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Abstract: In the near future, LHC experiments will continue future upgrades by overcoming the tech-
nological obsolescence of the detectors and the readout capabilities. Therefore, after the conclusion of
a data collection period, CERN will have to face a long shutdown to improve overall performance, by
updating the experiments, and implementing more advanced technologies and infrastructures. In
particular, the largest LHC experiment, i.e., ATLAS, will upgrade parts of the detector, the trigger, and
the data acquisition system. In addition, the ATLAS experiment will complete the implementation
of new strategies, algorithms for data handling, and transmission to the final storage apparatus.
This paper presents an overview of an upgrade planned for the second half of this decade for the
ATLAS experiment. In particular, we show a study of a novel pattern recognition algorithm used in
the trigger system, which is a device designed to provide the information needed to select physical
events from unnecessary background data. The idea is to use a well known mathematical transform,
the Hough transform, as the algorithm for the detection of particle trajectories. The effectiveness of
the algorithm has already been validated in the past, regardless of particle physics applications, to
recognize generic shapes within images. On the contrary, here, we first propose a software emulation
tool, and a subsequent hardware implementation of the Hough transform, for particle physics ap-
plications. Until now, the Hough transform has never been implemented on electronics in particle
physics experiments, and since a hardware implementation would provide benefits in terms of
overall Latency, we complete the studies by comparing the simulated data with a physical system
implemented on a Xilinx hardware accelerator (FELIX-II card). In more detail, we have implemented
a low-abstraction RTL design of the Hough transform on Xilinx UltraScale+ FPGAs as target devices
for filtering applications.

Keywords: Hough transform; high energy physics; particle recognition; FPGAs

1. Introduction

The High-Energy Physics Experiments (HEPE) at the Large Hadron Collider (LHC) at
CERN in Geneva are approaching a high-luminosity Phase-II upgrade [1]. In an acquisition
process, the data are received from the detectors and compose the physical Events [2]. In
case these data belong to a certain particle interaction, within a certain time interval, they
must be fully collected and set aside from the background. The Tracker [3,4], which is part
of a more complex detection, and pattern recognition system, is the apparatus that reads
the detectors closest to the interaction point, and reconstructs the particle tracks. In this
environment, the Trigger [5] electronic system selects the useful data from background and,
in general, this task of selecting a few expected events, from a large amount of unnecessary
Events, is performed through a pattern recognition process. Here, this recognition task is
studied using the Hough transform (HT) [6,7] and aims at the latest generation of FPGAs for
final hardware implementation. Furthermore, as it is impossible to test the hardware before
the system is complete, some components need to be validated before assembly. In fact, we
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have demonstrated through post-layout simulations and performance comparisons that
the HT approach can fit on a single FPGA. The main advantage of using FPGAs, over other
programmable components, is their speed and low latency to handle pattern recognition
problems, also in a noisy environment. FPGAs provide latency that increases linearly with
incoming data, while other solutions increase latency time more quickly. Furthermore,
here, the noise can be imagined of any origin, and therefore composed of traditional white
noise or unwanted physical data that emerge after particle collisions. In both cases, this
unwanted data must be removed from the useful information, and HT appears to be a
reasonable solution for the purpose.

2. Pattern Recognition in HEPE Using the Hough Transform

Recently, the HT algorithm has been studied and implemented on many electronic
cards [8–11]. In particular, in this study we show the algorithm investigated for tracking
detectors in HEPE, where it is used to extract trajectories and straight or curved lines,
within digital image representations of the particle space. This space, in this study, is the
transversal plane with respect to the beam line, where the pairs (r, ϕ) identify a potential
physical pixel ignited by a charged particle. These points are called Hits. Hence, the HT,
which is a mathematical transformation, turns this particle space into a space of parameters
called Hough space (HS).

Aq
Pt

=
φ0 − ϕ

r
(1)

Formula (1) executes the conversion from the particle space to the HS using (r) as the
radius of the detector layer in the real transversal plane, (ϕ) as the angle of the Hit with
respect to the horizontal axis; let us say that these are the input parameters. On the contrary,
(φ0) is the same angle of the particle trajectory with respect the origin, and let us call it an
output parameter of Formula (1), along with the ( Aq

Pt ), which is described below (see [8,9]
for details). Formula (1) computes, for each pair of Hits, many operations by varying (φ0)
angles and, consequently, any Hit in the parameter space creates many straight-lines in the
HS. This process, carried out over the entire set of input Hits, i.e., the Event, is here defined
as Forward Computation.

2.1. Forward Computation

Figure 1 shows two straight-lines in the HS, created by processing 5 different (φ0)
angles over 2 constant pairs of (r, ϕ) parameters (Hits). Hence, 2 groups of 5 green and
red points are generated by executing 10 times the Formula (1). This is why, as previously
mentioned, that a point in the parameter space generates a straight-line in the HS. Further-
more, the two straight-lines in the HS cross in one common point, the orange point, and
this particular point shares the (φ1) angle. This cross point is below called Road.

The HS is a space parametrized by the ( Aq
Pt , φ0) pairs. The Hits, parametrized by (r, φ),

are in correspondence with the ( Aq
Pt , φ0) points in the HS.

In Formula (1), ( Aq
Pt ) represents the particle momentum (Pt), measured in kg·m/s. The

charge (q) is measured in Coulomb, and the parameter (A) is a constant factor to turn the
( Aq

Pt ) units in rad/m. The points in the HS compose the straight straight-lines generated
by the Forward Computation process via the execution of the Formula (1), as many times as
the (φ0) bins are defined. Figure 2 shows a simulation of an entire Event transposed to the
HS. The cross points indicate the identification of potential Roads, and in case these Roads
are confirmed, the Hits that have generated these Roads are marked as belonging to the
same track.
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Figure 1. Hough space created via Formula (1).

Figure 2. Hough space example (electron-Volt eV and charge (q) set to 1 units).

2.2. Physics Case

We created a Python emulator to validate the behaviour and the performance of a
physical system. In this way, the software and firmware designs were compared using the
same input data. The system performance is measured by the capability of recognizing the
input tracks, i.e., the number of tracks detected compared to the total number of expected
tracks. In this study we have emulated a sector of the ATLAS tracker composed of Pixel
and Strip detectors, and we have estimated the pattern recognition capability using the
following specifications:

• Eight input channels covering part of the Pixel [12] and part of the Strip Detector [13]
of the ATLAS experiment;

• Up to 1000 input Hits, representing tracks and background altogether, used for the
(r, φ) pairs, digitized respectively with 12 and 16 bits. The background is evenly
distributed over the channels;

• Input Hits computed as many times as (φ0) bins there are in the HS, and hence up to
1200 bins, which are digitized with 11 bits;

• A clock frequency targeted at 250 MHz for the final FPGA implementation;
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• ( Aq
Pt ) inverse momenta, used in Formula 1, binned with up to 216 bins, digitized with

8 bits.

Figure 3 shows a reduced size example of a 3D histogram representation of all the
straight-lines generated via the HT Formula (1). The Accumulator circuit is a component
designed to handle the HS space, and it is composed of an electronic memory dimensioned
for 1200 columns, which are the (φ0) angles, and 64 rows, which are the ( Aq

Pt ) inverse
momenta.

If a (φ0, Aq
Pt ) pair indicates a potential physical Event, it is saved as candidate Road, and

marked as (φ0, Aq
Pt )Road. This latter pair is one of the cross points in the HS, and it is shown

in Figure 1 as an orange point, in Figure 2 as cross points of many straight-lines, and in
Figure 3 as the unique 8 high column of the 3D histogram. This 3D image is a graphical
representation of the Accumulator memory. It shows the number of input channels each
bin has been crossed by the straight-lines generated via the Forward Computation. In the
plot, the bin numbers range from 0 to 8, for the 8 input channels, and the unique cell 8 high
identifies the Road.

Figure 3. 3D plot representation of the HS with a unique 8 high bin: the identified Road.

For example, if a Hit that belongs to the 7th layer gives rise to a straight-line which
crosses the n-th row, and the m-th column of the Accumulator, then the bin addressed at
n-th row—of the 64 ( Aq

Pt )—and at the m-th column—of the 1200 (φ0)—is updated in its 7th
floor. This process is carried out in parallel, within every clock cycle, for up to 1200 (φ0)
angles, and for 8 inputs, which is why it requires a large amount of electronic resources to
fit into an FPGA.

2.3. Backward Computation

Once the Accumulator has been filled up with all the straight-lines generated by the
Forward Computation, the selection of candidate Roads starts, and some (φ0, Aq

Pt )Road pairs
can be found. Then, for each candidate Road all the input Hits must be re-considered to
search which ones originated from that particular Road. The HT Formula (1) is executed
backward, in a reverse mode, and this process is called Backward Computation.

(
Aq
Pt

)Road −
Aq
Pt

= (
Aq
Pt

)Road − (
φ0Road − ϕ

r
) (2)

Formula (2) shows that the (φ0Road) value and the Hit (r, φ) numbers are considered to
calculate the ( Aq

Pt ) value first, and then compare it with the ( Aq
Pt Road). The comparison, in
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principle, should result in a perfect match between ( Aq
Pt )Road) and ( Aq

Pt ). In case of a perfect
match, the (r, φ) numbers are saved and sent to output as Hits belonging to that Road. On
the contrary, in case the Formula (2) does not match, the (r, φ) numbers are discarded. This
operation is done in parallel for the entire set of Hits, which again is why it requires a large
amount of electronic resources to fit into an FPGA. Figure 4 shows a sketch of the Forward
and Backward Computations.

Figure 4. Forward and Backward Computations.

3. HT Synthesis on FPGA

Firmware (FW) design can be approached at different levels of abstraction. For this
case study, we used a low level of abstraction because we did not want to spread the netlist
components over the whole layout area, even if the synthesis tools are now optimized
for the purpose. The recent common use of high-level [14] synthesis would not give
much benefit, because we need to implement, in one FPGA, the largest system in terms
of the parameters listed in Section 2.2. The design optimization includes the electronic
implementation of the Formula (2), the use of Digital Signal Processors (DSP), Configurable
Logic Blocks (CLB), and Look-Up Tables (LUT). Leaving the automatic tools to optimize
the system, without constraining where to distribute the netlist on the FPGA’s Super
Logic Regions (SLR) [15] would not optimize the resource allocation. The interconnections
between different SLRs are in fact slower than those within one SLR. So, we have not
implemented critical high-speed nets sharing different SLRs. We adopted a FW description
using the VHDL Register Transfer Logic (RTL) level of abstraction, and the code was easily
simulatable. Frontier FPGA selection and low-level abstraction description is justified by
the need to cope with complex circuits to fit small devices. Furthermore, the choice of
FPGAs guarantees a fixed Latency, as estimated below, since this is a requirement to be
fulfilled in HEPE. In addition, to match the Timing Constraints of the synthesis process,
the Hold and Setup times have to be properly considered. In particular, in case of a Setup
time mismatch, in general, the problem can be fixed by reducing the clock frequency, if
permitted. By contrast, when Hold-Time violations appear, the circuit does not work at
all, independently of the clock frequency. This is one of the main reasons why we have
considered the design of critical nets first, starting from the VHDL code. In fact, parameters
such as Hold-Time and Max-FanOut were set as specifications before performing any
synthesis. Pipeline [16] stages have also been inserted in sequential logic to facilitate the
Place and Route automatic process. Eventually, the Backward Computation was implemented
exploiting DSP for divisions and LUTs for additions.

Moreover, this case study of the HT implementation has been focused on the FELIX-II
card [17], featuring the Xilinx UltraScale+ VU9P FPGA. This FPGA uses 24 transceivers [18],
which are used to read 8 channels, and to provide 16 parallel outputs. We have run
simulations including parasitic capacitances extracted from the design. In this way we were
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also able to check out the Worst Negative Slack (WNS) for the Setup time. As a consequence
of that, we also estimated the Working Frequency, the Input and Output Throughput, and
the Total Latency.

• Working Frequency = 1
Tclock−WNS GHz = 1

4+0.5 ns GHz = 0.22 GHz ;

• Input Throughput ( Byte
s ) = 8 × 28 × 250 MHz

8 bit = 7 GBps;

• Output Throughput ( Byte
s ) = 16 × 28 × 250 MHz

8 bit = 14 GBps;
• Total Latency = 30 clock periods.

Furthermore, the processing time to fully analyze an Event is a function of the follow-
ing parameters, besides the clock frequency:

• #Hits, which is the total number of input data (Hits) loaded 8 at a time;
• #Roads, which is the total number of identified Roads within a given Event;
• Latency, which is the number of clock periods from when the entire Event is loaded

by executing the Forward Computation, to when the first group of 16 Hits, belonging to
the first Road, is sent out.

4. Simulations

The VHDL code was simulated to first verify the behavior of the system, then a
synthesis process and a consequent evaluation of the parasitic capacities allowed us to
confirm the behavior, through further simulations. The same approach has been applied to
build post-layout simulations, which are more accurate and closer to reality. The entire set
of simulations have also been permitted to estimate and to validate the clock frequency
and throughputs. As previously mentioned, in parallel to FW simulations, we have built a
software emulator to run the HT process using a Python code. The software only did not
consider the internal latencies and other timing templates of the electronics. In this way, we
have been able to compare the two types of simulations, the FW-based, and the SW-based,
as shown in Figure 5. Eventually, we have compared the outputs provided by the two
simulations sharing the same inputs. The input pattern generated for the simulations—test
vectors—have also been used to run a physical test on an FELIX-II Ultrascale+ [17] platform,
featuring the Xilinx VU9P FPGA, as shown in Figure 6. The FW has been tested, the data
have been fed, and read out through a 16-lane 3rd generation PCI bus. These tests have
succeeded in confirming that the simulations were correctly performed.

Figure 5. Logic description of the Hough transform demonstrator.

Table 1 shows the simulation comparisons as they come out from individual processes
that share the same inputs. The generated input Hits are dummy, contain a given number
of Roads, have been analyzed in the Python simulator first and, subsequently, in the VHDL-
based FW simulator. All the Events contain a common bunch of 128 noisy Hits and refer to
8 input layers shared among Pixels and Strips, differentiated by the (r, ϕ) values. In this
case, each Road is composed of 2 × 8 Hits and the system uses a 216 × 216 Accumulator.
In particular, Table 1 shows the number of Hits, the number of Generated Roads, and how
many candidate Roads the system extracts first, and processes successively. The last column
shows the entire Event processing time, from when it has been fully loaded into the FPGA
to when the first Road, along with the corresponding Hit information, is sent to the output.
It is evident that the HT algorithm finds more Roads with respect to those created, but this
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is normal, as the extracted Roads are just potential physical tracks that must be confirmed
by a successive process. Since the number of real tracks entering the system is unknown, the
most important thing is to not lose any of them among the background noise. If more Roads
are generated, these will be eliminated by a further cross-check using additional layers
than those used in the HT process. In [8,9], we report a hardware implementation, with the
detail of the block diagram, while in this paper we broaden the field to generic low latency
applications, and this is why we have designed a software development tool. Compared
to other similar devices [19–21], FPGA components can simultaneously provide low and
fixed latency, low power budget, and high data rate. Furthermore, the HT implementation
on FPGAs is independent of input data and noise percentage. The system also becomes
more efficient for large input data sets as the overall latency scales linearly.

Figure 6. Hough transform demonstrator under test.

Table 1. Table summarizing the simulation results for different parameters (# means number of).

# Event Label # Total Hits # Gen. Roads # Extracted Roads Proc. Time

A 928 50 257 2636 ns
B 1008 55 325 3180 ns
C 768 40 111 1468 ns
D 848 45 170 1940 ns
E 608 30 67 1116 ns
F 688 35 90 1300 ns
G 448 20 28 804 ns
H 528 25 41 908 ns

5. Conclusions

FPGAs have been proved to be good devices to host mathematical algorithms as
the Hough transform. In particular, the latest Xilinx families, due to the UltraScale+,
featuring high numbers of embedded DSPs, memories, transceivers, and CLBs, is one
of the best candidate target devices. For test purposes, we have used a custom card
designed originally for the ATLAS data acquisition and trigger applications at CERN.
This card, namely the FELIX-II [17], is populated with an Ultrascale+ device. The study
has investigated a Hough transform system characterized by a 250 MHz clock signal, a
216 × 216 Accumulator, and a number of Hits on the order of 1000. The choice of FPGAs
in this field is justified by the need of high input-output data transmission speed, low
system latencies, and reasonable management of the algorithm complexity. In fact, FPGA
components, with respect to other similar devices, can simultaneously provide low and
fixed Latency, low power budget, and high data rate, by reducing the resource allocations
of two orders of magnitude. The design process has been fully simulated from the firmware
code to the final implementation. Currently, Hough’s transform firmware is finalized
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with an RTL description, which is synthesizable and routable on FPGA resources. Post-
synthesis and post layout simulations were also performed to consider internal FPGA
physical connections. In addition, a Python tool was designed with the aim of deeply
investigating the behavior of the system before laboratory testing. With this tool, many
dummy inputs have been prepared via a series of Hits over a noisy background to estimate
the performance of the entire architecture in finding the candidate tracks. Eventually, we
loaded the algorithm into a board featuring Ultrascale+ FPGA and provided the same
simulated test vectors used in the simulations: the two setups matched perfectly. These
studies of Hough transform algorithms for application to high-energy physics experiments
are not new but, particularly for hardware particle recognition tasks in tracking systems,
have never been completed using an FPGA implementation.
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