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Abstract: The Unified Parkinson’s Disease Rating Scale (UPDRS) is a subjective Parkinson’s Disease
(PD) physician scoring/monitoring system. To date, there is no single upper limb wearable/non-
contact system that can be used objectively to assess all UPDRS-III motor system subgroups (i.e.,
tremor (T), rigidity (R), bradykinesia (B), gait and posture (GP), and bulbar anomalies (BA)). We
evaluated the use of a non-contact hand motion tracking system for potential extraction of GP
information using forearm pronation–supination (P/S) motion parameters (speed, acceleration, and
frequency). Twenty-four patients with idiopathic PD participated, and their UPDRS data were
recorded bilaterally by physicians. Pearson’s correlation, regression analyses, and Monte Carlo
validation was conducted for all combinations of UPDRS subgroups versus motion parameters. In
the 262,125 regression models that were trained and tested, the models within 1% of the lowest error
showed that the frequency of P/S contributes to approximately one third of all models; while speed
and acceleration also contribute significantly to the prediction of GP from the left-hand motion of
right handed patients. In short, the P/S better indicated GP when performed with the non-dominant
hand. There was also a significant negative correlation (with medium to large effect size, range:
0.3–0.58) between the P/S speed and the single BA score for both forearms and combined UPDRS
score for the dominant hand. This study highlights the potential use of wearable or non-contact
systems for forearm P/S to remotely monitor and predict the GP information in PD.

Keywords: gait; posture; Parkinson’s disease; pronation; supination; bulbar anomalies

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by both motor
and non-motor symptoms. Symptoms of motor dysfunction comprise tremor (T), rigidity—
stiffness (R), bradykinesia—slowness in movement (B), gait—postural instability (GP),
and bulbar abnormalities that include difficulties with speech and facial expressions (BA).
Symptoms of non-motor dysfunction, such as pain, saliva control, sleeping, etc., are out of
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the scope of this study. In Parkinson’s disease, the Unified Parkinson’s Disease Rating Scale
(UPDRS) is the most common tool used in motor symptom assessment. Researchers have
previously studied rhythmic pronation and supination mechanics [1–3], but UPDRS motor
scaling does not consider pronation–supination to be a proxy for gait ability; it is only
used for assessment of bradykinesia/rigidity. Additionally, no study has examined the
possible relationship between forearm pronation–supination and gait/position instability
in Parkinson’s disease. A variety of biomedical wrist wearable devices (e.g., smartwatches,
accelerometers, etc.) exist for monitoring motor symptoms in Parkinson’s patients. There
is, however, no wrist wearable or non-contact wrist motion monitoring system that can be
utilized for objectively assessing all five UPDRS III motor symptoms (T, R, B, GP, BA), by
monitoring Parkinson’s disease motor symptoms. At present, wrist wearables can provide
T, B, and R information, but not GP or BA. The main limitation of these devices is not their
functional capabilities, but rather the lack of knowledge of wrist movements that can be
associated with GP and BA.

Pronation and supination of the forearm are among the most complicated movements
that primates can perform. During pronation, most quadrupedal primates exhibit a simi-
larly extended wrist morphology [4]. The mechanisms underlying these movements are
based on the circular head of the radius bone swiveling over the ulna during supination
and becoming parallel to the ulna. Furthermore, the literature indicates that the erect
postures of quadrupedal animals are associated with their circular heads of the radius bone,
thus with their ability to pronate [5–13]. Moreover, it has been suggested that amphibious
animals, such as lizards and crocodiles, cannot pronate their forearms because they lack a
circular radial head and therefore cannot become erect on the forearms while moving on
land. On the other hand, land mammals, such as cats and most primates (including hu-
mans), with circular radial heads, can actively pronate their forearms during quadrupedal
locomotion [5–13].

The ability to supinate is also reported to be positively correlated with the mass of
quadrupedal mammals (e.g., bears supinate more than cheetahs) [14]. This indicates that
the pronation and supination abilities of the forearm are advantageous for gait and posture
stability in quadrupedal locomotion. In this context, gait disorders may benefit from an
understanding of pronation and supination movements of the forearm in quadrupedal loco-
motion, as well as vestiges from the evolution of bipedal movement in humans, especially
for development of gait monitoring applications.

It has also been investigated whether bipedal mammals, including humans, use
quadrupedal coordination in order to control their gait, based on central pattern generators
(CPGs) [15,16]. Interlimb coordination between human upper and lower limbs has been
found to be similar to that of quadrupedals [15–17]. It has also been demonstrated that the
upper limb displays similar characteristics to the hind limb only during rhythmic move-
ments [15,16,18,19]. In this context, it has been postulated that the neuronal coordination
of the CPGs that modulate the upper and lower limbs is conserved in humans [15,16].
Another mechanism of CPG is the reciprocal inhibition of two neurons in order to produce
alternate activity patterns [19,20]. Finally, a recent multi-array cortical recording study in
humans has demonstrated that neurons in the hand knob area of the premotor cortex are
not specific to hand movements but are involved in the movement of all four limbs. It was
also demonstrated that the neural code was associated with the matching movements of all
four limbs [21].

In light of the beneficial effects of greater pronation–supination on gait and postural
stability in mammals to conserved interlimb coordination via CPGs, as well as reports on
multi-array cortical recordings from the human premotor cortex that showed the integration
of all four limb movements, we hypothesize that the CPG controlling gait function might
be related to the motor circuit generating sequential rhythmic pronation-supination of
the forearm.
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In the current practice, there is no unilaterally worn device or wearable device (e.g.,
smartwatch) that can collect or provide gait and bulbar anomaly information that are the
main components of the UPDRS. Further, in order for wearable devices or mobile phone-
based applications to be able to provide gait information in Parkinson’s disease, walking
or sit-to-stand tasks are necessary. Such tasks are also associated with the risk of falling
in PD. Traditionally, pronation and supination movements of the wrist are considered as
a part of the UPDRS motor scoring for bradykinesia. Pronation and supination have not
been utilized as an indirect measure to obtain information about the gait and/or bulbar
anomalies of the PD. To our knowledge, this is a pioneering study, which aims to investigate
the potential use of wrist pronation–supination patterns to provide gait and/or bulbar
abnormality information associated with PD. This study opens up the possibility to use
single wrist wearables (e.g., smartwatches) for remote monitoring and reporting of PD
motor symptoms associated with gait and bulbar anomalies without conducting a walking
or sit-to-stand task.

2. Materials and Methods
2.1. Research Participants

In a cross-sectional study, twenty-four patients with idiopathic PD (17 men, 7 women;
mean age ± SD = 57.08 ± 8.91 years) participated. Each subject provided written informed
consent. It was approved by the Ethics Committee of Koç University, Turkey (Approval
Number: 2015.091.IRB1.018) and conducted according to the Declaration of Helsinki Ethical
Principles for Medical Research Involving Humans. The wrist P/S motion capture data
were collected during a two-armed clinical trial (first arm: two sessions for ten patients,
second arm: three sessions for fourteen patients).

All patients were diagnosed with PD by a neurologist who was an expert in move-
ment disorders, using the UK Parkinson’s Disease Society Brain Bank clinical diagnostic
criteria [22]. All patients underwent a detailed neurological examination, and Parkinsonian
features were rated according to Hoehn and Yahr Scale (Table 1). Furthermore, all patients
used dopaminergic replacement treatment (disease duration ± SD = 8.04 ± 3.88 years) but
were asked to stop taking their medications 12-h before the recording sessions. Patients
were also evaluated for hand dominance: 23 were right-handed, only one patient was left-
handed. Patients with a disease duration of longer than a year or a Hoehn and Yahr stage
≥2 were included. Patients with cognitive impairment that might prevent cooperation
during testing and patients with other neurological or systemic diseases were excluded at
this stage.

Table 1. Patients demographics of 17 male, 7 female patients with disease duration ± SD = 8.04 ±
3.88 years, mean age ± SD = 57.08 ± 8.91 years.

Age Gender Dominant
Hand

Affected Side
at Onset

P.D. Duration
(year) H&Y Stage

61 F R R 12 3

46 M R L 4 3

55 M R R 8 2

48 M R R 12 2

54 M R R 6 2

48 M R L 8 2

61 M R L 6 2

71 M R R 17 2
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Table 1. Cont.

Age Gender Dominant
Hand

Affected Side
at Onset

P.D. Duration
(year) H&Y Stage

52 M R R 2 2

61 M R R 8 3

56 M R R 7 2

47 F R R 10 2

63 M R R 8 2

58 F R R 15 2

54 M R R 9 3

70 F R R 8 3

64 M R L 1 2

45 F R L 4 2

71 M R R 5 2

45 F R L 8 2

63 F R R 4 2

72 M R L 13 2

45 M L R 8 2

60 M R R 10 2

2.2. Assessing Forearm Pronation–Supination and Collection of the UPDRS Scores

The UPDRS has numerous subsections to assess mood, activities of daily living, motor
symptoms examinations, and complications of therapy and is routinely used in daily
clinical practice for PD assessment. However, only motor symptoms are of concern for
this study.

The purpose of UPDRS Part III is to examine motor symptoms. The UPDRS part III
assesses symptoms on a scale of 0 to 4 (0 being no symptom, 4 being the most severe).
UPDRS Part-III sub-scores are classified and analyzed in terms of tremor (at rest and ac-
tion/postural tremor), rigidity (judged on passive movements of major joints), bradykinesia
(finger taps, opening/closing hands rapidly, rapid alternating movements of the hands-
pronation-supination, leg agility, body bradykinesia or hypokinesia), gait and postural
instability (arising from the chair, posture, gait based on walking, postural stability), and
bulbar anomalies (speech and facial expression), as previously described [23,24].

PD has a prevalent unilateral insurgence. Accordingly, UPDRS part III has lateralized
subitems for tremor, rigidity, and bradykinesia, and the traditional approach involves
considering the dominant side symptom scores for UPDRS part III motor scores. The
present study collected scores from both extremities (with dominant and nondominant
symptoms) to conduct correlation analyses with motion parameters obtained from a digital
device, on each extremity. UPDRS part III assessment of both extremities is a novel method
to investigate subtle differences in the UPDRS III scores on both extremities separately,
since clinical practice typically includes only scores for the extremity with the dominant
symptoms. Considering that UPDRS scores are determined by subjective judgments of the
clinicians, we collected scores from two neurologists to maintain validity.

Two neurologists evaluated the patients’ motor symptoms using the UPDRS Part
III scores bilaterally before collecting non-contact hand tracking data using an infrared
camera. An infrared hand tracking camera (Leap Motion, Inc., San Francisco, CA, USA)
and a consumer-level laptop were used to record data. In this investigation, patients were
seated facing the back of a laptop without being able to see the recording display on the
laptop screen. At first, patients were asked to place their hands above the controller to test
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the non-contact system’s ability to capture their hands’ position. Pronation–supination
(P/S) movement is described to the patients by the same neurologists who were involved
in UPDRS part III bradykinesia scoring, including the same P/S movement-based scoring.

The averages obtained from the two neurologists and the right and left sides were
taken as the UPDRS III scores (which were initially µle f t ± SDle f t = 11.49 ± 4.61 and
µright ± SDright = 12.28 ± 5.15). In our study, patients were asked to come for multiple
visits and to participate in P/S movement recording sessions after at least one week.
During the two-armed clinical trial, in which wrist P/S motion capture data were collected,
14 patients visited the hospital three times, and 10 visited twice.

To keep the dataset homogeneous for right-hand preference and right-hand dominant
symptoms, one patient with left-hand preference and three patients with left-hand symptom
dominancy were excluded. Each recording session was completed in six successive parts.
More specifically, pronation–supination movements were repeated three times for both
hands, in alternate order, and the movements incorporated at least three complete cycles
of P/S, independently from the duration. Unfortunately, several patients were unable to
complete the whole exercise. Thus, some PD patients had 18 movement records, while
others had fewer. The final set of data included 274 distinct pronation–supination records
from all patients (i.e., approximately 13 movement records per patient).

2.3. Measurement Device

Leap Motion (Leap Motion, Inc., San Francisco, CA, USA) is a popular low-cost gaming
controller that captures hand and finger gestures. In spite of its compact size, it has infrared
cameras that capture stereo images in grayscale. As opposed to similar devices that utilize
depth maps, Leap Motion tracks movement using advanced algorithms [25] embedded in
its standard development kit (SDK).

The controller samples the distances of finger joints at approximately 100 Hz. Fur-
thermore, a recent analysis was done by Weichert et al. [26] and revealed that the average
accuracy of these measurements (0.7 mm in all three axes) is close to that of the finest
movements of the human hand (0.4 mm).

2.4. Motor Tasks and Extracted Features

All patients’ P/S raw gesture data were recorded using custom software developed
using Leap Motion SDK. During P/S sessions, participants are observed by the same
neurologist who scored their UPDRS scores. The raw data were processed in order to
extract features that defined the characteristics of patient motions. The rotations of the wrist
were processed on a single axis in terms of degrees. A P/S task involves rapid, repetitive
movements around the roll axis consisting of multiple local minimal and maximal values
(Video S1). The maximum and minimum were extracted as features by tracking the local
minimum/maximum in the motion sequence and identifying the last qualifying data point
before the movement reversed its direction. The consecutive markers were also used to
calculate three final features: speed, acceleration, and frequency. These three features
have also been examined in previous studies [27,28] and have been shown to be useful for
assessing bradykinesia. In this study, we extended the application of these parameters to
all compartments of the UPDRS. Figure 1 shows a sample raw dataset collected using this
software and methodology.



Sensors 2022, 22, 1827 6 of 17

Sensors 2022, 22, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 1. Application of the moving average filter. (a) The original raw signal and the resulting 
waveform after filtering. (b) Enlarged signal bounded by the dashed lines in part (a) to observe the 
details of the tremor. 

3. Correlation Analysis of UPDRS Scores and Pronation–Supination Motion Parame-
ters 
3.1. Data Preprocessing 

Occasional glitches and noise in the data originating from the initiation or termina-
tion of movements were excluded from all records. The exclusion procedure was con-
ducted by visually inspecting and manually marking invalid sections by a single investi-
gator (second author, CO). A detailed explanation of these exclusion processes can be 
found in Supplementary Figure S5. 

Tremors that occurred during data collection appeared as oscillations that caused in-
accuracies in the detected minima and maxima. Waveforms of the motions were analyzed 
using frequency spectra in order to resolve this problem. A typical spectrum contains a 
significant response below 5 Hz (Figure 2a). Based on the sampling rate, a moving average 
filter with a window size of seven was applied to smooth the signal, as shown in Figure 
1. In saddle points, where the motion reached extremes, several patients had double 
peaks, which was expected due to tremor. Considering that our feature selection was 
based on differences between the length of time and the angle of a particular movement, 
we were able to use consecutive minima and maxima pairs to calculate pronation and 
supination features. As seen in Figure 2b, only consecutive minima and maxima were 
marked for further feature extraction. As explained in the analysis section, we used aver-
aged features derived from several minima and maxima pairs. For these analyses, 

Figure 1. Application of the moving average filter. (a) The original raw signal and the resulting
waveform after filtering. (b) Enlarged signal bounded by the dashed lines in part (a) to observe the
details of the tremor.

3. Correlation Analysis of UPDRS Scores and Pronation–Supination
Motion Parameters
3.1. Data Preprocessing

Occasional glitches and noise in the data originating from the initiation or termination
of movements were excluded from all records. The exclusion procedure was conducted
by visually inspecting and manually marking invalid sections by a single investigator
(second author, CO). A detailed explanation of these exclusion processes can be found in
Supplementary Figure S5.

Tremors that occurred during data collection appeared as oscillations that caused inaccu-
racies in the detected minima and maxima. Waveforms of the motions were analyzed using
frequency spectra in order to resolve this problem. A typical spectrum contains a significant
response below 5 Hz (Figure 2a). Based on the sampling rate, a moving average filter with
a window size of seven was applied to smooth the signal, as shown in Figure 1. In saddle
points, where the motion reached extremes, several patients had double peaks, which was
expected due to tremor. Considering that our feature selection was based on differences
between the length of time and the angle of a particular movement, we were able to use con-
secutive minima and maxima pairs to calculate pronation and supination features. As seen in
Figure 2b, only consecutive minima and maxima were marked for further feature extraction.
As explained in the analysis section, we used averaged features derived from several minima
and maxima pairs. For these analyses, movement consistency was an important attribute.
Therefore, we included only signals that were long enough to demonstrate four consecutive
minimum–maximum pairs in a single pronation and supination motion. Signals containing
fewer than four minimum-maximum points were excluded.
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Figure 2. Important features of the P/S movement signal after preprocessing. (a) Frequency (Hertz)
spectrum and (b) maximum and minimum points during pronation–supination (P/S) movement (“×”
marks indicate the extrema points found by the marking process, circles indicate retained minimums
and maximums after discarding non-consecutive extrema during P or S movement).

In total, 77 of the 274 recordings were excluded due to erroneous/incomplete pronation–
supination data where the patient had performed additional or incomplete movements.
Therefore, only 197 of the 274 recordings passed the quality control steps. The data analysis
algorithm chart is provided in Supplementary Figure S5.

3.2. Analyses

Following data preprocessing, the remaining datasets (197) were used for feature
extraction. In this phase, three specific features, f1, f2, and f3 that stand for speed, accel-
eration, and frequency were calculated, starting with the first minima marker. Means of
the calculated values for each consecutive minima-maxima point (Equations (1) and (2))
in a single record were accepted in the final feature metric (Equations (3)–(5)). Marked
extrema points enabled separate metrics for pronation and supination phases. Furthermore,
wrist features for combined motion, without separating the pronation and supination
components, were also computed, as shown in Equations (6)–(8) below:

d∅ = |∅min −∅max| (1)

dt = |tmin − tmax| (2)

f1 =
1
n ∑ d∅/dt (3)

f2 =
1
n ∑ d∅/dt2 (4)

f3 =
1
n ∑ 1/dt (5)

f wrist
1 =

1
n ∑(d∅pro + d∅sup)/

(
dtpro + dtsup

)
(6)

f wrist
2 =

1
n ∑(d∅pro + d∅sup)/

(
dtpro + dtsup

)2 (7)

f wrist
3 =

1
n ∑ 1/

(
dtpro + dtsup

)
(8)
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where ∅ = wrist angle, ∅min = angle at local minima, ∅max = angle at local maxima, t = time,
tmin = time at local minima, tmax = time at local maxima, n = number of valid consecutive
extrema points.

As shown in Formulas (6)–(8) the pronation and supination movements are treated
as a single movement, regardless of the pause between them. Pronation and supination
angles were added together, meaning that wrist movements from one direction to another
were not considered in the analysis since the entire pronation and supination movement
was considered as continuous movement.

In the final dataset, Pearson’s correlations between UPDRS scores and the aforemen-
tioned motion features were calculated. In addition, since UPDRS part III is comprised of
five subgroups/scores (i.e., T, R, B, GP, BA), correlation analyses have been performed for
each UPDRS part III total score, as well as for each individual subgroup and combinations
of subgroups (i.e., T + R, T + B, T + BA, etc.) for a total of 18 combined UPDRS scores.
A key purpose of this method was to explore and highlight patterns in the relationships
between subgroups.

3.3. Predictive Analyses of Gait and Postural Instability

In addition to correlation analyses, further analysis of GP UPDRS scores was con-
ducted to determine if there was an association between the GP scores and upper limb
pronation–supination motion. First, we tested whether GP UPDRS scores from different
subgroup combinations were significantly correlated with P/S motion features. In order
to understand how features extracted from a given task contribute to GP scores, multiple
linear regression models were constructed using different feature combinations. In these
models, we examined whether GP could be predicted using a multiplicity of features from
pronation and supination motion data. The regression models were extensive: initial mod-
els included any two different motion features as independent variables, then another set
of models comprised all possible combinations of three, four, and n features (n = 18 as seen
in supplementary Figures S1–S4). All possible combinations of multiple feature subsets
(nmodels = 262,125) were used to create and test these models. In order to perform further
regression analyses, models with minimal root mean square error (RMSE) were selected
from within 0.1% (nmodels·0.001 = 262) of all models. Monte Carlo cross-validation was
applied to these models, which were thus trained and tested in three different train versus
test cases. The first case contained 90%, the second test contained 75%, and the third case
contained 50% of the data for training while the remaining data were used during testing.
All training sets were trained 1000 times, wherein the training sets were randomly sampled,
and the remaining data were used to test the model’s accuracy. The RMSE between the
actual and predicted GP scores were reported for the test data. In addition, the training
errors were also reported in terms of RMSE for the training set. These data were aggregated
for all of the 1000 random training iterations by computing the mean for each of the three
cases. The selected models indicated that the lowest RMSE values were achieved by models
that used only a few features.

3.4. Principal Component Analysis (PCA)

In the context of the linear regression models, not all of the features contribute similarly
to the solution. The feature space can be further reduced by pruning features that do
not play an important role in GP prediction. We ran PCA on the dataset containing all
18 features in order to understand the features with the biggest impact. PCA is a useful
technique to reduce a higher-dimensional representation into a lower-dimensional set by
joining related components together. For this purpose, a covariance matrix is generated
from the features of multiple subjects. Then, eigenvalues are generated for the features
that are bundled together, showing the amount of their impact on the spread of the entire
dataset. Based on the largest eigenvalues, corresponding eigenvectors that indicate the
combined features are generated. After eliminating the eigenvectors that correspond to
the insignificant eigenvalues that do not have an important contribution to the variance
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in the dataset, the percentage of variance can be computed in the new feature space. It is
a desired property of PCA to keep as much of the variance in the original dataset as the
variance of the new feature space.

3.5. Statistical Analyses

All statistical analyses were performed using the MATLAB (MathWorks R2016a)
Statistics and Machine Learning Toolbox. Signal processing phases were also developed
in MATLAB (MathWorks R2016a) using the Fourier Analysis and Filtering functions. A
multiple comparisons correction was required to determine the statistical significance of
the linear regression models due to the differences in the number of correlated features
used in each model (i.e., each prediction was correlated to various numbers of features
originating from the same set of measurements). Therefore, a Bonferroni correction [29]
was applied.

3.6. Results

Our assessments yielded measurements of speed, acceleration, and frequency, referred
to as f1, f2, and f3, respectively. Initially, to investigate the relationships, we correlated
UPDRS subgroups with the features extracted from the pronation–supination data using
Pearson’s correlation score, r. In the presentation below, large effect size stands for r ≥ 0.5,
small effect size stands for r < 0.3 and medium effect size means 0.3 ≤ r < 0.5, where r is
the Pearson’s correlation coefficient.

As seen in Figure 3a, for the right UPDRS data, the f1 (speed) and bradykinesia
(B) were strongly correlated (rsup

1(B) = −0.60, rpro
1(B) = −0.60, rwrist

1(B) = −0.62), with a
large effect size) for both the pronation and supination components of right-hand motion.
Furthermore, the f1 for rigidity (R) followed the bradykinesia results with a similar effect
size (rsup

1(R) = −0.50, rpro
1(R) = −0.52, rwrist

1(R) = −0.53). Additionally, gait and postural
instability (GP) were strongly correlated to f2 (acceleration) for the supination component
(rsup

2(GP) = −0.51) also with large effect size, although GP is evaluated centrally, not
ipsilaterally in UPDRS.

Although the other features ( f1, f3) were not as strongly correlated as the f2 results in
GP of Figure 3a, they were correlated with medium effect sizes. The combinations of UPDRS
subgroup scores were also meaningful. To explore the entire set of combinations, we added
individual UPDRS subgroup scores in sets of 2, 3, 4 and 5. As seen in Supplementary Figure S1,
R + B was most strongly correlated (rsup

1(R+B) = −0.62, rpro
1(R+B) = −0.63, rwrist

1(R+B) = −0.65)
with the features, with large effect sizes. As expected, R + B was not only the most strongly
correlated combination in the pronation–supination movements, but it also improved the
individual UPDRS score subgroup correlations.

Among all combinations of UPDRS scores, those with GP stood out as the third most
highly correlated component, with strong R and B correlations to the motion features.
Correlations between features f1 − f3 and GP warrants a closer inspection because, unlike
R and B, which are naturally expected to correlate with motion speed, acceleration, and
frequency, a relationship between GP and P/S has not yet been reported. While the correla-
tion values of R + GP in f2 (rsup

2(R+GP) = −0.55) and R + B + GP in f1 (rsup
1(R+B+GP) = −0.61)

were close to R + B for supination, pronation had similar R + B + GP (rpro
1(R+B+GP) = −0.60)

and R + B + GP + BA (rpro
1(R+B+GP+BA)

= −0.58) correlation values. Furthermore, com-

bined f1(speed) had slightly higher r values for B + GP (rwrist
1(B+GP) = −0.58), R + B + GP

(rwrist
1(R+B+GP) = −0.62), and R + B + GP + BA (rwrist

1(R+B+GP+BA)
= −0.60). Correlations with

the entire set of combinations is provided in Supplementary Figure S1.
Left-hand motion correlations with ipsilateral UPDRS scores (i.e., UPDRS scores from

the left side) revealed high values, especially in the B and GP measurements, as shown
in Figure 3c. While almost all of the combined UPDRS scores were strongly correlated as
shown in Supplementary Figure S2, the correlations of the motion features with GP were
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stronger than those for the right hand (Figure 3a). When GP correlations were considered,
a medium effect size (0.3 ≤ r < 0.5) was observable in every case for Figure 3c. According
to our correlation analysis, GP was consistently found to be an important contributor to
many of the moderate and strong correlations within all three motion features, despite
being measured centrally.
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Figure 3. Pearson’s correlations between the extracted digital motion features from the right hand
(a,b) and left hand (c,d) with the UPDRS scores from the right side (a,d), left side (b,c) and center (only
for the GP score). Rows: features (f 1: speed, f 2: acceleration, f 3: frequency); columns: UPDRS scores
(T = tremor, R = rigidity, B = bradykinesia, GP = gait and postural Instability, BA = bulbar anomalies).
Values above 0.2 and below −0.2 were significant at the p < 0.05 level (Bonferroni corrected).

When the right-hand motion data were analyzed for correlations with contralateral
(i.e., left side) UPDRS scores (Figure 3b), very low effect sizes (r < 0.3) were revealed
for T, R, B, and BA but not for GP. In terms of UPDRS combinations, the combinations
that included GP, such as B + GP, GP + BA and R + GP + BA scored moderate to high
correlations for f 1 (speed) or f2 (acceleration). Few correlations had large effect sizes
(rsup

2(GP) = −0.51, rsup
2(R+GP) = −0.52, rsup

2(B+GP) = −0.54), as observed in Supplementary
Figure S3.

Left-hand motion correlations with contralateral UPDRS scores (i.e., UPDRS scores
from the right side) revealed high values, especially in the B and GP measurements, as seen
in Figure 3d. While almost all of the combined UPDRS scores were strongly correlated (as
shown in Supplementary Figure S4), correlations of the motion features with GP(Figure 3d)
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were stronger than those for the right hand (Figure 3b). When GP correlations were
considered, a medium effect size (0.3 ≤ r < 0.5) was observable in every case (Figure 3d).

This correlation study indicated that although measured centrally, GP stood out as a
consistent player in many of the moderate and strong correlations across all three motion
features of the right and left hands. However, the correlations of GP with the non-dominant
hand motion features (i.e., the left-hand features) were higher than those of the dominant
hand (i.e., the right hand).While correlations of the UPDRS sub-group bradykinesia (B)
are also observed to be high ipsilaterally for the right-hand motion features as well as
ipsilaterally and contralaterally for the left-hand motion features, this characteristic has
been established in the literature and it can be expected since the UPDRS is based on the
sides of the body and innervation of the face is also innervated bilaterally. As such, Figure 3
provides important insights, predominantly for GP correlations.

3.7. Linear Regression Model

There were numerous, significant high correlations between the GP scores and the
assessed motion features, indicating that a linear regression model could be used to predict
GP UPDRS using these motion features. Among all the multiple linear regression models
used for predicting GP scores, the models exhibiting the lowest RMSEs were identified. We
employed the 1% of 262,125 models with the lowest RMSE values (nmodels ∗ 0.01 = 2621)
for this purpose. Figure 4 shows the significance of the features used in these models,
highlighting the most noteworthy features of the most successful models. For example, the
features taken from the left-hand for pronation, supination, and combined wrist motion
were included in most of these top models. According to these results, left-handed supina-
tion frequency (f 3) is evident in 33% of the models, while left-hand supination speed (f 1) is
present in 21% of the top linear regression models with low RMSE values.

While features with large effect sizes contributed to the regression models, it is impor-
tant to control for model accuracy. As a result, the prediction accuracy of the best performing
models among the 0.1% of all models (i.e., 262 models out of 262,125) was evaluated using
Monte Carlo cross-validations using three different training versus test sample percentages:
90%, 75%, and 50% for training (versus 10%, 25%, and 50% for testing). The mean RMSE val-
ues for the trained models against the expected results were as follows: mean(RMSE90) =
1.37± 0.05, mean(RMSE75) = 1.44 ± 0.06, mean(RMSE50) = 1.60 ± 0.10. Upon further
examination of the UPDRS scores for the GP subgroup, it became apparent that it was
a sum of four measurements on a five-point scale. In computing RMSE errors as a ratio
of the maximum GP score, the following error percentages were obtained: 6.85%, 7.18%,
and 7.98% with the three different training sets, respectively. Hypothetically, if a physi-
cian makes a one-point error in each of the four measurements in the UPDRS scores, the
physician-based error is likely to be as high as 20%. In other words, the human error in
GP scores may be much higher in comparison to the errors of our linear regression models.
After examining our data, we found one UPDRS evaluation for which the two physicians
disagreed, resulting in a four-point difference between their scores. For the rest of the
sessions, however, there was a smaller UPDRS score difference between the two physicians
(mean(dUGP) = 1.06± 0.82). Based on a percentage conversion of the total GP score, the
percent deviation had a mean(dU%

GP) of 5.31± 4.10%, which was on par with the RMSE
error levels.

When considering the co-occurrence of some of the f1, f2 and f3 features in multiple
rows of the top 1% of the linear regression models in Figure 4, one wonders if these
features might be linearly related, and may thus be able to be combined through principal
component analysis (PCA).
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Figure 4. List of the features in top 1% (2621) of the regression models with lowest RMSE, ordered
with respect to increasing RMSE (range: 1.20–1.24) (rows: different regression models, columns:
model features; L = left hand, R = right hand from which features were extracted; white indicates
absent feature, gray indicates contributing feature, black marks the significant features; f 1, f 2, f 3 are
speed, acceleration and frequency).

4. Principal Component Analysis (PCA)

After PCA, we were able to make three observations. First, only 3 new components
(i.e., new features) are enough to explain more than 97% of the data variance. When the
individual feature contributions are calculated, it is seen that f2 is the dominant feature
followed by f1, whereas f3 has almost no contribution in all three components. Second, the
pronation- and supination-related features are greater than the combined wrist feature. In a
sense, this is an expected result since the wrist motion is the linear combination of pronation
and supination. Third, the acceleration related features, namely f2 related features, are the
most prominent contributors of the new feature space. This is reported similarly in the
previous correlation analyses.

As seen from Table 2, the f1 and f2 features are closely related and their combination
in the first three principal components reflects 97% of the variance in the data. Accordingly,
the 18 variables that represent the features in the linear regression models presented
in Figure 4 can be reduced to form the three new features (i.e., the first, second, third
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components) derived from the PCA without losing accuracy to represent the entire feature
space. However, the significance of f 3 has been prominent in the models presented in
Figure 4, even though the features related to f 3 are represented with very small weights in
the PCA. In other words, f 3 is an important independent variable to predict GP, but it is not
related to other features linearly, so it has little weight in the new features created by PCA.
Hence, in the linear regression, we could keep all of the six features related to f3 but replace
the features constructed from f 1 and f 2 with the newly generated three features from PCA,
to keep the linear regression’s predictive power high. With this reduction, the number of
features in the linear regression would be reduced to nine.

Table 2. Three components found by PCA and contribution of the components. f1 and f2 related
features are the largest components whereas f3 is always the smallest.

First Component
(Covers 87.17%)

Second Component
(Covers 9.01%)

Third Component
(Covers 2.13%)

f2_SUP_R 0.5090 f2_PRO_R 0.5835 f2_SUP_R 0.6509

f2_PRO_L 0.4509 f2_SUP_L 0.5583 f2_PRO_L 0.5245

f2_SUP_L 0.4441 f2_PRO_L 0.3377 f2_PRO_R 0.4362

f2_PRO_R 0.4267 f2_SUP_R 0.2974 f2_SUP_L 0.2566

f2_WRIST_R 0.2303 f2_WRIST_L 0.2218 f1_PRO_L 0.1435

f2_WRIST_L 0.2186 f2_WRIST_R 0.2049 f1_PRO_R 0.1080

f1_SUP_R 0.1148 f1_SUP_L 0.1176 f1_WRIST_L 0.0734

f1_WRIST_R 0.1066 f1_PRO_R 0.1094 f1_SUP_R 0.0580

f1_PRO_R 0.0977 f1_WRIST_L 0.0996 f2_WRIST_R 0.0483

f1_PRO_L 0.0890 f1_WRIST_R 0.0879 f2_WRIST_L 0.0322

f1_SUP_L 0.0884 f1_PRO_L 0.0812 f1_WRIST_R 0.0247

f1_WRIST_L 0.0880 f1_SUP_R 0.0651 f1_SUP_L 0.0110

f3_SUP_R 0.0013 f3_PRO_R 0.0015 f3_PRO_L 0.0016

f3_SUP_L 0.0011 f3_SUP_R 0.0010 f3_SUP_R 0.0015

f3_PRO_L 0.0011 f3_SUP_L 0.0009 f3_PRO_R 0.0008

f3_PRO_R 0.0010 f3_PRO_L 0.0004 f3_SUP_L 0.0002

f3_WRIST_R 0.0003 f3_WRIST_R 0.0003 f3_WRIST_L 0.0001

f3_WRIST_L 0.0003 f3_WRIST_L 0.0002 f3_WRIST_R 0.0001

5. Discussion

The present study provides evidence that GP and BA are correlated with the wrist
supination and pronation speed, acceleration and frequency of the forearm. The findings
demonstrated the potential for unilateral wrist movements to be used in the collection of
information about gait and bulbar anomalies while patients are seated (without a need for
patients to perform a sit-to-stand task). Such movements can be collected using unilateral
wrist wearables, such as smartwatches.

The three P/S movement parameters assessed in this study showed that speed or fea-
ture f1 was significantly correlated with at least one or more of the five UPDRS motor scale
subgroups (tremor, rigidity, bradykinesia, gait–postural instability, and bulbar anomalies).
More importantly, the acceleration parameter of forearm supination was correlated with GP
ability. Considering the bilateral correlation of forearm P/S acceleration with GP ability, the
role of P/S as a proxy for GP ability was evident. The results of our analysis also indicate
that P/S provides a better indication of GP when the non-dominant hand is used. This may
be due to the specialization of the dominant hand/arm for tool manipulation; therefore,
the dominant hand only supports a weak representation of global postural movements. On
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the other hand, the non-dominant hand may have maintained relatively stronger integrity
with the higher-order centers of the GP control.

Gait and posture are traditionally considered to be the abilities that allow primates
to stand on their lower limbs, and hence forearm muscles’ actions are excluded from the
concepts or scoring systems that investigate gait and posture. In this context, clinical exam-
inations including UPDRS part III for the motor functions of PD patients do not consider
forearm pronation–supination to be a proxy for GP in PD patients, but rather bradykinesia.
Evolution of locomotion in mammals, and especially adaptation processes in primates,
provides evidence that forearm flexion/extension contributes to sustaining posture and
gait stability [4–18]. The ability to maintain an erect posture during quadrupedal terrestrial
locomotion has been linked to the ability to pronate the forearm [4–17]. By selectively
retaining their supination ability, weightier mammals, such as those in the ursidae family
(e.g., bears), may maintain forearm pronation better than lighter animals, with supination
contributing to higher-order centers of gait and posture stability control [15]. Despite the
emphasized morphological and evolutionary signs of a potential correlation between P/S
motion data and GP ability, no investigations to date have assessed the potential contribu-
tions of P/S to GP ability. Accordingly, in the present study, we investigated the potential
correlation between P/S and GP ability using different movement parameters such as
speed, acceleration, and frequency. Five different components of motor functioning in PD
patients were also assessed in subgroups established previously [23,24] using the UPDRS
part III motor scaling system. With the combination of the five different components of
UPDRS and the three movement parameters, we provided novel insights into potential
correlations of P/S. In the present study, the UPDRS part III (motor scale) was used to score
bilateral motor symptoms (ipsilateral and contralateral to the dominant symptom side).
This bilateral extremity function scoring approach enabled us to have insights into the
bilateral motor condition of patient motor symptoms and their correlations with GP ability.

In addition to GP correlations, our results further emphasized a correlation between
P/S speed and BA-related UPDRS III in both forearms. It is worth noting that BA functions
provide insight into the control of bulbar center CPGs [30,31]. The BA subscore of the
UPDRS reflects dysphagia- and dysarthria-related dysfunctions, including swallowing
and speech impairments, which are coordinated sequential movements. BA functions
themselves are believed to be controlled by the CPGs [30,31], which is considered highly
active and sophisticated in primates [32]. CPGs are proposed as key players in enabling
bipedals to use quadrupedal coordination to control their gait [15,16]. It has also been
shown that the upper limb demonstrates similarities with the hind limb only in the rhythmic
movements [15,16,18,19]. Recent investigations also demonstrated the neuronal coupling
of the upper and lower limbs [33]. The propriospinal neurons with their long axons are
shown to be the link between the cervical and lumbar segments of the spinal cord [34–37].
The present study also supports the neural coupling of CPGs with the upper and lower
limb movement, in the context of rhythmic upper limb movement (P/S) parameters to be
used as a proxy to determine the BA and GP.

In addition to CPGs and spinal cord level coordination of upper and lower limbs,
cortical level coordination cannot be excluded. Multi-array cortical recordings of the human
premotor cortex demonstrated that the neurons in the hand knob area are involved in the
movement of all four limbs being not specific to the hand [21]. Future studies are needed
to investigate the spinal and/or cortical contributions to upper/lower limb coordination
and their contributions to gait maintenance based on upper limb muscle movements.

While the UPDRS III scale is an observational assessment commonly used by neurolo-
gists to determine motor functioning in PD patients, its qualitative (mild, moderate, severe)
components for scoring (0 to 4, 0 is none-normal, 4 is severe) decrease its objectivity. Given
this, numerous motion capture systems have been proposed for the objective assessment
of motor functioning in PD patients. Currently, wearable motion tracking systems for the
full-body can provide gait and posture measurements. However, wearable systems for the
forearm have been reported to produce high resolution data on tremor and bradykinesia,
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for example, but not for GP or BA. To the best of our knowledge, until now, no wearable
systems have been assessed for correlations between GP and P/S, or GP outcomes from
a single limb of a seated patient. Therefore, this study provides the first evidence of the
correlation between P/S speed and GP in patients with PD. In the future, these findings
could be used to develop applications for smart wearables that can predict G/P function
without requiring patients to stand or walk. Therefore, it may be possible to remotely
monitor GP stabilization abilities in Parkinson’s disease patients with low-cost, easy-to-use
devices, including smartwatches.

UPDRS is a subjective scoring system that is based on physicians’ physical examination
findings. Given this, we sought to minimize the role of subjective, individual physician
judgment in traditional UPDRS III scoring by incorporating mean UPDRS scores from two
neurologists. Additionally, bilateral UPDRS scoring was incorporated into our analyses
as opposed to traditional/routine, unilateral UPDRS scoring. Our interpretations were
contingent upon the physicians’ subjective UPDRS scores; in this context the results of the
present study should also be validated with data from a wearable motion tracking system,
which would provide objective GP scores in comparison to the physician-based UPDRS.
This is a potential future study to compare quantified outputs of gait and posture with
the objective features from our P/S system. The present study results are obtained in the
OFF-state of the PD patients. The OFF-state is also common in patients who are under
medication (between doses of medications and within an hour after taking oral medication)
and understanding the symptoms of the OFF-state may help physicians optimize their
medication dosages and timing. On the other hand, the outcome of the present study needs
to be investigated among the ON-state patients in future studies. The patients in the present
study are in PD H&Y states 2 or 3. As a consequence, the outcomes of the present study
may not be applicable to more severe (H&Y > 3) states of the disease. Several factors, such
as the age of onset of the disease, side affected at the time of onset of the disease, genetic
factors, and gender, could influence the results of this study. However, large scale studies
are still required in order to investigate the potential effects of these variables.

In the present study, to the best of our knowledge, we demonstrated for the first
time whether the rhythmic pronation–supination movement data from a single wrist was
correlated with gait/posture stability in PD patients in the context of the CPG integrity of
upper and lower limbs and their contribution to maintaining the gait. Future studies are
needed to reveal the neuronal networks that contribute to correlations between P/S and
GP ability. This will have significant implications for the development of wrist wearables
like smartwatches that have GP monitoring capabilities. These devices are critical for PD
because they can be utilized to monitor gait/posture stability objectively and remotely
in PD patients’ daily routine, even while users are seated. As a result of this capability,
clinicians could efficiently monitor PD patients’ GP, as well as their T, B, and provide timely
assistance to those who were experiencing GP dysfunction.

Overall, the present study demonstrated that P/S movement parameters are poten-
tially helpful in predicting GP and BA states in patients with PD. In conclusion, the results
of the present study support the prospect of using P/S speed data to understand G/P
and BA with wrist wearables, allowing objective remote monitoring of these symptoms in
the daily routine of PD patients. This may lead to remote monitoring, optimization of the
treatment, and early prevention of gait disability-related falls.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22051827/s1. Figure S1: Pearson’s correlations between the
extracted motion features from the right hand and the ipsilateral UPDRS scores from the right hand;
Figure S2: Pearson’s correlations between the extracted motion features from the left hand and the
ipsilateral UPDRS scores from the left hand; Figure S3: Pearson’s correlations between the extracted
motion features from the right hand and UPDRS scores for the left hand; Figure S4: Pearson’s
correlations between the extracted motion features from the left hand and UPDRS scores for the
right hand; Figure S5: The data analysis algorithm chart, Video S1: 3D reconstruction of a patient
performing P/S task that involves rapid, repetitive movements around the roll axis.

https://www.mdpi.com/article/10.3390/s22051827/s1
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