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Abstract: Deep learning has been widely employed in recent studies on bridge-damage detection
to improve the performance of damage-detection methods. Unsupervised deep learning can be
effectively utilized to increase the applicability of damage-detection approaches. Hence, the authors
propose a convolutional-autoencoder (CAE)-based damage-detection approach, which is an unsuper-
vised deep-learning network. However, the CAE-based damage-detection approach demonstrates
only satisfactory accuracy for prestressed concrete bridges with a single-vehicle load. Therefore,
this study was performed to verify whether the CAE-based damage-detection approach can be
applied to bridges with multi-vehicle loads, which is a typical scenario. In this study, rigid-frame and
reinforced-concrete-slab bridges were modeled and simulated to obtain the behavior data of bridges.
A CAE-based damage-detection approach was tested on both bridges. For both bridges, the results
demonstrated satisfactory damage-detection accuracy of over 90% and a false-negative rate of less
than 1%. These results prove that the CAE-based approach can be successfully applied to various
types of bridges with multi-vehicle loads.

Keywords: damage detection; convolutional autoencoder; multi-vehicle loads; rigid-frame bridge;
reinforced-concrete-slab bridge; deep learning

1. Introduction

A structural-health-monitoring (SHM) system monitors the behavior of structures
using multiple sensors, such as accelerometers and strain gauges on the structure [1]. With
the SHM system, it is possible to measure behavioral changes in the structures caused by
damage and to detect structural damage by analyzing these changes; this process is called
damage detection. Damage-detection studies have been conducted for several decades to
ensure bridge safety.

To detect damage with high accuracy, it is necessary to detect tiny changes in patterns
created by each behavior before and after the damage. However, it is challenging identifying
these changes based only on the bridge behavior obtained through monitoring. Therefore,
damage-detection approaches utilize damage-sensitive features (DSFs) that are extracted
by signal-processing techniques or statistical-analysis methods from the behavioral data
obtained through raw monitoring and use them to identify changes in behavior patterns.
Thus, a DSF, more sensitive to bridge damage than conventional ones, can potentially
improve the performance of the damage-detection approaches.

Based on this potentiality, several damage-detection studies have been conducted
to generate a DSF with excellent pattern recognition to detect damages through deep
learning. Most studies utilize supervised deep learning to detect damage. In order to
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utilize supervised deep learning for damage detection, a large amount of bridge-behavior
data obtained from various damage conditions of the bridge and label data is required,
which indicate the damaged state of the bridge at the time the behavior data are obtained.
However, obtaining such data from actual bridges is impractical, which limits the field
applicability of damage-detection approaches based on supervised deep learning.

Unsupervised deep learning has the advantage of training the model using only the
behavior data without any label data. Considering the merits of unsupervised deep learn-
ing, the authors proposed a damage-detection approach using a convolutional autoencoder
(CAE), which is an unsupervised deep-learning network, based on previous studies [2,3].
In previous studies, the CAE losses from the behavior data of the undamaged prestressed-
concrete (PSC) bridges were used as DSFs. It was theoretically confirmed that a CAE-based
damage-detection approach using these DSFs can effectively detect bridge damage [2].
After the theoretical verification of the CAE-based damage-detection approach, it was
applied to an actual bridge. Therefore, field experience has proven that the CAE-based
approach can be used with high accuracy (over 95%) [3].

However, previously proposed approaches are limited, as they have been verified only
for PSC bridges under a single-vehicle load. In other words, multi-vehicle-load cases are
encountered more frequently in real bridges compared with single-vehicle-load cases. To
improve the feasibility of the proposed approach, it should be improved to detect damage
in bridges with multi-vehicle loads. Therefore, the development of an improved CAE-based
damage-detection approach was prioritized in this study. In this regard, the architecture
and hyperparameters of the CAE-based damage-detection models investigated in this
study were redesigned.

In addition, since the results of previous studies were obtained only for PSC bridges,
it is necessary to verify whether this CAE-based approach is applicable to other types of
bridges as well. Therefore, the rigid-frame bridge and reinforced-concrete (RC)-slab bridge,
which are the most commonly used bridge types in Korea [4], were selected for examining
the wider applicability of the CAE-based damage-detection approach.

2. Related Studies

The DSFs are key factors in determining the damage-detection performance of a given
approach. In the conventional bridge damage-detection approaches, referred to as model-
based approaches, e.g., [5–11], modal properties representing the dynamic properties of
structures are used as DSFs. However, the DSFs for modal-based approaches have the
disadvantage of being sensitive not only to damage but also to changes in the external
environment such as temperature. In other words, if the environmental conditions are not
properly controlled at the time the behavioral data of the bridge are measured, then it would
be difficult to infer the effect of damage solely from the DSFs. Whereas non-modal-based
DSFs, which are mainly extracted based on statistical analysis or signal-processing methods,
e.g., [12–19], are relatively less affected by environmental conditions than modal-based
DSFs; thus, they can be more helpful in damage detection [3,20].

Meanwhile, the performance of a given damage-detection approach can be improved
by using a DSF that is more sensitive to damage than an existing DSF. From this perspective,
several recent studies have attempted to use deep learning for damage detection. According
to the results of studies using deep learning [21–23], the features extracted through deep
learning demonstrate better performance than the non-modal-based DSFs extracted from
statistical analysis or signal processing.

In addition to the type of DSF, the methods used to analyze the differences in the
DSFs obtained before and after the damage to bridge also influence the damage-detection
performance. Analysis methods such as the Mahalanobis distance (MSD), e.g., [24–27],
principal component analysis (PCA), e.g., [15,19,28], and artificial neural network (ANN),
e.g., [29–32] are mainly used for damage-detection approaches. The MSD method has a
limitation; as the dimension of the used data increases, the importance of each variable
of the data cannot be taken into consideration. In contrast, methods based on PCA and



Sensors 2022, 22, 1839 3 of 19

ANN can detect damage by considering the importance of each data variable, using weight
parameters. In particular, it was confirmed that using an ANN, which is the basis of deep
learning, has the advantage of a more sophisticated and complex network than PCA.

Generally, a deep-learning architecture consists of feature extraction and classification
networks. As an example of an approach using deep learning for the damage detection of
bridges [23], a convolutional neural network was used as a feature-extraction network and
an ANN as a classification network. In other words, damage-detection approaches based
on deep learning can show better performance compared to MSD-based and PCA-based
approaches when extracting the DSFs and using them to detect damage.

There are remarkable damage-detection approaches [21–23] using deep learning, and
deep-learning models have been trained for damage detection using supervised learn-
ing. To train such a supervised deep-learning model for bridge-damage detection, a large
amount of bridge-behavior data measured from various stages of the damage to bridge
and the corresponding data (called label data) are required. Several field tests are required
to obtain data from a real bridge, including damage to the intended bridge. However,
considering the bridge’s safety and the cost of field tests, it is impossible to conduct them in
practice. In other words, despite the advantages of the deep-learning approach, its applica-
tion in damage-detection using supervised deep learning is limited for an existing bridge.

To overcome this limitation, in this study, the authors proposed a CAE-based damage-
detection approach based on previous studies [2]. First, a theoretical verification was
conducted on a previous study. Figure 1 shows the verification process and data pipeline
for the CAE-based damage-detection approach. A PSC bridge with the same size as the
actual PSC-I bridge was modeled and simulated. Using this bridge model, acceleration
data were obtained from a moving-vehicle load. Data obtained from the undamaged state
of the bridge were used to train the CAE model for damage detection. The trained CAE
model verified that the damage to the bridge with a single-vehicle load could be detected
accurately. From the results, it was theoretically proven that the CAE-based approach can
be applied to bridge-damage detection.
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Because the CAE-based approach used in the previous study [2] was theoretically
verified based on the simulation of a PSC-bridge model with a single-vehicle load, it was
necessary to verify whether it could be applied in practice. Therefore, we conducted a field
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test of the CAE-based damage-detection approach that was proposed by the authors of a
previous study [3] using actual data obtained from a PSC bridge.

Despite the satisfactory results obtained from both the theoretical verification and
field experiments, the CAE-based approach presents a critical limitation, i.e., it can only be
applied to bridges with a single-vehicle load. However, in practice, many situations exist
in which multi-vehicle loads are used more frequently than single-vehicle loads in typical
bridges. Hence, this study was performed to verify the performance of detecting damage
in bridges with multi-vehicle loads in order to improve the applicability of the proposed
approach. Studies pertaining to a specific type of bridge (PSC-I-type girder bridge) have
been conducted. The applicability of the CAE-based damage-detection approach to other
types of bridges should be verified. Therefore, the possibility of detecting damage to rigid-
frame and RC-slab bridges using the proposed approach was investigated in this study.

3. Rigid-Frame Bridge

This study is based on the process proposed in a previous study conducted by the
authors [2] and is designed to improve the CAE-based approach and to solve the problems
highlighted in [2]. In the case of the approach proposed in [2], the accuracy of damage
detection for the multi-vehicle-load situation was relatively poor compared to the single-
vehicle-load situation. In addition, we studied whether the CAE-based approach operated
properly even when the size of the bridge or the direction of the load changed.

3.1. Simulation Modeling

A rigid-frame bridge with a thickness of 200 mm, height of 1300 mm, deck width of
1500 mm, and deck length of 3400 mm, as shown in Figure 2, was modeled using the Midas
Civil software, which is a commercial structural-analysis software. In this study, a linear,
elastic finite-element model was considered for designing the target bridges. The model
was designed to have a relatively smaller size than the RC-slab-bridge model to determine
whether the CAE-based approach proposed in [2] could be utilized even if the size of the
bridge was changed.
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As shown in Figure 3, the positions and directions of the vehicle load on the bridge
were designed to simulate the rigid-frame bridge and obtain its behavior data. In the case
of Rahman-bridge model, there was a difference in size as compared to the absolute size of
the bridge because the model was designed to have a smaller size than that of common
bridges. Therefore, the movement speed of the point load was adjusted based on the size of
the bridge model. The movement speeds of the point load were set to 21 different speeds
(3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0 km/h).
At every speed through each lane, 84 simulations (4 lanes × 21 speeds) were performed on
the rigid-frame-bridge model. The vehicle load was idealized as a concentrated load or a
one-point load, and a point load of 2 kN was applied to the node above the lane.
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In the case of a rigid-frame bridge, damage occurs when the tensile forces occur, such
as at the two ends and the middle of the bridge deck. In this study, the damage was
simulated at these locations. As indicated by the elements in red on the bridge model in
Figure 4, the damage locations were designated as damage cases 1–3, and the undamaged
state of the bridge was designated as damage case 0. Damage case 1 was in the middle
of the bridge deck, damage case 2 was on the left end of the bridge deck, and damage
case 3 was at the two ends and middle of the bridge deck. In the process of modeling the
bridge damage [33], the severities of damage cases 1–3 were set in such a way as to reduce
the stiffness of the damage locations by 10% of the bridge stiffness of the undamaged
state, which was 24.645 GPa. To simulate the target bridges in this study, a linear-time-
history analysis was conducted to obtain the dynamic responses of the bridge model using
the Runge–Kutta–Fehlberg method, which provides a numerical solution for ordinary
differential equations.



Sensors 2022, 22, 1839 6 of 19Sensors 2022, 22, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 4. Damage locations of damage cases for rigid-frame-bridge modeling. 

The sensors were located at nine points on the bridge deck, as shown in Figure 5. The 
acceleration response of the bridge was obtained through a time-history analysis of the 
simulation of the bridge model. In this study, the acceleration response was called the 
base data. As a result of the simulations, 336 base-data points were obtained (four damage 
cases × 84 simulations). 

 
Figure 5. Acceleration measurement points on the bridge deck for rigid-frame-bridge modeling 
(Units: m). 

  

Figure 4. Damage locations of damage cases for rigid-frame-bridge modeling.

The sensors were located at nine points on the bridge deck, as shown in Figure 5. The
acceleration response of the bridge was obtained through a time-history analysis of the
simulation of the bridge model. In this study, the acceleration response was called the base
data. As a result of the simulations, 336 base-data points were obtained (four damage cases
× 84 simulations).
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3.2. Dataset

The rigid-frame-bridge model is a linear model; therefore, the acceleration response of
the bridge shows a linear relationship with the vehicle load. Therefore, the multi-vehicle-
load-case data for the rigid-frame bridge were created using a linear combination of the
base data, according to the process proposed in [2].

Before performing the linear combination, the base data were preprocessed. The
sampling rate of the 336 base data that were generated through simulation was 1000 Hz,
and it was composed of time-series data with a length of 10 s considering the length of
the bridge and the speed of the moving-vehicle load. The base data at 1000 Hz has too
many data points per unit of time, which can reduce the training efficiency of the CAE
model; the most time-consuming process in this study was the model training. To reduce
the calculation cost of the CAE-model training, the sampling rate of the behavior data
obtained from the bridge modeling was down-sampled from 1000 Hz to 100 Hz.

If down-sampling is performed at a low sampling rate, then the training efficiency of
the CAE model increases. Considering the deep-network architecture, when the size of the
input data is reduced by a factor of ten, the computational load is exponentially reduced.
However, a large amount of information loss is inevitable. Such information loss may omit
the behavioral characteristics of the structures contained in the data; thus, it is necessary
to select an appropriate sampling rate. In this study, down-sampling was performed at
an appropriate sampling rate in order to include up to the eighth mode of the rigid-frame
bridge. Table 1 lists the natural frequencies of the first to eighth modes for all the damage
cases. As shown in Table 1, the natural frequency of the eighth mode in the case of the
undamaged bridge was approximately 44 Hz. The sampling rate of 88 Hz, which is the
Nyquist rate or higher, should be considered. Therefore, down-sampling of the base data
was performed using a sampling rate of 100 Hz.

Table 1. Natural frequencies of first- to eighth-order modes of rigid-frame-bridge modeling according
to damage cases.

Mode Number

Undamaged
Case

Natural
Frequency

(Hz)

Damage 1
Case

Natural
Frequency

(Hz)

Damage 2
Case

Natural
Frequency

(Hz)

Damage 3
Case

Natural
Frequency

(Hz)

1 7.316 7.316 7.313 7.311

2 9.128 9.109 9.124 9.101

3 18.146 18.139 18.128 18.103

4 21.157 21.137 21.149 21.121

5 24.312 24.309 24.309 24.302

6 32.372 32.359 32.366 32.346

7 40.813 40.744 40.774 40.668

8 44.593 44.489 44.586 44.476

Owing to the characteristics of the artificial neural network, it is easier to train an
artificial neural network if the input data are normalized prior to being used [22]. The
CAE is a methodology based on artificial neural networks, so good performance can be
guaranteed by normalizing the input. Accordingly, in this study, 336 base data points were
normalized. Max–min normalization was used as the normalization method.

The time-domain data of 5000 min for the multi-vehicle situation were generated by
the linear-combination process. In this combination process, randomly chosen preprocessed
base data for all lanes and vehicle speeds from each damage case were combined to generate
the time-domain data for each damage case. The time-domain data for 5000-min, which
was generated by linear combination for each damage case, were divided into 15,000
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subsampled data points, and each subsampled data point had 2000 data points (20 s time-
domain data) associated with it. Four datasets were generated and used to train the CAE
model for damage detection, and each dataset included 15,000 subsampled data of each
damage case.

Whereas data preprocessing was performed to increase the realism of each data
point, random measurement errors that may appear during the actual measurements were
intentionally applied. The applied measurement error was generated using two Gaussian
distributions. The mean of the two distributions was zero, and the standard deviations
were set to 5% and 10%. Therefore, in the case of no errors, three measurement errors were
set and used for verification in this study.

In this study, only the dataset from the undamaged state of the bridge was used to train
the CAE model for damage detection. The number of subsampled data points from the
undamaged state of the bridge was 10,500, which is 70% of the total dataset. The remaining
30% of the 4500 subsampled data were used for testing the CAE model. However, the CAE
model developed in this study can be considered as a classifier to distinguish two classes
(damaged and undamaged). Unless the amount of data for each class used for verification
is the same, it can cause a data imbalance and lower the reliability of the results. Therefore,
even in the dataset of damage cases 1–3, 4500 subsampled data points from each dataset
were randomly selected and used. This process was carried out in order to distinguish the
undamaged state and each of the three damage cases (e.g., undamaged versus damage
case 1; undamaged versus damage case 2; undamaged versus damage case 3), and all three
measurement errors were applied. Therefore, nine sets of training and testing datasets
were used.

3.3. CAE Model Architecture

An improved CAE architecture for the development of CAE-based damage-detection
models for bridges with multi-vehicle loads was designed, as shown in Figure 6. It was
based on the architecture proposed by the authors in previous studies [2] and was also
improved upon and used in this study. In general, CAE has two networks: an encoder
and a decoder. The encoder of this CAE architecture had three convolution layers, two
max-pooling layers and one fully connected layer. Conversely, the decoder of this CAE
architecture had three deconvolution layers, two unpooling layers and one fully con-
nected layer.
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The size of the input data was designed to be 9 × 2000 (nine sensors × 20 s × 100 Hz),
which is the matrix size of the subsampled data. In addition, the different input-data
sizes and filter depths of the convolution layer were set to 256, 512, and 2048 for each
of the three convolution layers. The size of the deconvolution filter was symmetrically
applied to the convolution filter. In particular, the latent variable, which provides the most
important contribution to output-data reconstruction, is a significant factor in determining
the performance of CAE models. The reconstruction ability of the decoder in the CAE
model directly affects the construction of the loss value, which was used as the input for
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damage detection. In a preliminary study, several nodes for latent variables were evaluated
based on the CAE architecture shown in Figure 6, and the number of nodes for latent
variables was empirically set to 1000 in this study, which is 1/18 of the input data size.
Table 2 lists the hyperparameters of the CAE architecture that were configured for training
the CAE-based damage-detection model.

Table 2. Hyperparameters of CAE-model training for the rigid-frame bridge and RC-slab bridge.

Batch Size Regularization Initialization Gradient Method

256 L2 regularization Xavier’s Initialization RMSProp

Learning Rate Learning Rate
Decay Rate Activation Function Epoch

0.001 0.01 ReLU and tanh Under 100

The architecture and hyperparameters of the CAE models were designed and config-
ured using Keras based on TensorFlow version 1.15 with CUDA version 10.2, which is a
deep-learning framework, as well as Python programming. All training and test processes
were performed in the following computing environment: Intel i7-8700K CPU, 32 GB DDR4
RAM, and two NVIDIA GTX-1080Ti GPUs. Software and hardware environments were
applied to both bridge-type cases.

3.4. Results and Discussion

In this study, CAE model-training and testing were performed for nine combinations
of the three damage cases and three levels of measurement errors (refer to Section 3.2).
To evaluate the performance of the damage-detection model, the threshold for achieving
the maximum accuracy for each combination of cases was determined using the trial-and-
error method and the accuracy was calculated. From the results of the tests of the nine
combinations, a maximum accuracy of 93% was demonstrated in the combination having
both cases as damage case 3 and no measurement error, and the accuracies of the other
combinations were over 91%. In other words, the CAE model for the rigid-frame bridge
could be developed as a model that could achieve a maximum accuracy of over 91%. The
maximum accuracy reflects the potential performance of the CAE-based damage-detection
model; the maximum accuracies of the CAE-based models for the target bridge model were
obtained preliminarily.

However, threshold calculation using this trial-and-error method cannot be performed
in practice because information regarding the actual state of the bridge is not available.
Therefore, a threshold that represents the accuracy closest to the maximum accuracy was
determined in this study. Based on a preliminary study, five statistics (75th, 80th, 90th, 95th,
and 99th percentiles), which are typically used as thresholds, were selected as candidates
and then analyzed. Each threshold was obtained from the bridge-test dataset for each
combination. The 80th percentile was selected based on the results of this study. Table 3
lists the accuracies and false-negative-rate (FNR) values for the nine combinations. The
accuracies of all the combination cases were close to the maximum accuracy, and the FNR
was within 1%. These results indicate that the bridge-damage-estimation model can be
utilized effectively.
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Table 3. Accuracies and FNRs of the CAE models corresponding to three levels of measurement
errors and damage severity for rigid-frame-bridge modeling with the 80th threshold.

Damage Case
Measurement Error

(Gaussian Distribution) With 80th Percentile Threshold

Mean Standard Deviation Accuracy FNR

1

No error 90% 0%

0 5% 89% 1%

0 10% 90% 0%

2

No error 89% 1%

0 5% 89% 1%

0 10% 89% 1%

3

No error 89% 1%

0 5% 90% 0%

0 10% 90% 0%

Average 89.4% 0.6%

Figures 7 and 8 illustrate the performance of the CAE-based damage-detection ap-
proach using the 80th percentile. Figures 7 and 8 show examples of histograms and scatter
plots of CAE losses obtained from both the undamaged and damaged states of the rigid-
frame bridge. As shown in Figures 6 and 7, the two distributions can be divided using the
80th-percentile threshold, which is represented by the dotted line in the figures. However,
this indicates that both the distributions from the CAE losses of the undamaged-bridge
data and the 80th-percentile threshold are close. Therefore, the threshold overlaps with the
undamaged state, which means that the effect of increasing false positives (FPs) may occur,
as well as a decrease in the damage-detection accuracy. Thus, it is necessary to consider
this negative effect.
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In general, the natural frequencies of the modes of a bridge were used to detect damage
to the bridge as DSFs. The natural frequencies for damage detection were used as the input
data for training an ANN classifier, and detection was performed with the trained classifier.
As shown in Table 1, the difference in the natural frequencies for each mode is within 1%.
However, it has been proved in the previous study [2] that it is difficult to accurately detect
the damage to the bridge by the existing approaches of analyzing the natural frequency
with the differences of 1% in the natural frequencies. From the additional verification of
the ANN model that was trained with the same data as the CAE model, the accuracy was
approximately 50%. This finding indicates difficulty in the damage-detection approach
with the ANN, which is one of the most commonly used conventional approaches. Based
on the results and these findings, the proposed CAE-based damage-detection approach can
be used for the rigid-frame bridge with better accuracy than the existing approaches.

4. RC-Slab Bridge

The CAE-based approach applied to the rigid-frame bridge was verified with the case
of an RC-slab bridge. In the case of the RC-slab bridge, the rigid-frame bridge’s architecture
was utilized to verify whether the CAE architecture developed in this study can be used
for other bridges.

4.1. Simulation Modeling

As shown in Figure 9, the size of the RC-slab-bridge model was designed to be
30 m × 15.3 m. Unlike the rigid-frame-bridge model, the RC-slab model was modeled
as a two-span bridge. The Midas Civil software was used for RC-slab-bridge modeling,
comprising a pier located in the central span, an abutment located at both ends, and a slab
modeled with a plate element. For the boundary conditions, one side of the abutment
was modeled with fixed support, and the rest with elastic-link support in order to closely
replicate the actual bridge. In the case of bridge piers, the support comprised an elastic-
link support.
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As in the case of the rigid-frame bridge, four lanes were designed to simulate the
moving-vehicle load on the RC-slab-bridge model, as shown in Figure 10. The width of each
lane was 3.6 m. In the test of the RC-slab bridge, we attempted to obtain bridge-behavior
data by changing the direction of the vehicle load. Therefore, as shown in Figure 11, the
point load of the moving vehicle was simulated to drive along a zigzag line. In addition, the
point load simulating the vehicle was 1.5 tons. The movement speed of the point load was
set to 15 different speeds (20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, and 90 km/h).
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As in the case of the rigid-frame bridge, the most vulnerable locations of the RC-slab
bridge were chosen as the damage locations. The damage locations were set as the elements
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of the bridge that are in red in Figure 12 because they are the locations of the largest
bending stress in the RC-slab bridge. The damage cases for the RC-slab bridge are listed in
Table 4. The cases were divided according to the severity of damage. The damage severities
were designed by reducing the elastic modulus of concrete in order to change the concrete
stiffness of the red elements of the bridge model. The elastic modulus of the undamaged
state of the bridge was 26.7 GPa. As summarized in Table 3, the damage severities were
designed to be reduced by 3.3%, 6.9%, and 10.8% for damage cases 1, 2, and 3, respectively,
compared with the elastic modulus of 26.7 GPa for the undamaged-concrete state.
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Table 4. Elastic modulus and damage severity of damage cases for RC-slab-bridge modeling.

Damage Case Elastic Modulus Damage Severity

Undamaged Case 26.7 GPa 0%

Damaged Case 1 25.8 GPa −3.3%

Damaged Case 2 24.8 GPa −6.9%

Damaged Case 3 23.8 GPa −10.8%

4.2. Datasets

In the case of an in-service bridge, the occurrence of multiple-vehicle loads is more
frequent than the single-vehicle loads. Therefore, in the case of the RC-slab bridge, as in the
case of the rigid-frame bridge, we attempted to simulate a multiple-vehicle-load situation
in which a large number of vehicles passed through a four-lane, two-way strip, which can
improve the feasibility of the CAE-based damage-detection approach.

As in the case of the rigid-frame bridge, the base data were generated through a
time-history analysis of the simulation of the bridge modeling. As a result of the simulation,
240 base data were obtained (4 damage cases × 60 simulations). According to Table 5,
considering the Nyquist rate, the sampling rates should be greater than 50 Hz in order to
include all of the characteristics from the first to the eighth mode. Therefore, the 240 base
data were down-sampled to 100 Hz from 1000 Hz. The max–min method was used as the
normalization method for the base data.
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Table 5. Natural frequencies of modes for RC-slab-bridge modeling.

Mode Number Intact Case Damage Case 1 Damage Case 2 Damage Case 3

1 11.235 11.201 11.161 11.115

2 13.356 13.344 13.330 13.313

3 14.862 14.857 14.851 14.845

4 16.930 16.912 16.892 16.869

5 21.540 21.531 21.521 21.509

6 23.142 23.114 23.082 23.044

7 24.393 24.378 24.361 24.340

8 24.915 24.900 24.884 24.866

With the preprocessed base data, a linear combination was performed, and the time-
domain data of 5000 min for the multi-vehicle situation in the RC-slab modeling were
generated. Similar to the case of the rigid-frame bridge, the 5000 min time-domain data
were divided into 15,000 subsampled data points with 2000 data points (20 s time-domain
data). In addition, measurement errors were intentionally applied to the subsampled
data in the form of randomly sampled errors that were extracted from two Gaussian
distributions. This process was applied in accordance with each Gaussian distribution. The
mean of the two distributions was zero, and the standard deviations were set to 5% and
10%. Therefore, the cases of no error and two different measurement errors were set and
used for verification in this study.

A set of 10,500 subsampled data of the undamaged-bridge state was randomly selected
and used for the training process of the CAE model. The remaining 4500 subsampled data
points of the undamaged-bridge state and 4500 subsampled data points of the damaged-
bridge state were used in the testing process of the CAE models. This was performed in
order to distinguish the undamaged state from each of the three damage cases with the
three measurement errors applied. Therefore, nine sets of training and testing datasets
were used.

4.3. CAE Model Architecture

In practice, when detecting damage to a bridge, it is necessary to use a predefined
model that can represent any bridge because the states of damage or no damage cannot be
known. Therefore, in this study, a model with the same architecture as the CAE model ap-
plied to the rigid-frame bridge was used. The same hyperparameters and CAE architecture
(see Figure 6) were used for the model training and validation of the RC-slab bridge, as
described in Section 3.3. However, the CAE models for damage detection of the RC-slab
bridge were trained using the RC-slab datasets. The computing environment for both
training and testing was the same as that used in the case of the rigid-frame bridge.

4.4. Results and Discussion

The test for the RC-slab bridge was performed in the same manner as in the rigid-
frame-bridge test (refer to Section 3.4). The maximum accuracies for the nine combinations
of three damage cases and three levels of measurement error were verified. Consequently,
it was confirmed that the maximum accuracy with the 95th-percentile threshold was 97.5%,
and the maximum accuracy with the 99th-percentile threshold was approximately 99.5%.
Combined with the case for the rigid-frame bridge, these results seem to be better because
the RC-slab bridge has a relatively larger damaged-element area than that of the rigid-frame-
bridge model. This results in the difference in behavior of the RC-slab-bridge modeling
from the rigid-frame-bridge modeling, and the better performance of the RC-slab bridge.

However, if the CAE model is used for an in-service bridge, then it is important
to determine and use a threshold that can guarantee the performance of the CAE-based
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damage-detection model. For the RC-slab bridge, five candidates for the threshold were
verified in the same manner as in the case of the rigid-frame bridge. The 95th- and 99th-
percentile thresholds showed the best performance. Table 6 lists the detection accuracies and
FNRs when the 95th- and 99th-percentile thresholds were applied for the nine combination
cases. When the 95th percentile was used as the threshold, all of the models showed highly
reliable results with satisfactory damage-detection accuracies of 97.5% with 0% FNRs. In
the case of the 99% percentile as the threshold, all but the combination of damage case 2
with the 10% measurement error showed accuracies of over 99% and 0% FNR. In the case of
the combination of damage case 2 with the 10% measurement error, a satisfactory accuracy
of 97.2% was obtained. These results indicate that the CAE model can be effectively used
for the RC-slab bridge.

Table 6. Accuracies and FNRs of the CAE models corresponding to three levels of measurement
errors and damage severity for RC-slab-bridge modeling.

Damage Case
Measurement Noise

(Gaussian Distribution)
With 95% Percentile

Threshold
With 99% Percentile

Threshold

Mean Standard Deviation Accuracy FNR Accuracy FNR

3
No error 97.5% 0% 99.5% 0%

0 5% 97.5% 0% 99.5% 0%
0 10% 97.5% 0% 99.5% 0%

2
No error 97.5% 0% 99.5% 0%

0 5% 97.5% 0% 99.5% 0%
0 10% 97.5% 0% 97.2% 0%

1
No error 97.5% 0% 99.5% 0%

0 5% 97.5% 0% 99.5% 0%
0 10% 97.5% 0% 99.5% 0%

Average 97.5% 0% 99.2% 0.3%

Figures 13 and 14 show examples of a histogram and scatter plot illustrated by two dis-
tributions of CAE losses from both the undamaged and damaged states. Figures 13 and 14
confirm the high accuracy obtained in this study. However, unlike the rigid-frame bridge,
when the 99th-percentile threshold was used, the threshold was near the distribution that
was extracted by the CAE losses of the damaged state. This means that there is a risk of
increasing the FNR, which is the most important factor in the evaluation of damage detec-
tion, as well as a risk of decreasing the accuracy. In other words, in terms of the reliability
of the CAE-based damage-detection model, we need to use only the 99th percentile as the
threshold. Considering the difficulty in determining the threshold in practice, this could be
a great way to use various threshold values for damage detection.

On the other hand, the mesh size of the RC-slab-bridge modeling was different from
that of the rigid-frame-bridge modeling. Mesh size is one important factor in making
a numerical model resemble an actual structure. If the research objective is to improve
the accuracy, such as model updating, then the mesh size should be carefully considered.
However, the numerical modeling in this study primarily focused on obtaining training
and test datasets in order to verify whether the CAE-based damage-detection approach
could be effectively utilized in the various damage scenarios in bridge modeling. Therefore,
mesh-size selection was not a major research interest. The primary purpose of this study
was to ascertain that CAE models could determine the different CAE losses according
to each damage state of the bridge. Consequently, it was confirmed that the proposed
approach could detect the damage with satisfactory accuracy, regardless of the numerical
modeling of target bridges with different mesh sizes.

From the results and findings of the CAE-based damage-detection approach for both
bridges, the possibility of detecting damages for the rigid-frame bridge and the RC-slab
bridge, even though these bridges had different specifications and types, is high. Therefore,
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this indicates the potential of CAE-based damage detection to be used for various other
types of bridges.
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Figure 14. Example of scatter plot of CAE losses for RC-slab-bridge modeling (TP means true and
positive. FP means false and positive. TN means true and negative. FN means false and negative.
True and false indicates that the CAE model correctly and incorrectly predicted the bridge damage
state, respectively. Positive and negative indicate the damaged state and the undamaged state,
respectively, as the predicted state by the model.).

5. Conclusions

The aim of this study was to improve a CAE model that had been previously pro-
posed [2] and to determine whether the CAE-based damage-detection approach is ap-
plicable to bridges with multi-vehicle loads, which comprise rigid frames and RC-slab
bridges. For the development process of the CAE model, first the bridge was modeled and
simulated. With bridge modeling, acceleration data were obtained from a moving-vehicle
load. The acceleration data obtained from the undamaged state of the bridge were used
to train the CAE model for damage detection. The trained CAE model verified that the



Sensors 2022, 22, 1839 17 of 19

damage to the bridge with multi-vehicle loads could be satisfactorily detected. The most
time-consuming CAE-model training took approximately 2 d for each bridge model, and
the simulation for obtaining the acceleration data took approximately 1 d for each bridge.
The analysis of the results showed that the CAE-based damage-detection approach yielded
good performances for both bridge types. In fact, it achieved satisfactory accuracies that
exceeded 90% and 97% for the rigid-frame bridge and RC-slab bridge, respectively, with
an FNR of approximately 0% for both cases. These results demonstrate the reliability and
robustness of the improved damage-detection approach.

To improve the CAE model that was previously proposed, an effective method is to
modify the number of nodes of the latent variable, which determines the reconstruction
capability of the decoder in the CAE model. By improving the decoder capability, high
accuracies of up to 27.1% were realizable, even when considering the relatively low damage
severities in this study compared with the accuracies of the previous study. Although it
may be premature to perform a direct comparison because of the different types of bridges,
this improvement in accuracy demonstrates the potential of the improved CAE-based
damage-detection model for bridges with multi-vehicle loads.

In addition, these findings indicate that the feasibility of the CAE-based damage-
detection approach is satisfactory, regardless of the type, size, load direction, and number
of bridge spans. In the specifications of both bridge models used in this study, the span
length and width of the RC-slab bridge were 9 and 10 times larger than those of the rigid
frame bridge, respectively. However, the CAE-based damage-detection models utilized the
same architecture and hyperparameters for both bridge models and showed satisfactory
accuracies that exceeded 90% and 97%, respectively. It may be premature to conduct an
exact comparison owing to the different bridge types of both models; however, the proposed
approach is expected to perform well with any bridge-modeling scale, considering the
performance demonstrated based on the results of this study.

Meanwhile, it may be premature to assert whether the proposed approach is applicable
to other bridges based on only two verification cases of bridges. However, because of the
limitations of the simulation, such as time and cost, only two bridge cases were verified.
Nevertheless, the proposed approach performed well for bridges of various types and sizes;
consequently, it was confirmed that this approach is applicable to other bridges, provided
that it affords high accuracy. In this study, multi-vehicle loads on bridges were investigated.
Therefore, the proposed approach is expected to be feasible for various types of bridges.

However, it was difficult to select the appropriate threshold values in this study.
Although the performance of the approach was satisfactory, to present a more reliable
model, the CAE-based damage-detection approach must be improved. Therefore, the
threshold value, which is the most important factor for calculating the accuracy, should be
defined as a specific value; however, it was impossible to present the optimal threshold
value based on the verification results for both bridges. Therefore, further experimental
studies are necessitated to determine an optimal threshold for the CAE-based damage-
detection approach. As a basis for future studies, this study may serve as a foundation as
well as be utilized as an efficient method for bridge maintenance.
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