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Abstract: Cooperative automatic modulation classification (CAMC) using a swarm of sensors is
intriguing nowadays as it would be much more robust than the conventional single-sensing-node
automatic modulation classification (AMC) method. We propose a novel robust CAMC approach
using vectorized soft decision fusion in this work. In each sensing node, the local Hamming distances
between the graph features acquired from the unknown target signal and the training modulation
candidate signals are calculated and transmitted to the fusion center (FC). Then, the global CAMC
decision is made by the indirect vote which is translated from each sensing node’s Hamming-distance
sequence. The simulation results demonstrate that, when the signal-to-noise ratio (SNR) was given by
η ≥ 0 dB, our proposed new CAMC scheme’s correct classification probability Pcc could reach up
close to 100%. On the other hand, our proposed new CAMC scheme could significantly outperform
the single-node graph-based AMC technique and the existing decision-level CAMC method in terms
of recognition accuracy, especially in the low-SNR regime.

Keywords: cooperative automatic modulation classification (CAMC); vectorized decision metrics;
soft-decision-level fusion; graph-based automatic modulation classification; Hamming distance
sequence

1. Introduction

Automatic modulation classification (AMC) mechanisms can enable the frontend
of cognitive ratio technology by blindly identifying the modulation scheme of the trans-
mitted signal. AMC techniques are also very useful in military and civilian applications
such as cognitive radio, adaptive modulation, dynamic spectrum access, surveillance and
electronic warfare [1–6]. Generally, conventional AMC approaches can be split into two
major categories, (i) the maximum-likelihood-based (ML) approach and (ii) the feature-
recognition-based (FR) approach [7]. In practice, the FR methods are more popular than
the ML methods, as the likelihood function of the observed signal data can often be com-
plex and impossible to formulate precisely. On the other hand, the FR approach usually
involves two key steps, namely, feature extraction and modulation classification. Commonly
adopted features include wavelet-related features, cyclic spectrum, high-order statistics,
etc. [8–10]. Furthermore, the majority of AMC research works in the literature is focused
on the single-sensing-node paradigm, which is quite susceptible to bad channel conditions
and/or high noise levels [11].

In recent years, wireless sensor networks (WSNs) have been emerging as solutions
to many practical applications. Spatially distributed cooperative sensing nodes can infer
more reliable statistical information than any individual sensing node, leading to a much
more robust AMC performance [12,13]. A cooperative AMC method, though leading to a
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higher AMC accuracy than the single-sensing-node counterpart, was still rather sensitive
to individual sensing nodes’ errors [14]. A reliable cooperative automatic modulation
classification (CAMC) approach should facilitate a fusion center (FC), which fuses local
information acquired and/or produced by individual sensing nodes according to [15].
Such fusion mechanisms can be implemented at the data, feature and decision levels.
The raw signal data received by each sensing node is directly transmitted to the FC in a
data-level fusion mechanism. Although the minimum processing burden is required for
each sensing node, the data-level fusion mechanism would require a large transmission
overhead from each sensing node to the FC. In a feature-level fusion mechanism, each
sensing node independently extracts features from the received signal data and then
transmits the extracted features to the FC, which requires all sensing nodes to be highly
synchronized with each other for making the global AMC decision. The decision-level
fusion mechanisms can be further split into two categories, namely, (i) optimal hard decision
fusion (OHDF) mechanisms [16–19] and (ii) soft decision fusion (SDF) mechanisms [20]. In an
OHDF mechanism, each sensing node makes a local decision based on its extracted features
and then such a local decision is transmitted to the FC for making the global decision. In
an SDF mechanism, each sensing node extracts features, converts the extracted features
to a decision metric and transmits its decision metric to the FC; ultimately, the FC fuses
the received decision metrics from all sensing nodes and makes the global AMC decision.
Obviously, decision-level fusion mechanisms greatly reduce both the transmission overhead
from each sensing node to the FC and the computational burden of the FC. Meanwhile, to
combat the drawback whereby the OHDF mechanisms would often suffer from potential
local-decision errors, we focus on the SDF approach in this work.

In this paper, we propose a new robust CAMC method based on the vectorized soft
decision fusion (VSDF) mechanism (a new SDF scheme). In our proposed new CAMC
approach, to identify the modulation type of an unknown target signal, each sensing node
employs our graph-based AMC method, previously proposed in [21,22], to produce a
decision-metric sequence, namely, the Hamming-distance sequence between the graph
features acquired from the received signal data and all candidate modulations, and then
transmit the decision-metric sequence to the FC. Finally, the FC applies our proposed
new vectorized soft decision fusion mechanism to make the global AMC decision. The
Monte Carlo simulation results and a linear discriminant analysis (LDA) showed that, in
comparison with our CAMC method, recently proposed in [23], our proposed new CAMC
method using the vectorized soft decision fusion mechanism is much more robust in terms
of recognition accuracy, especially for low-signal-to-noise-ratio (SNR) conditions. The main
contributions of this work are summarized as follows:

• In this work, a new CAMC framework is proposed; it outperformed the conventional
single-node AMC approach, especially when individual channel conditions vary
significantly.

• A novel vectorized soft decision fusion strategy using the voting mechanism based
on the “perturbed” local normalized Hamming-distance sequences at the FC was
theoretically derived, which can avoid potential local-decision errors arising from the
OHDF mechanisms.

• By integrating the local graph-based AMC scheme at each individual sensing node
and the new vectorized soft decision fusion strategy at the FC, we designed a new
decision-level CAMC approach for distributed (decentralized) WSNs. Monte Carlo
simulations demonstrated its superiority to the existing CAMC approach.

The rest of this paper is organized as follows: Section 2 introduces the CAMC sys-
tem model in a WSN. The details of our proposed new CAMC scheme are discussed in
Section 3. Monte Carlo simulation results and the associated LDA are presented in Section 4.
Conclusion are finally drawn in Section 5.
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2. System Model

A distributed wireless sensor network composed of J sensing devices (nodes) with
an FC is facilitated to continuously identify the modulation type of an unknown target
signal, which turns out to be a discrete-time sequence s(n), n = 1, 2, . . ., N within an
arbitrary sensing interval after sampling. Let us assume that a modulation candidate set
M def

= {M1,M2, · · · ,MM} is pre-specified, where Mm represents the mth modulation
type, for m = 1, 2, . . ., M. During the kth sensing interval, the unknown target signal
sk(n) with modulationMm ∈ M is sensed by all J sensing nodes and the discrete-time
received-signal sequence xj,k(n) at the jth sensing device, for j = 1, 2, . . ., J is given by

xj,k(n) = hj,k(n)⊗ sk(n) + wj,k(n), n = 1, 2, . . . , N, (1)

where hj,k(n) denotes the discrete-time finite-impulse-response (FIR) channel filter asso-
ciated with the multipath channel corresponding to the jth sensing node; “⊗” denotes
linear convolution; wj,k(n) denotes the additive white Gaussian noise (AWGN) sequence
with zero mean and variance σ2

j,k appearing in the kth sensing interval. According to the
system model illustrated by Figure 1, each sensing node independently extracts the modu-
lation features of the unknown target signal sk(n) based on its received signal sequence
xj,k(n) within the kth sensing interval. The local modulation features are formulated as the
decision-metric sequences and are then transmitted to the fusion center of the WSN. The
global decision of the modulation schemeMm ∈M of the unknown target signal sk(n) is
eventually made by the FC based on these aggregated local decision-metric sequences.

Figure 1. The system model of our proposed new CAMC scheme based on the vectorized soft
decision fusion rule for wireless sensor networks.

3. The Proposed Novel Cooperative AMC Approach

In accordance with the system model depicted by Figure 1, our proposed cooperative
AMC approach using vectorized soft decision fusion is introduced here. By use of our graph-
based AMC approach, proposed in [21], the collection of local soft decision metrics of a
sensing node, each of which is the Hamming distance between the graph features extracted
from the received signal and those from the training signal of a particular candidate
modulation (refer to Section 3.1 below for details), can be produced and then transmitted
to the FC. Such local soft decision metrics sent by all sensing nodes are collected by the
FC to generate the weighted votes for all candidates in the modulation candidate set
M def

=
{
Mm

}M
m=1 such that the global decision can be made thereupon.

3.1. Local Graph-Based AMC Scheme

During the kth sensing interval, an N-sample signal sequence xj,k(n) is received by
the jth sensing device. Our proposed graph-based AMC method in [21] is employed by
all sensing nodes to produce local soft decision metrics. For the jth sensing device in
the kth sensing interval, the corresponding cyclic spectrum (CS) Sε

xj,k
( f ) of the received
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signal xj,k(n) is first estimated using a time-smooth algorithm called the FFT (fast Fourier
transform) accumulation method (FAM) [21], which involves 2N + 1 cyclic frequencies
ε = εd, for d = −N, −N + 1, . . ., N, according to [21]. Only a quadrant of S̄ε

xj,k
( f )

(normalized and quantized Sε
xj,k

( f )) needs to be converted to N + 1 graphs (one for each

focused cyclic frequency εd) Gεd
def
=
(
Vεd , Eεd

)
, for d = 0, 1, . . ., N, according to the graph-

mapping mechanism presented in [21]. As manifested in [21], from the noise-free training
signal of the modulation Mm ∈ M, a set of graphs can be constructed from its CS as
given by

Gm
def
=
{
Gm

ε0
,Gm

ε1
, · · · ,Gm

εN

}
, m = 1, 2, . . . , M, (2)

where Gm
εd

def
=
(
Vm

εd
, Em

εd

)
and the set of the corresponding adjacency matrices is given by

Am
def
=
{
Am

ε0
,Am

ε1
, · · · ,Am

εN

}
, m = 1, 2, . . . , M, (3)

where Am
εd

is the adjacency matrix of Gm
εd

and more relevant details can be found in [23].
Then, one can produce the modulation feature sequence Itraining

m for the mth modulation
candidateMm ∈M from Am, m = 1, 2, . . ., M by use of the Kullback–Leibler divergence
of the dominant entries in the adjacency matrices in Am. Furthermore, for all modulation
candidates in M, a set of modulation feature sequences Itraining def

=
{
Itraining

1 , Itraining

2 , · · · , Itraining

M
}

can be formed. It should be pointed out that Itraining remains unchanged across all sensing
intervals and thus can be constructed and stored at all sensing nodes in advance.

During the test stage in the kth sensing interval, a set of graphs G̃k,j can also be
constructed from the corresponding CS at the jth sensing node using the above-stated
approach. The modulation feature sequences for the test signal can thus be formed as Itest

m,k,j,

m = 1, 2, . . ., M from the corresponding adjacency-matrix set Ãk,j using the aforementioned
procedure for producing the training modulation feature sequences. Note that both Itest

m,k,j
and Itraining

m , m = 1, 2, . . ., M have the same sequence length L, while pertinent details can
also be found in [22]. Once the modulation feature sequences Itest

m,k,j, m = 1, 2, . . ., M
for the test signal data are built by the jth sensing node in the kth sensing interval, the
“normalized Hamming distance” (NHD) H̄m,j,k between the feature sequence produced from
the mth modulation candidate during training and that produced from the test signal can
be calculated by

H̄m,j,k
def
=
H
(
Itraining

m , Itest
m,k,j

)
L

, (4)

where H
(
Itraining

m , Itest
m,k,j

)
denotes the Hamming distance between Itraining

m and Itest
m,k,j. For all

modulation candidates in M, a set of NHDs, namely, Hj,k =
{
H̄1,j,k, H̄2,j,k, · · · , H̄M,j,k

}
,

can be formed at the jth sensing device in the kth sensing interval and transmitted to the
FC for finally reaching the global CAMC decision.

3.2. New Vectorized Feature Fusion Rule

Since the target source emits signals to spatially distributed sensing devices through
different transmission paths, which lead to different channel conditions for different sensing
nodes, the local AMC accuracies across individual sensing nodes are often very different.
Such erroneous local decisions would negatively influence the global decision made by
the FC. To combat this drawback, we propose a novel vectorized soft decision fusion strategy,
which may mitigate the negative effect of poor local channel conditions.

In the kth sensing interval, all local NHD sequences Hj,k, j = 1, 2, . . ., J , which are
built by the individual sensing nodes using the graph-based AMC approach discussed
in Section 3.1, are transmitted to the FC. At the FC, a small flooring constant ζ is intro-
duced to those zero-valued NHDs in Hj,k, j = 1, 2, . . ., J , such that Hj,k is converted to
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Ĥj,k
def
=
{
Ĥ1,j,k, Ĥ2,j,k, · · · , ĤM,j,k

}
, which is the “perturbed” local NHD sequence resulting

from the jth sensing node in the kth sensing interval, where

Ĥm,j,k
def
=

{
H̄m,j,k, if H̄m,j,k 6= 0,
ζ, if H̄m,j,k = 0,

(5)

where ζ is the preset flooring constant. According to our heuristic experience, setting ζ to
be less than or equal to 10−5 can lead to promising performance. Hence, ζ is fixed to be
10−5 here. Then, one can determine the vote of the jth sensing node for the mth modulation
candidateMm ∈M as

Vm,j,k
def
=

1
Ĥm,j,k

, where Ĥm,j,k ∈ Ĥj,k. (6)

Thus, in the kth sensing interval, the overall vote forMm ∈M over all sensing nodes
can be calculated as

Ṽm,k
def
=
J
∑
j=1
Vm,j,k, (7)

and the collection of votesVk
def
=
{
Ṽ1,k, Ṽ2,k, · · · , ṼM,k

}
corresponding to the entire modulation

candidate set M can be subsequently obtained. Consequently, the global decision on the
modulation type in the kth sensing interval can be made by picking the modulation
candidate in M with the maximum vote as expressed by

Dk = argmax
Mm∈M

Ṽm,k, (8)

It should be pointed out that, if multiple modulation schemes in M obtain the same
highest vote in a certain sensing interval, any of them can be picked randomly as the
global decision.

In summary, the details of our proposed new CAMC approach using vectorized soft
decision fusion for WSNs can be manifested by Algorithm 1 below.

Algorithm 1 Our proposed new CAMC scheme using vectorized soft decision fusion
for WSNs.
Input: a sensing interval index k, the signal sequences xj,k(n) received by the jth sensing

node in the kth sensing interval, j = 1, 2, . . ., J , the number of sensing nodes within
the WSN in the kth sensing interval, the preset flooring constant ζ and the modulation
candidate set M def

= {M1,M2, · · · ,MM}.
Output: the global decision Dk for the kth sensing interval.

1: In the kth sensing interval, generate the local NHD sequences Hj,k, j = 1, 2, . . ., J ,
for all modulation candidates in M, according to the graph-based AMC technique
proposed in [22];

2: Convert Hj,k to the “perturbed” local NHD sequence Ĥj,k, for j = 1, 2, . . ., J , according
to Equation (5);

3: Determine the vote of the jth sensing node for the mth modulation candidateMm ∈M
based on the corresponding element of Ĥj,k using Equation (6);

4: Calculate the overall vote for Mm ∈ M over all sensing nodes in the kth sensing
interval, Ṽm,k, according to Equation (7);

5: Collect all votes Ṽm,k, for m = 1, 2, . . ., M to form the set of votes Vk
def
={

Ṽ1,k, Ṽ2,k, · · · , ṼM,k
}

for all modulation candidates in M;
6: Make the global decision Dk based on the set of votes Vk corresponding to the entire

modulation candidate set M according to Equation (8);
7: return Dk
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3.3. Computational Complexity Analysis

The computational complexity of our proposed new CAMC approach using vectorized
soft decision fusion for WSNs is theoretically investigated here. According to the framework
of our proposed CAMC approach, its computational complexity involves three parts,
including the complexities required for the local graph-based AMC, the vote generation
and the soft decision fusion based on voting. During the kth sensing interval, the graph-
based AMC technique is invoked by each sensing node to generate the set of NHDs.
According to [22], the computational complexity of the single-node graph-based AMC
method is O(N2) arithmetic operations, where N denotes the sample size of the received
signal at each local sensing node. Then, the sets of NHDs generated by local sensing nodes
are conveyed to the FC and the votes corresponding to M are subsequently calculated,
which involvesO(1) arithmetic operations. The global decision is made at the FC by voting,
where the computational complexity of this soft decision fusion is O(1). Thus, the overall
computational complexity of our proposed new CAMC approach using vectorized soft
decision fusion (i.e., VSDF CAMC scheme) for WSNs is O(N2) +O(1).

On the other hand, the computational complexities of the exiting CAMC method using
the credit-based consensus fusion rule presented in [23] and the optimal hard-decision
fusion (OHDF) CAMC approach proposed in [19] are also estimated for comparison. For
the exiting credit-based CAMC method in [23], its computational complexity can be directly
divided into three parts, including the complexity required for the AMC based on local
graphs, the local decision making and the ultimate decision fusion based on weighted
voting. The corresponding computational complexities of these three parts areO(N2),O(1)
and O(1), respectively. The overall computational complexity of the credit-based CAMC
approach in [23] is O(N2) +O(1). Meanwhile, the OHDF CAMC approach also consists
of three parts, including the complexities required for the local graph-based AMC, the TFC
(tentative fusion center) selection and the decision fusion based on weighted voting. The
corresponding computational complexities of these three parts are O(N2), O(N) and O(1),
respectively. The overall computational complexity of the OHDF CAMC approach in [19]
is thus O(N2) +O(N) +O(1). Finally, the computational complexities of our proposed
new VSDF CAMC approach, the existing credit-based CAMC method and the existing
OHDF CAMC method are compared by Table 1. It is conspicuous that our proposed new
VSDF CAMC approach possesses the same overall computational complexity as the exiting
credit-based CAMC method proposed in [23] and can effectively reduce the computational
complexity in comparison with the existing OHDF CAMC technique proposed in [19].

Table 1. Computational complexities of our proposed new VSDF CAMC approach, the existing
credit-based CAMC method in [23] and the existing OHDF CAMC method in [19].

Method Constituents Computational
Complexity

Overall
Computational

Complexity

New VSDF CAMC

Local graph-based
AMC O(N2)

O(N2) +O(1)Individual vote
generation O(1)

Soft decision fusion O(1)

Credit-based CAMC

Local graph-based
AMC O(N2)

O(N2) +O(1)Local decision
making O(1)

Decision fusion O(1)

OHDF CAMC

Local graph-based
AMC O(N2)

O(N2) +O(N) +O(1)TFC selection O(N)
Decision fusion O(1)
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3.4. Transmission-Overhead Analysis

The transmission overheads required by our proposed new VSDF CAMC approach
and the two existing methods presented in [19,23] were investigated under a WSN con-
taining the same number of sensing nodes. Let us assume that the WSN consists of J
sensing nodes and the number of modulation candidates in M is M. In the kth sensing
interval, according to our proposed new VSDF CAMC method, all sensing nodes transmit
their local NHD sequences corresponding to all of the modulation candidates in M to a
separate FC and the global CAMC decision is made by the weighted vote which results
from all sensing nodes’ NHD sequences. The total number of the required transmissions
for global decision making is thus J ×M. Meanwhile, the existing credit-based CAMC
method proposed in [23] undertakes CAMC at a separate FC based on the local decisions
generated by all of the sensing nodes within the WSN. Since each sensing node transmits
its own decision to the FC only once during each sensing interval, the total number of the
required transmissions for decision fusion is J . On the other hand, the existing OHDF
CAMC method proposed in [19] dynamically selects a sensing node in the WSN as a tenta-
tive fusion center (TFC) to make the global decision according to the local identification
decisions transmitted by other sensor nodes. The total number of transmissions in [19] is
J − 1. In summary, the total transmission overheads of our proposed new VSDF CAMC
approach and its counterparts are listed in Table 2. According to Table 2, the transmission
overhead resulting from our proposed new VSDF CAMC approach is higher than the two
existing counterparts. However, such extra cost in transmission overhead is worthwhile for
the classification performance improvement.

Table 2. The numbers of required transmissions of our proposed VSDF CAMC approach, the existing
credit-based CAMC Method in [23], and the existing OHDFCAMC method in [19] during one
sensing interval.

New VSDF CAMC Credit-Based CAMC OHDF CAMC

Number of Sensing
Nodes J J J

Number of
Modulation
Candidates

M M M

Number of
Transmissions JM J J − 1

4. Numerical Simulation and Comparative Study

In this section, we present the results of our proposed new CAMC approach using
the vectorized soft decision fusion rule evaluated via Monte Carlo simulations, in terms
of correct classification probability Pcc versus average signal-to-noise ratio (SNR) η over all
sensing nodes (since the noise power at each node may be different from another). Generally
speaking, there are M modulation candidates for classification, which are represented by
the set {M1,M2, · · · ,MM}. Thus, Pcc can be formulated as

Pcc
def
=

M

∑
m=1

P
(
Mm | Mm

)
PMm , (9)

where PMm denotes the probability of the modulationMm occurrence and P
(
Mm | Mm

)
represents the correct classification probability when the modulationMm is transmitted.

Our method was also compared with the existing CAMC technique (we did not
compare the existing soft-decision-based CAMC method in [20], because the fourth-order
cumulant method therein cannot classify constant-modulus signals) using the credit-based
consensus fusion rule proposed in [23] and the existing OHDF CAMC method in [19] and
the advantage of our proposed new CAMC method was also theoretically studied using
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the linear discriminant analysis (LDA). Here, the modulation candidate set M employed in
Monte Carlo simulations included six common modulation types, namely, BPSK (binary
phase-shift keying), 2FSK (binary frequency-shift keying), 4FSK (quadrature frequency-
shift keying), QPSK (quadrature phase-shift keying), OQPSK (offset quadrature phase-shift
keying) and MSK (minimum shift keying); consequently, M = 6. A wireless sensing
network with centralized architecture consisted of a fusion center (FC) in tandem with nine
sensing-devices and there were different multipath Rayleigh fading channels between the
target signal and the nine sensing nodes (J = 9). These fading channels were characterized
as shown in Table 3. In each trial of the Monte Carlo simulation, an unknown target signal
s(n) with a modulation type defined in the preset modulation candidate set M and the noise
power arising from the propagation channel were randomly generated by the computer,
where the sample size of s(n) was chosen to be 10, 000 and the SNR of the individual
received signal could be randomly set in the range of [−20 dB, 20 dB]. For the graph-based
AMC method at local sensing nodes, the FFT window size of the composite demodulation in
FAM was set to 32. For feature extraction of the received signals with different modulations,
we adopted the NHD sequence as the feature vector for each modulation of the candidate
set M and the length of the NHD sequence (feature vector) was L = 1; the total number
of features generated by all sensing nodes considered here was L×M×J = 54. For the
same system set-up, a thousand Monte Carlo trials were performed to obtain the average
AMC accuracies with respect to different average SNRs.

Table 3. Delay and power profiles for multipath Rayleigh fading channels for individual sens-
ing nodes.

Parameters Path Time Delays (ms) Path Power Profile (dB)

Channel 1 [0.2, 2, 4] [0,−2,−6]
Channel 2 [0.4, 0.6, 8] [−2,−4,−6]
Channel 3 [0.04, 0.2, 8] [−2,−4,−10]
Channel 4 [0.08, 0.4, 0.2, 1] [0,−2,−4,−8]
Channel 5 [0.04, 0.08, 4] [−2,−4,−10]
Channel 6 [0.01, 0.3, 6] [0,−8,−16]
Channel 7 [0.2, 6, 8] [0,−10,−20]
Channel 8 [0.02, 0.4, 0.8, 6] [−2,−6,−10,−16]
Channel 9 [0.06, 0.8, 2] [−4,−6,−12]

4.1. Effectiveness of Our Proposed CAMC Method

Our proposed novel CAMC scheme was compared with the aforementioned CAMC
method using credit-based consensus fusion proposed in [23]. Here, the network topology
and other simulation parameters remained the same as those adopted in [23], which are
also listed in Table 4. For comparing our proposed new VSDF CAMC scheme and the
existing CAMC method using credit-based consensus fusion, the respective probabilities
of correct classification Pcc over the entire modulation candidate set M in the presence
of Rayleigh multipath channels characterized by Table 3 and AWGN are listed in Table 4
and depicted in Figure 2. According to Figure 2, these two CAMC methods could both
reach up to Pcc ≈ 100% (perfect AMC accuracy) when η ≥ 2 dB. Our proposed new
CAMC approach (denoted by “New Scheme” in the figure) could lead to Pcc = 76% when
η ≥ −10 dB. However, in order to achieve the same accuracy, the existing CAMC method
using credit-based consensus fusion (denoted by “CBC CAMC Method” in the figure)
required the average SNR to be at least −7 dB. It is obvious that our proposed new CAMC
scheme remarkably outperformed the existing decision-level CAMC method proposed
in [23], especially for low average SNRs.
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Figure 2. Probabilities of correct classification, Pcc, versus average SNR for CAMC over the modula-
tion candidate set M def

= {BPSK, OQPSK, QPSK, 2FSK, 4FSK, MSK}.

Table 4. The parameter setting and the Pcc’s of our proposed CAMC approach and the existing CBC
CAMC method in [23].

Parameter Setting

Number of Sensing Nodes J 9

Modulation Candidate Set M BPSK, OQPSK, QPSK,
2FSK, 4FSK, MSK

Flooring Constant ζ 10−5

FFT Window Size in FAM 32

Sample Size 10, 000

Number of Monte Carlo Trials 1000

Average SNR Range [−20 dB:2 dB:20 dB]

Simulation Results

Average SNR Pcc for the Proposed
CAMC Method

Pcc for the Existing
CBC CAMC Method

−20 dB 0.4070 0.2332
−18 dB 0.4393 0.2548
−16 dB 0.4852 0.3457
−14 dB 0.5527 0.4517
−12 dB 0.6482 0.5697
−10 dB 0.7583 0.6848
−8 dB 0.8450 0.7692
−6 dB 0.9168 0.8557
−4 dB 0.9595 0.9155
−2 dB 0.9823 0.9540
0 dB 0.9912 0.9787
2 dB 0.9930 0.9843
4 dB 0.9965 0.9890
6 dB 0.9953 0.9917
8 dB 0.9967 0.9903
10 dB 0.9962 0.9915
12 dB 0.9960 0.9920
14 dB 0.9980 0.9928
16 dB 0.9970 0.9907
18 dB 0.9963 0.9907
20 dB 0.9973 0.9912



Sensors 2022, 22, 1797 10 of 19

Meanwhile, our proposed new VSDF CAMC scheme was also compared with the
existing OHDF CAMC method proposed in [19], since our proposed new VSDF CAMC
approach can be directly employed to undertake CAMC by a WSN. Here, the modulation
candidate set and the simulation conditions remained the same as those adopted in [19].
The respective Pcc values over the entire modulation candidate set M in the presence of
Rayleigh multipath channels characterized by Table 3 and AWGN are depicted in Figure 3
and listed in Table 5. According to Figure 3, the Pcc values of our proposed new VSDF
CAMC approach and the existing OHDF CAMC method proposed in [19] (denoted by
“New Scheme” and “OHDF CAMC Method” in the figure, respectively) could both reach
up close to 100% (perfect AMC accuracy) when η ≥ 2 dB. However, the Pcc resulting from
our proposed new VSDF CAMC approach was significantly higher than that produced by
the existing OHDF CAMC method in low average SNRs (η ≤ −5dB). Thus, the recognition
accuracy achieved by our proposed new VSDF CAMC scheme was superior to that resulting
from the existing OHDF CAMC method in [19], especially for low average SNRs.
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Figure 3. Probabilities of correct classification, Pcc, versus average SNR for CAMC over the modula-
tion candidate set M def

= {BPSK, OQPSK, QPSK, 2FSK, 4FSK, MSK}.

4.2. Performance Comparison between Our Proposed New CAMC Scheme and the Existing
Single-Node AMC Methods

To demonstrate the superiority of our proposed new VSDF CAMC approach to the
existing single-node AMC methods in terms of classification accuracy, our proposed novel
CAMC approach using the vectorized soft decision fusion rule was compared with the
existing single-node graph-based AMC method in [22] and the existing single-node AMC
scheme based on high-order statistics (HOS) in [24].

Table 5. The parameter setting and the Pcc’s of our proposed CAMC Approach and the existing
OHDF CAMC method in [19].

Parameter Setting

Number of Sensing Nodes J 9

Modulation Candidate Set M BPSK, OQPSK, QPSK, 2FSK,
4FSK, MSK

FFT Window Size in FAM 32

Sample Size 10, 000

Number of Monte Carlo Trials 1000

Average SNR Range [−20 dB:2 dB:20 dB]



Sensors 2022, 22, 1797 11 of 19

Table 5. Cont.

Simulation Results

Average SNR Pcc for the Proposed
CAMC Method

Pcc for the Existing
OHDF CAMC

−20 dB 0.4070 0.2332
−18 dB 0.4393 0.2548
−16 dB 0.4852 0.3457
−14 dB 0.5527 0.4517
−12 dB 0.6482 0.5697
−10 dB 0.7583 0.6848
−8 dB 0.8450 0.7692
−6 dB 0.9168 0.8557
−4 dB 0.9595 0.9155
−2 dB 0.9823 0.9540
0 dB 0.9912 0.9787
2 dB 0.9930 0.9843
4 dB 0.9965 0.9890
6 dB 0.9953 0.9917
8 dB 0.9967 0.9903
10 dB 0.9962 0.9915
12 dB 0.9960 0.9920
14 dB 0.9980 0.9928
16 dB 0.9970 0.9907
18 dB 0.9963 0.9907
20 dB 0.9973 0.9912

The probabilities of correct classification Pcc over the entire modulation candidate set
M in the presence of Rayleigh multipath channels characterized by Table 3 and AWGN are
listed in Table 6 and depicted in Figure 4.
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Figure 4. Probabilities of correct classification, Pcc, versus average SNR for our proposed
new VSDF CAMC approach and the existing single-node graph-based AMC method in [22] in
the presence of multipath Rayleigh channels and AWGN over the modulation candidate set
M def

= {BPSK, OQPSK, QPSK, 2FSK, 4FSK, MSK}.
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Table 6. The parameter setting and the Pcc’s of our proposed CAMC approach and the existing
single-node graph-based AMC method in [22].

Parameter Setting

Parameter The Proposed
CAMC Method

Single-Node
Graph-Based AMC

Number of Sensing
Nodes J 9 1

Modulation
Candidate Set M

BPSK, OQPSK, QPSK,
2FSK, 4FSK, MSK

BPSK, OQPSK, QPSK,
2FSK, 4FSK, MSK

Flooring Constant ζ 10−5 -

FFT Window Size in
FAM 32 32

Sample Size 10, 000 10, 000

Number of Monte
Carlo Trails 1000 1000

Average SNR Range [−20 dB:2 dB:20 dB] [−20 dB:2 dB:20 dB]

Simulation Results

Average SNR Pcc for the Proposed
CAMC Method

Pcc for Single-Node
Graph-Based AMC

−20 dB 0.4070 0.1979
−18 dB 0.4393 0.2215
−16 dB 0.4852 0.2600
−14 dB 0.5527 0.3164
−12 dB 0.6482 0.3920
−10 dB 0.7583 0.4879
−8 dB 0.8450 0.5776
−6 dB 0.9168 0.6626
−4 dB 0.9595 0.7335
−2 dB 0.9823 0.7816
0 dB 0.9912 0.8123
2 dB 0.9930 0.8828
4 dB 0.9965 0.8367
6 dB 0.9953 0.8437
8 dB 0.9967 0.8481
10 dB 0.9962 0.8474
12 dB 0.9960 0.8487
14 dB 0.9980 0.8497
16 dB 0.9970 0.8528
18 dB 0.9963 0.8537
20 dB 0.9973 0.8528

According to Figure 4, the Pcc values produced by our proposed new VSDF CAMC
approach (denoted by “New Scheme” in the figure) could always converge to 100% when
η ≥ 0 dB. On the contrary, the Pcc values resulting from the single-node graph-based AMC
method (denoted by “Graph-based AMC Method”in the figure) could not reach up to 100%
across the entire average SNR range. Thus, our proposed new CAMC approach could
significantly improve the individual local AMC accuracy.

Meanwhile, the existing single-node HOS-based AMC method in [24] was also com-
pared with our proposed new CAMC scheme here. According to [24], the HOS-based
AMC method has to utilize a huge number of signal samples to reliably estimate the
HOS parameters of the received signal, including c40, c42 and c2

21, which are adopted
to facilitate the modulation features f1 and f5 for AMC. Refer to [24] for details. Since
the modulation candidate set for the existing HOS-based AMC method in [24] can only
contain three modulation types, namely, BPSK, 2FSK and 4FSK, we had to reduce the
modulation candidate set M̃ to include these three types only for fair comparison, such that
M̃ def

=
{
M̃1,M̃2,M̃3

}
. The probabilities of correct classification Pcc for the entire modula-
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tion candidate set M̃ in the presence of Rayleigh multipath channels specified by Table 3
and AWGN are listed in Table 7 and delineated by Figure 5. According to Figure 5, the
existing single-node HOS-based AMC method (denoted by “HOS-based AMC Method” in
the figure) could not lead to any promising result, even in high average SNR conditions.
On the other hand, our proposed new VSDF CAMC scheme (denoted by “New Scheme” in
the figure) could reach up to 100% when the average SNR was as low as −6 dB.
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Figure 5. Probabilities of correct classification, Pcc, versus average SNR for our proposed new VSDF
CAMC approach and the existing single-node HOS-based AMC method in [24] in the presence of mul-
tipath Rayleigh channels and AWGN over the modulation candidate set M̃ def

= {BPSK, 2FSK, 4FSK}.

Thus, our proposed new VSDF CAMC scheme remarkably outperformed the existing
single-node graph-based and HOS-based AMC methods.

Table 7. The parameter setting and the Pcc’s of our proposed CAMC approach and the existing
HOS-based AMC method in [24].

Parameter Setting

Parameter The Proposed
CAMC Method

Single-Node
HOS-Based AMC

Number of Sensing
Nodes J 9 1

Modulation
Candidate Set M BPSK, 2FSK, 4FSK BPSK, 2FSK, 4FSK

Flooring Constant ζ 10−5 -

FFT Window Size in
FAM 32 32

Sample Size 10, 000 12, 000

Number of Monte
Carlo Trails 1000 1000

Average SNR Range [−20 dB:2 dB:20 dB] [−20 dB:2 dB:20 dB]
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Table 7. Cont.

Simulation Results

Average SNR Pcc for the Proposed
CAMC Method

Pcc for Single-Node
HOS-Based AMC

−20 dB 0.4070 0.3317
−18 dB 0.4393 0.3297
−16 dB 0.4852 0.3243
−14 dB 0.5527 0.3173
−12 dB 0.6482 0.3010
−10 dB 0.7583 0.2867
−8 dB 0.8450 0.2817
−6 dB 0.9168 0.2853
−4 dB 0.9595 0.2957
−2 dB 0.9823 0.3060
0 dB 0.9912 0.3293
2 dB 0.9930 0.3577
4 dB 0.9965 0.3760
6 dB 0.9953 0.3613
8 dB 0.9967 0.3627

10 dB 0.9962 0.3570
12 dB 0.9960 0.3603
14 dB 0.9980 0.3703
16 dB 0.9970 0.3640
18 dB 0.9963 0.3583
20 dB 0.9973 0.3770

4.3. Comparative Study between Our Proposed New CAMC Scheme and the Existing
CAMC Method

Since the global decisions resulting from our proposed new CAMC approach using the
vectorized soft decision fusion rule and the existing decision-level CAMC technique using
credit-based consensus fusion in [23] are both based on voting, the discrepancy between
the corresponding voting mechanisms to these two approaches in a certain sensing interval
is illustrated by Figure 6. Here, the topology of WSN and the modulation candidate set
M were retained. At the top of Figure 6, the nine sensing nodes and their votes for the
six modulation candidates resulting from the two aforementioned approaches (denoted
by “New Scheme” and “Existing Method”, respectively) in the kth sensing interval are
shown by a 9× 6 matrix, where the number of dots in the cell at row j and column m, j = 1,
2, . . ., 9, m = 1, 2, . . ., 6 denotes the vote contributed by the jth sensing node for the mth
modulation candidateMm. Besides, the bar plots at the bottom of Figure 6 demonstrate the
corresponding vote ratios (the total vote for a modulation candidate over all sensing nodes
divided by the sum of the total votes over all candidates) for the modulation candidates
in M to the two aforementioned methods. According to Figure 6, although the total votes
for any modulation candidate resulting from these two approaches are different, two
CAMC methods may still reach the same global decision (M3, as illustrated by Figure 6)
corresponding to the maximum vote ratio. By use of our proposed new CAMC method,
the maximum vote ratio corresponding to the modulation candidateM3 turned out to
be 0.9, while the second largest vote ratio corresponding to M2 was 0.036. Using our
proposed new CAMC scheme, the difference in the vote ratios between the identified
modulation candidate and the runner-up candidate is as large as 0.864. On the other hand,
such difference resulting from the existing method in [23] is only 0.45. Thus, our proposed
new CAMC approach could lead to more reliable voting results for robust global decision
making than the existing CAMC method in [23] without the vectorized soft decision
fusion mechanism.
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Figure 6. Illustration of different voting results from our proposed new CAMC scheme and the
existing CAMC method in [23] for a certain sensing interval.

Furthermore, we employed the multi-class linear discriminant analysis (LDA) in [25]
to compare the different voting results across twenty-one consecutive sensing intervals
resulting from the two aforementioned CAMC methods. In the kth sensing interval,
one can collect all votes Vm,j,k, m = 1, 2, . . ., M and j = 1, 2, . . ., J at the FC and

Vm,k
def
=
[
Vm,1,k,Vm,2,k, · · · , Vm,J ,k

]T denotes the vote vector corresponding to the modula-
tion candidateMm ∈ M. Then, the intra-class divergence matrix Sw(k) and inter-class
divergence matrix Sb(k) can be obtained as

Sw(k) def
=

M

∑
m=1

(
Vm,k − µm,k 1̄

)(
Vm,k − µm,k 1̄

)T
, (10)

Sb(k)
def
=

M

∑
m=1

(
U k − µm,k 1̄

)(
U k − µm,k 1̄

)T
, (11)

where

µm,k
def
=

1
J
J
∑
j=1
Vm,j,k, (12)

represents the average vote for the modulation candidateMm ∈M in the kth sensing interval,

U k
def
=

1
M

M

∑
m=1
Vm,k, (13)

represents the average-vote vector over the entire modulation candidate set M in the
kth sensing interval and 1̄ denotes the J × 1 all-one vector. Note that Sw(k) is usually
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considered a non-singular matrix in LDA. However, Sw(k) is not necessarily a full-rank
matrix in practice, which should be replaced by the total scatter matrix St(k) as given by

St(k)
def
= Sw(k) + Sb(k). (14)

Consequently, the objective for LDA is given by

Wopt def
= argmax

W

WTSb(k)W
WTSt(k)W

, (15)

where W is a 1×J optimal projection vector according to [26]. We define

Γopt def
= max

W

WTSb(k)W
WTSt(k)W

, (16)

where Γopt reflects the average normalized inter-class distance (discrepancy) over the total
votes for individual modulation candidates. The larger Γopt a CAMC scheme results in,
the better distinguishability it possesses. According to the total votes produced by our
proposed new CAMC approach and the existing CAMC method in [23], the corresponding
metrics Γopt were computed versus the average SNR and are depicted in Figure 7. According
to Figure 7, the metric Γopt resulting from our proposed new CAMC method (denoted by
“New Scheme” in the figure) was always significantly larger than that resulting from the
existing CAMC method (denoted by “Existing Method” in the figure) in [23], which means
that our proposed new CAMC scheme had much better modulation distinguishability than
the existing CAMC scheme in [23]. The advantage of our proposed new CAMC scheme as
shown by Figure 2 is thus manifested by Figure 7 and Table 8.
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Figure 7. Comparison of Γopt resulting from our proposed new CAMC scheme and the existing
CAMC method in [23] based on LDA across twenty-one consecutive sensing intervals.
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Table 8. The parameter setting and Γopt resulting from our proposed CAMC approach and the existing
CAMC method in [23].

Parameter Setting

Number of Sensing Nodes J 9

Modulation Candidate Set M BPSK, OQPSK, QPSK,
2FSK, 4FSK, MSK

Flooring Constant ζ 10−5

FFT Window Size in FAM 32

Sample Size 10, 000

Number of Monte Carlo Trails 1000

Average SNR Range [−20 dB : 2 dB : 20 dB]

Simulation Results

Average SNR Γopt for the Proposed
CAMC Method

Γopt for the Existing
CAMC Method

−20 dB 0.4033 0.1981
−18 dB 0.4224 0.2024
−16 dB 0.4503 0.2161
−14 dB 0.4891 0.2389
−12 dB 0.5348 0.2683
−10 dB 0.5829 0.3137
−8 dB 0.6288 0.3617
−6 dB 0.6729 0.4244
−4 dB 0.7093 0.4889
−2 dB 0.7355 0.5510
0 dB 0.7538 0.5971
2 dB 0.7657 0.6252
4 dB 0.7718 0.6374
6 dB 0.7726 0.6534
8 dB 0.7761 0.6600
10 dB 0.7782 0.6584
12 dB 0.7787 0.6638
14 dB 0.7794 0.6637
16 dB 0.7799 0.6641
18 dB 0.7800 0.6606
20 dB 0.7804 0.6724

5. Conclusions

In this paper, we propose a new cooperative automatic modulation classification
(CAMC) method using the vectorized soft decision fusion rule. At the training stage, a
training graph-feature sequence is generated from each modulation candidate. During the
test, in a sensing interval, each local sensing node first produces the test graph-feature se-
quence corresponding to each modulation candidate. The normalized Hamming distances
between the training and test graph-feature sequences corresponding to all modulation can-
didates are collected and transmitted to the fusion center. Finally, the fusion center makes
the global decision based on the new vectorized soft decision fusion rule. According to
Monte Carlo simulations, our proposed new CAMC scheme could lead to Pcc = 76%, even
when η ≥ −10 dB, and reach up to Pcc ≈ 100%, when η ≥ 0 dB. Based on the linear dis-
criminant analysis, the average classification accuracy of our proposed new CAMC method
was higher than that of the existing CAMC method using the credit-based consensus fusion
rule, especially for low signal-to-noise ratios.
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