 => Timer (t)

Users might use only a partial amount of data retrieved from a query clause. For
example, users might want a list of emails that are labelled with a star. ThingTalk supports
this filter in many different forms. For example, for an utterance such as “若p有x (if p has
x)” or “若p包含x (if p contains x),” the following construct templates are:

p: the_out_param_Array_Any (“有” | “包含”) x: constant_Any => makeFilter (p, “contains”, x)

Taking this case as an example “當我收到信時 (when I got a letter), 回覆給寄件者
(reply to the sender).” This sentence can be segmented into two parts. The first part can be
mapped to a ThingTalk query clause, monitor (@com.gmail.inbox()). The second part can be
mapped to a ThingTalk action clause, @com.gmail.reply (email_id = p_email_id). As a result,
the following ThingTalk program is:

monitor (@com.gmail.inbox()) => (p_email_id: EmailAddress) => @com.gmail.reply (email_id = p_email_id)

For all skills registered in Thingpedia, 292 construct templates in total were designed
for Chinese.

4. Chinese Semantic Parser

To enable Chinese in Almond, two machine learning models were considered to be
the semantic parser. One was a sequence-to-sequence (seq2seq) model [22], and the other
was a Multiple Question Answering Network (MQAN) [28]. The sequence-to-sequence
model is a state-of-the-art method, while MQAN has shown its outstanding performance
in many natural language processing tasks.

4.1. Sequence to Sequence

The Deep Neural Network (DNN) is an extremely powerful machine learning model
and can achieves many amazing performances in relation to difficult tasks such as object
recognition [29,30] and speech recognition [31]. However, many DNNs can only be applied
to problems whose inputs and outputs are of a fixed dimension.

Seq2seq [22] was initially designed for machine translation. It turns one sequence into
another sequence. The main structure of the seq2seq model is based on LSTM architecture,
which maps a variable length input sequence into a fixed length, fixed-dimension vector
representation. It has been shown that LSTM can successfully learn long range temporal
dependencies from data, i.e., the context in the utterance. In seq2seq, there one encoder
maps each item into a corresponding vector, and one decoder maps the vector into an
output item in reverse. Seq2seq has been applied successfully in language translation, text
summarization, and even advanced mathematics, such as in the symbolic integration and
resolution of differential equations [32].

In this work, we also applied a copy mechanism [33], which is based on attention
mechanism [34,35], to help pass the parameters extracted from user commands in Chinese
to the ThingTalk program.

4.2. Multiple Question Answer Network

In Natural Language Decathlon (decaNLP), the use of MQAN (as shown in Figure 3)
is generalized to solve ten different natural language processing tasks [28]. All tasks are
framed as a question answering problem, with a question, a context, and an answer. For
Almond, the translation from the user command into the ThingTalk program performed by
a semantic parser can be converted to a question answering.

Sensors 2022, 22, 1891 8 of 12

Sensors 2022, 22, x FOR PEER REVIEW 8 of 12

4.2. Multiple Question Answer Network
In Natural Language Decathlon (decaNLP), the use of MQAN (as shown in Figure 3)

is generalized to solve ten different natural language processing tasks [28]. All tasks are
framed as a question answering problem, with a question, a context, and an answer. For
Almond, the translation from the user command into the ThingTalk program performed
by a semantic parser can be converted to a question answering.

Self-
Attention

Embedding

Embedding

BiLSTM
Encoding

Question
Attention

Context
Attention

Recurrent
Network

LSTM Decoding

Self-Attention

Embedding

λ γ Final output
distribution

Context

Question Alignment

Compression

Coattention
Final

BiLSTM
Encoding

Answer
Figure 3. MQAN structure.

MQAN utilizes the attention mechanism in its structure, which helps the model focus
on those corresponding parts in the original natural language command. This mechanism
helps the semantic parser extract the important information from the user command and
passes it to the target ThingTalk program. MQAN makes use of a novel dual co-attention
and multi-pointer-generator decoder.

In MQAN, both the encoder and decoder use a deep stack of recurrent, attentive, and
feed forward layers to learn the input representation. In the encoder, the question and
context are first embedded by concatenating word and character embeddings, then they
are fed into the encoder to construct the context and question representation. The decoder
uses a mixed pointer-generator architecture to predict the target program. One token is
generated each time.

Some question answering models assume that the answer can be copied from the
context [36,37]. However, this is not always the case. Most of the tokens in the ThingTalk
program cannot be chosen from the input natural language sentence. MQAN allows itself
to select answer tokens from another word dictionary. The model can choose to generate
next answer tokens from the embedded question, the context, or the word dictionary con-
taining words that are not in the question or context.

5. Experiments
In this section, we present the results of the experiment.
For the 107 skills registered in Thingpedia, including IoT devices and web services,

649 Chinese primitive templates were built, and 292 construct templates for Chinese were
designed.

5.1. Evaluation of Synthetic Sentences
We randomly chose 300 sentences which were synthetized by the Chinese-compati-

ble Genie for web services such as Gmail, Spotify, Twitter, Facebook, Slack, and Imgur,
and IoT devices such as a cell phone, television, bulb, blue-tooth speaker, and Fitbit. Those
sentences were examined and paraphrased by experts.

There were 649 different ThingTalk programs and 2025 corresponding Chinese sen-
tences in our dataset. We generated 2,301,938 synthetic sentences and corresponding
ThingTalk programs using our primitive and construct templates for Chinese.

Figure 3. MQAN structure.

MQAN utilizes the attention mechanism in its structure, which helps the model focus
on those corresponding parts in the original natural language command. This mechanism
helps the semantic parser extract the important information from the user command and
passes it to the target ThingTalk program. MQAN makes use of a novel dual co-attention
and multi-pointer-generator decoder.

In MQAN, both the encoder and decoder use a deep stack of recurrent, attentive, and
feed forward layers to learn the input representation. In the encoder, the question and
context are first embedded by concatenating word and character embeddings, then they
are fed into the encoder to construct the context and question representation. The decoder
uses a mixed pointer-generator architecture to predict the target program. One token is
generated each time.

Some question answering models assume that the answer can be copied from the
context [36,37]. However, this is not always the case. Most of the tokens in the ThingTalk
program cannot be chosen from the input natural language sentence. MQAN allows itself to
select answer tokens from another word dictionary. The model can choose to generate next
answer tokens from the embedded question, the context, or the word dictionary containing
words that are not in the question or context.

5. Experiments

In this section, we present the results of the experiment.
For the 107 skills registered in Thingpedia, including IoT devices and web services,

649 Chinese primitive templates were built, and 292 construct templates for Chinese were
designed.

5.1. Evaluation of Synthetic Sentences

We randomly chose 300 sentences which were synthetized by the Chinese-compatible
Genie for web services such as Gmail, Spotify, Twitter, Facebook, Slack, and Imgur, and
IoT devices such as a cell phone, television, bulb, blue-tooth speaker, and Fitbit. Those
sentences were examined and paraphrased by experts.

There were 649 different ThingTalk programs and 2025 corresponding Chinese sen-
tences in our dataset. We generated 2,301,938 synthetic sentences and corresponding
ThingTalk programs using our primitive and construct templates for Chinese.

5.2. Sequenceto-Sequence Model

The sequence-to-sequence model was implemented using Tensorflow [38] and the
Tensor2Tensor library [39]. We used the Stanford CoreNLP library [40] for preprocessing
and Chinese word segmentation and name entity recognition. The words in the input
Chinese utterances are embedded using fastText [41].

Sensors 2022, 22, 1891 9 of 12

The structure of our model was a 2-layer LSTM with a hidden size of 128. We used
dropout layers [42] between the two LSTM layers and an Adam [43] optimizer to update
the model’s parameters.

We evaluated the performance of our models in three metrics, which were exact match,
BLEU [44], and F1 token accuracy.

Exact match considers the result to be correct only if the output is an executable pro-
gram with correct functions, parameters, and filters corresponding to the natural language
command inputs. BLEU is a popular evaluation metric in many natural language process-
ing tasks. We used it to evaluate the token level accuracy. The F1 token score considers
both the precision (P) and recall (R) of the test to compute the score. P is the number of
correct output tokens divided by the number of all output tokens. R is the number of
correct output tokens divided by the number of all correct output tokens, which were the
target ThingTalk programs in this case. The results of our sequence-to-sequence model can
be found in Table 5.

Table 5. Experiment results of the Seq2seq model.

Exact Match BLEU F1 Token Accuracy

Seq2seq 0.44 0.73 0.83
Seq2seq + fastText 0.46 0.75 0.85

5.3. Model

The MQAN model, implemented in PyTorch [45], was provided by decaNLP [28].
It is an open-source library. Again, we used the Stanford CoreNLP library [40] for pre-
processing and Chinese word segmentation and name entity recognition. The words in
the input Chinese utterances were embedded using fastText [41]. Words that do not have
corresponding embeddings were assigned as zeros vectors. The 100-dimensional character
n-gram embeddings were then concatenated to the fastText embeddings.

MQAN uses two self-attention and multi-head decoder attention layers. We used the
transformer for our attention layers combined with a dropout layer on inputs to LSTM
layers, following the co-attention and decoder layers. The model was trained using an
Adam optimizer, with token-level cross-entropy loss.

We evaluated the performance of this model using the same three metrics, which were
exact match, BLEU, and F1 token accuracy. The results can be found in Table 6.

Table 6. Experiment results of the MQAN model.

Exact Match BLEU F1 Token Accuracy

MQAN 0.70 0.82 0.86
MQAN+fastText 0.70 0.82 0.88

5.4. Discussion

MQAN performed better than the sequence-to-sequence model. The structure was
better at capturing the semantics in the natural sentence. We checked the synthetic sentences
and found some reasons that could harm the performance of the semantic parser.

Although the sentences generated followed the rule we designed according to our
construct templates, there were some sentences that did not make sense. For example, “get
me a cup of latte when I receive a mail.” This sentence followed the when-do rule defined
in our construct templates, but we do not say this kind of sentence in real life. There were
quite a few of these sentences in the synthetic sentences.

Before the sentences were fed into the semantic parser, we needed to first perform
word segmentation. This is different from English because we do not have spaces between
words in Chinese. The segmentation result could lead to some problems because sentences
that have the same meaning with different nouns may cause the segmentation result of

Sensors 2022, 22, 1891 10 of 12

other words that are the same in the sentences to be different. In such a case, the model
would treat those words as different tokens, which could lead to a bad performance. For
example, “給我我的信 (give me my letters)” and “給我我的信件 (give me my letters)” have
the same meaning; however, the word segmentations “給我我的信”, “給我我的信件”
are different. We removed those sentences that did not make sense in the training dataset
and added more paraphrase sentences to enhance our model.

6. Conclusions

We extended Genie for Chinese, made the generating data process and training model
available for Chinese users, and made the Almond virtual assistant available for Chinese
users. We also built the first Chinese primitive templates for Genie and the first Genie
semantic parser for Chinese, which is currently the best model. All of our codes have
been merged into the original Genie project, which can be found in the Genie Github page.
This work was an open-source project, and Chinese users could develop their devices and
service based on our works. Our MQAN model achieved an exact match accuracy of 0.70,
which is currently the best model.

Crowd-sourcing paraphrasing is important for the improvement of the Genie semantic
parser. To make our Chinese semantic parser better, we need more training data from
different distributions, including paraphrasing synthetic sentences and collecting real user
cases. We believe by including paraphrasing sentences and users’ data, the performance of
our Chinese semantic parser can be improved.

In addition to MQAN, many new neural network architectures have been proposed in
recent years. For example, BERT [46] and GPT-3 [47] have performed very well in many
significant natural language processing problems. We are currently working on the use of
these new architectures for semantic parsing and ThingTalk code generation.

Today, it is easy to see an IoT scenario comprising several collaborative IoT networks;
meanwhile each IoT network has also evolved in many other IoT scenarios. A new frame-
work, MIoT (Multiple IoT) [48,49], has been proposed to treat these kinds of scenarios using
social network analysis approaches. Social IoT (SIoT) [50] is an excellent attempt in this
direction to explore the growing complexity in the collaboration of multiple IoT networks.
Currently, we are also considering the semantics of information exchange between multiple
IoT networks. Construct templates across multiple skills and the corresponding ThingTalk
programs are under investigation.

Author Contributions: Conceptualization, S.-w.L.; methodology, J.-W.L.; software, C.-H.H. and
Y.-T.W.; validation, F.-Y.L.; formal analysis, J.-W.L.; investigation, F.-Y.L.; resources, S.-w.L.; data
curation, C.-H.H. and Y.-T.W.; writing—original draft preparation, C.-H.H.; writing—review and
editing, J.-W.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not acceptable.

Acknowledgments: This paper was partially supported by MOST Taiwan under grants MOST
110-2221-E-029-010-.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Statista. Internet of Things (IoT) Connected Devices Installed Base Worldwide from 2015 to 2025 (in Billions). Available online:

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/ (accessed on 19 February 2022).
2. Harvey, P.H.; Currie, E.; Daryanani, P.; Augusto, J.C. Enhancing student support with a virtual assistant. In Proceedings of the

Second International Conference on E-Learning, E-Education, and Online Training, Novedrate, Italy, 16–18 September 2015.
3. Kenny, P.; Parsons, T.; Gratch, J.; Rizzo, A. Virtual humans for assisted health care. In Proceedings of the 1st International

Conference on PErvasive Technologies Related to Assistive Environments, Athens, Greece, 16–18 July 2008.

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

Sensors 2022, 22, 1891 11 of 12

4. Gordon, M.; Breazeal, C. Designing a virtual assistant for in-car child entertainment. In Proceedings of the 14th International
Conference on Interaction Design and Children, Boston, MA, USA, 21–24 June 2015.

5. Os, M.; Saddler, H.; Napolitano, L.; Russel, J.; Lister, P.; Dasari, R. Intelligent Automated Assistant for TV User Interactions. U.S.
Patent No. US9338493B2, 10 May 2016. Available online: https://patents.google.com/patent/US9338493B2/en (accessed on 19
February 2022).

6. Dixon, C.; Mahajan, R.; Agarwal, S.; Brush, A.; Lee, B.; Saroiu, S.; Bahl, P. An operating system for the home. In Proceedings of
the 9th USENIX Symposium on Networked Systems Design and Implementation, San Jose, CA, USA, 25–27 April 2012.

7. Amazon Alexa Voice AI. Available online: https://developer.amazon.com/alexa (accessed on 19 February 2022).
8. Goyal, A.; Metallinou, A.; Matsoukas, S. Fast and Scalable Expansion of Natural Language Understanding Functionality for

Intelligent Agents. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, New Orleans, LA, USA, 1–6 June 2018.

9. HomeKit Overview. Available online: https://developer.apple.com/homekit/ (accessed on 19 February 2022).
10. OpenWeave. Available online: https://openweave.io/ (accessed on 19 February 2022).
11. SmartThings Developers. Available online: https://smartthings.developer.samsung.com/ (accessed on 19 February 2022).
12. Campagna, G.; Ramesh, R.; Xu, S.; Fischer, M.; Lam, M. Almond: The Architecture of an Open, Crowdsourced, Privacy-Preserving,

Programmable Virtual Assistant. In Proceedings of the 26th International Conference on World Wide Web Companion, Perth,
Australia, 3–7 April 2017.

13. Campagna, G.; Ramesh, R.; Xu, S.; Fischer, M.; Lam, M. Controlling Fine-Grain Sharing in Natural Language with a Virtual
Assistant. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 1–28. [CrossRef]

14. Campagna, G.; Ramesh, R.; Xu, S.; Fischer, M.; Lam, M. Genie: A Generator of Natural Language Semantic Parsers for
Virtual Assistant Commands. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, Phoenix, AZ, USA, 22–26 June 2019.

15. Thingpedia. Available online: https://almond.stanford.edu/thingpedia (accessed on 19 February 2022).
16. Wang, Y.; Berant, J.; Liang, P. Building a Semantic Parser Overnight. In Proceedings of the 53rd Annual Meeting of the Association

for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, China, 26–31
July 2015.

17. Xiao, C.; Dymetman, M.; Gardent, C. Sequence-based Structured Prediction for Semantic Parsing. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016.

18. Xu, X.; Liu, C.; Song, D. SQLNet: Generating Structured Queries from Natural Language without Reinforcement Learning. arXiv
Prepr 2017, arXiv:1711.04436. Available online: https://arxiv.org/abs/1711.04436 (accessed on 19 February 2022).

19. Kate, R.J.; Wong, Y.W.; Mooney, R.J. Learning to Transform Natural to Formal Languages. In Proceedings of the 20th National
Conference on Artificial Intelligence, Pittsburgh, PA, USA, 9–13 July 2005.

20. Wong, Y.W.; Mooney, R.J. Learning for Semantic Parsing with Statistical Machine Translation. In Proceedings of the Main
Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational
Linguistics, New York, NY, USA, 4–9 June 2006.

21. Zhong, V.; Xiong, C.; Socher, R. Seq2SQL: Generating Structured Queries from Natural Language Using Reinforcement Learning.
arXiv Prepr 2017, arXiv:1709.00103. Available online: https://arxiv.org/abs/1709.00103 (accessed on 19 February 2022).

22. Sutskever, I.; Vinyals, O.; Le, Q. Sequence to Sequence Learning with Neural Networks. In Proceedings of the 27th International
Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014.

23. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
24. Trakhtenbrot, B.A. Impossibility of an Algorithm for the Decision Problem in Finite Classes. Proc. USSR Acad. Sci. 1950, 70,

569–572. (In Russian) [CrossRef]
25. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 155, 211–252. [CrossRef]
26. Beltagy, I.; Quirk, C. Improved Semantic Parsers for If Then Statements. In Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016.
27. MacMillan, D. Amazon Says It Has Over 10,000 Employees Working on Alexa, Echo. Wall Street J. 2018. Available online:

https://www.wsj.com/articles/amazon-says-it-has-over-10000-employees-working-on-alexa-echo-1542138284 (accessed on 19
February 2022).

28. McCann, B.; Keskar, N.; Xiong, C.; Socher, R. The Natural Language Decathlon: Multitask Learning as Question Answering. arXiv
Prepr. 2018. Available online: https://arxiv.org/abs/1806.08730 (accessed on 19 February 2022).

29. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of
the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2012.

30. Le, Q.V.; Ranzato, M.A.; Monga, R.; Devin, M.; Chen, K.; Corrado, G.S.; Dean, J.; Ng, A.Y. Building High-Level Features Using
Large Scale Unsupervised Learning. In Proceedings of the 29th International Coference on International Conference on Machine
Learning, Edinburgh, UK, 26 June–1 July 2012.

31. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.; Mohamed, A.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.; et al. Deep
Neural Networks for Acoustic Modeling in Speech Recognition. IEEE Signal Process. Mag. 2012, 29, 82–97. [CrossRef]

https://patents.google.com/patent/US9338493B2/en
https://developer.amazon.com/alexa
https://developer.apple.com/homekit/
https://openweave.io/
https://smartthings.developer.samsung.com/
http://doi.org/10.1145/3264905
https://almond.stanford.edu/thingpedia
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1709.00103
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1090/trans2/023/01
http://doi.org/10.1007/s11263-015-0816-y
https://www.wsj.com/articles/amazon-says-it-has-over-10000-employees-working-on-alexa-echo-1542138284
https://arxiv.org/abs/1806.08730
http://doi.org/10.1109/MSP.2012.2205597

Sensors 2022, 22, 1891 12 of 12

32. Guillaume, L.; Francois, C. Deep Learning For Symbolic Mathematics. In Proceedings of the International Conference on Learning
Representations, Virtual. 26 April–1 May 2020.

33. Jia, R.; Liang, P. Data Recombination for Neural Semantic Parsing. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics, Berlin, Germany, 7–12 August 2016.

34. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All You Need. In
Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.

35. Xiong, C.; Zhong, V.; Socher, R. Dynamic Coattention Networks for Question Answering. In Proceedings of the 5th International
Conference on Learning Representations, Toulon, France, 24–26 April 2017.

36. Wang, S.; Jiang, J. Machine Comprehension Using Match-LSTM and Answer Pointer. In Proceedings of the 5th International
Conference on Learning Representations, Toulon, France, 24–26 April 2017.

37. Seo, M.; Kembhavi, A.; Farhadi, A.; Hajishirzi, H. Bidirectional Attention Flow for Machine Comprehension. In Proceedings of
the 5th International Conference on Learning Representations, Toulon, France, 24–26 April 2017.

38. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A
System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation, Savannah, GA, USA, 2–4 November 2016.

39. Vaswani, A.; Bengio, S.; Brevdo, E.; Chollet, F.; Gomez, A.N.; Gouws, S.; Jones, L.; Kaiser, L.; Kalchbrenner, N.; Parmar, N.; et al.
Tensor2Tensor for Neural Machine Translation. In Proceedings of the 13th Conference of the Association for Machine Translation
in the Americas, Boston, MA, USA, 17–21 March 2018.

40. Manning, C.; Surdeanu, M.; Bauer, J.; Finkel, J.; Bethard, S.; McClosky, D. The Stanford CoreNLP Natural Language Processing
Toolkit. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations,
Baltimore, MD, USA, 22–27 June 2014.

41. Joulin, A.; Grave, E.; Bojanowski, P.; Mikolov, T. Bag of Tricks for Efficient Text Classification. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Spain, 3–7 April 2017.

42. Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

43. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning
Representations, San Diego, CA, USA, 7–9 May 2015.

44. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. BLEU: A Method for Automatic Evaluation of Machine Translation. In Proceedings
of the 40th Annual meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 7–12 July 2002.

45. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic
Differentiation in PyTorch. In Proceedings of the Annual Conference on Neural Information Processing Systems, Long Beach, CA,
USA, 4–9 December 2017.

46. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019.

47. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language Models are Few-Shot Learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.

48. Baldassarre, G.; Giudice, P.L.; Musarella, L.; Ursino, D. The MIoT paradigm: Main features and an “ad-hoc” crawler. Future Gener.
Comput. Syst. 2019, 92, 29–42. [CrossRef]

49. Cauteruccio, F.; Cinelli, L.; Corradini, E.; Terracina, G.; Ursino, D.; Virgili, L.; Savaglio, C.; Liotta, A.; Fortino, G. A Framework for
Anomaly Detection and Classification in Multiple IoT Scenarios. Future Gener. Comput. Syst. 2021, 114, 322–335. [CrossRef]

50. Atzori, L.; Campolo, C.; Da, B.; Iera, A.; Morabito, G.; Esnault, P.; Quattropani, S. Social-IoT Enabled Identifier/Locator
Splitting: Concept, Architecture, and Performance Evaluation. In Proceedings of the 2018 IEEE International Conference on
Communications, Kansas City, MO, USA, 20–24 May 2018.

http://doi.org/10.1016/j.future.2018.09.015
http://doi.org/10.1016/j.future.2020.08.010

	Introduction
	Related Works
	Almond, Thingpedia, and ThingTalk
	Semantic Parsing and Genie

	Chinese Compatible Genie
	Chinese Semantic Parser
	Sequence to Sequence
	Multiple Question Answer Network

	Experiments
	Evaluation of Synthetic Sentences
	Sequenceto-Sequence Model
	Model
	Discussion

	Conclusions
	References

